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Abstract

Cellular reprogramming has been recently intensively studied experimentally. We developed a global potential landscape
and kinetic path framework to explore a human stem cell developmental network composed of 52 genes. We uncovered
the underlying landscape for the stem cell network with two basins of attractions representing stem and differentiated cell
states, quantified and exhibited the high dimensional biological paths for the differentiation and reprogramming process,
connecting the stem cell state and differentiated cell state. Both the landscape and non-equilibrium curl flux determine the
dynamics of cell differentiation jointly. Flux leads the kinetic paths to be deviated from the steepest descent gradient path,
and the corresponding differentiation and reprogramming paths are irreversible. Quantification of paths allows us to find
out how the differentiation and reprogramming occur and which important states they go through. We show the
developmental process proceeds as moving from the stem cell basin of attraction to the differentiation basin of attraction.
The landscape topography characterized by the barrier heights and transition rates quantitatively determine the global
stability and kinetic speed of cell fate decision process for development. Through the global sensitivity analysis, we provided
some specific predictions for the effects of key genes and regulation connections on the cellular differentiation or
reprogramming process. Key links from sensitivity analysis and biological paths can be used to guide the differentiation
designs or reprogramming tactics.
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Introduction

Human pluripotent stem cells have the potential to produce any

tissues in the body, which provides the motivation for many

researchers to investigate the cellular reprogramming. Recently

some research on cellular reprogramming show that the transfor-

mation from somatic cells to induced pluripotent stem cells (iPSC)

or between different differentiation cell types can be implemented

by manipulating a few key genes [1–6]. These results provide hints

for the stem cell models to be applied to the regenerative medicine.

However, it is still challenging to generate and manipulate

human pluripotent stem cells before practical applications to

human healths. The efficiency of current cellular reprogramming

techniques is often low and the molecular mechanism of cellular

differentiation and reprogramming is still not very clear so far.

This might be one of the main hurdles for iPSC to be applied for

therapy. Therefore, understanding mechanisms of cellular differ-

entiation and reprogramming as well as finding the optimal

reprogramming pathway become very important for the applica-

tion of iPSC. This requires a systematic and global approach to

explore underlying gene regulatory networks with marker genes

and mutual regulations between them.

The epigenetic landscape concept has been proposed to explain

the development and differentiation of the cells as a metaphor [7],

and provided a quantitative way of understanding the dynamics of

gene regulatory system that drive cell development. This picture

has been quantitatively realized through exploration of the global

nature of the network in terms of probabilistic landscape

framework [8–17]. The state space of gene regulatory networks

contains states with different gene expression patterns (such as

embryonic stem cell marker gene NANOG and OCT4) in the cell,

which further determines different cellular phenotypes. Using

landscape framework, cell types are represented by basins of

attractions on the landscape, which reflect the probability of

appearance of different cell types. States with lower potential or

higher probability represent attractor states or biological function-

al states, surrounded by the basin of attraction. So, the biological

process such as cellular differentiation or lineage commitment can

be understood as the transition from an attractor state to another

one in the gene regulatory network state space. By quantifying the

topography of the potential landscape in terms of barrier heights

and transition rates, we can explore the global stability, kinetic

paths and kinetic speeds of cell fate decision making process.

We will explore the underlying landscape of a human stem cell

developmental and differentiation network with 52 gene nodes by

constructing the corresponding chemical reaction rate equations to

explore its global properties, uncover the functional mechanism of

transition between stem cell states and differentiation states. The
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barrier heights separating basins of attractions and the transition

rates serve as the quantitative measure for global stability and

kinetics of cell fate decision making process from one cell fate

attractor to another representing different cell types. We further

quantify the kinetic paths for the differentiation and reverse

differentiation process (reprogramming). We show that both

potential landscape and probabilistic flux determine the dynamics

of the developmental system. The force from the curl flux leads the

kinetic paths of the system deviating from the steepest descent

gradient one of potential. As a consequence, the differentiation

path and the reprogramming path are irreversible. By identifying

the differentiation and reprogramming paths, we can quantita-

tively trace the important states along the paths. Based on this, we

can find out the detailed kinetic process realizing the differenti-

ation and reprogramming. By the global sensitivity analysis of

parameters or connections between genes, we will quantitatively

predict which connection links or nodes (genes) are critical to

cellular differentiation or reprogramming, which can be directly

tested from the experiments. Through the analysis on the

underlying landscape, we can also understand more clearly the

mechanism of differentiation and reprogramming as well as the

sensitivity of the parameters or links on the stability of the stem cell

system. The biological paths we acquired can be used to guide the

design of new differentiation or reprogramming tactics. This also

provides a way to explore the biological paths for high dimensional

systems or large networks.

Results/Discussion

Landscape, Flux, and Kinetic Path for Development
Network

We obtained the steady state probability distribution and

potential landscape of the 52 gene stem cell regulatory network

system (Figure 1) [18] by self consistent mean field approximation,

according to U~{ln(Pss) [8,10–15]. Here, Pss represents the

probability distribution of the steady state, and U is the

dimensionless potential energy. Therefore, U directly reflects the

steady state probability. Figure S1 gives a flowchart for the

methods that we employed in this work.

The time evolution the dynamical systems are governed by the

diffusion equations. Given the system state P(X1,X2,:::,Xn,t),
where X1,X2,:::,Xn is the concentration or populations of

molecules or species, we expected to have N-coupled differential

equations, which are difficult to solve. Following a self consistent

mean field approach [8,12,19], we split the probability into the

products of individual ones: P(X1,X2,:::,Xn,t)*Pn
i P(Xi,t) and

solve the probability self-consistently. This effectively reduces the

dimensionality from MN to M|N, and thus makes the problem

computationally tractable. For the multi-dimensional system, it is

still hard to solve diffusion equations directly. We start from

moment equations and assume specific probability distribution

based on physical argument, which means that we give some

specific connections between moments. In principle, once we

know all moments, we can construct the probability distribution.

Here we use gaussian distribution as approximation (two moments

are needed, mean and variance). Therefore, the evolution of

probabilistic distribution for each variable can be acquired after

solving the moment equations (the mean and variance) based on

gaussian approximation approach (See Methods for detailed self

consistent approximation method for obtaining landscape). In this

work, we acquired 52 dimensional probability distribution. For a

52-dimensional system, it’s hard to visualize the landscape. So we

integrated out the other 50 variables and left two key variables

NANOG and GATA6, then projected the landscape to a 2-

dimensional state space (NANOG and GATA6). The reason that

we chose the variable NANOG and GATA6 is because that

NANOG is a major stem cell marker gene, GATA6 is a major

differentiation marker gene, and the regulation dynamics of the 52

nodes network is mainly determined by the mutual repression of

NANOG and GATA6 and the mutual repression between OCT4

and CDX2. Choosing other major genes for presentation (such as

any 2 genes from NANOG, GATA6, OCT4 and CDX2) will give

the similar bistable landscape picture.

Figure 2 shows two-dimensional and three-dimensional land-

scape in transcription factor expression level NANOG/GATA6

state space and the kinetic paths for the system. In Figure 2(A), we

can see clearly that there are two stable states or basins of

attractions on the landscape (bistability). One of them represents

the pluripotent stem cell state, which has higher expression of stem

cell marker—such as OCT4, NANOG and lower expression of

differentiation marker genes—such as GATA6; and the other

stable state represents the differentiation state, corresponding to

lower expression of stem cell marker genes, and higher expression

of differentiation marker genes. Based on our path integral method

[13,20], we also acquired the quantitative developmental path

from the stem cell state to the differentiation state (and the

reprogramming path from the differentiation state to the stem cell

state). Here, parameters are chosen in order to obtain relatively

balanced two states (stem cell state and differentiation state).

Specifically, we set degradation constant k~1, activation constant

a~0:37, and repression constant b~0:5 (See Methods Section).

In order to exhibit the landscape of the complete 52

dimensional network, we also used Langevin dynamics method

to obtain landscape (Figure S2 in supporting information). For a

52 dimensional system, for visualization, we harnessed RMSD
(root mean squared distance) as the coordinate to reduce the

dimensionality to 2 dimension (RMSD~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i (xi{x

ref
i )2

q
, N is

the number of variables, and x
ref
i is the reference state, here we

chose two potential minima as the reference states). RMSD
represents the distance between a state point and reference point

in state space. In this way, from 52-dimensional trajectory, we can

generate two new coordinates RMSD1 and RMSD2, separately

Author Summary

Cellular differentiation and reprogramming have been
extensively studied using experimental methods. We
developed a landscape and kinetic path approach to
explore the global stability of a stem cell developmental
network. The cell fates are quantified by the basins of
attractions of the underlying landscape. The developmen-
tal process can be quantitatively described and uncovered
by the biological paths on the landscape from the
progenitor state to the differentiation state. This allows
us to trace the underlying detailed kinetic process and
obtain the recipe for engineering differentiation and
reprogramming. By quantifying the landscape topography
by the barrier heights and dynamic transition speed, we
can evaluate the stability and kinetics of cell fate decision
making process of the development and reprogramming.
The global sensitivity analysis provided predictions about
the effects of the key genes and regulation links of the
network on the stability of differentiation and reprogram-
ming process. This can be tested in the experiments.
Results from sensitivity analysis and biological paths
acquired can be used to guide the differentiation designs
or reprogramming tactics.

Landscape and Paths of Cell Fate Decisions
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representing the distance from a state point to the reference state 1

(the potential minimum of stem cell attractor) and the reference

state 2 (the potential minimum of differentiation state attractor).

We can find that the landscapes using RMSD method based on

Langevin dynamics (Figure S2 in supporting information) possess

the similar dynamics compared with using NANOG and GATA6

as the coordinates (Figure 2) based on the self consistent

approximation. This shows that the two dimensional projection

of landscape in NANOG and GATA6 state space can reflect the

major dynamics of the full 52-dimensional gene network.

We also showed the probabilistic flux of the stem cell system on

the landscape (Figure 2(B)). The white and red arrows respectively

represent the direction of probabilistic flux and the negative

gradient of the potential energy. The dynamics of the develop-

mental system is determined by both the force from the gradient of

potential and the force from the curl flux [11]. The force from the

curl flux leads the paths of the system deviating from the steepest

descent path calculated from gradient of potential, therefore, as we

can see the two kinetic paths of differentiation and reprogramming

are irreversible (yellow line and red line are not identical), which

was indicated in both adiabatic and non-adiabatic mechanisms for

the stem cell developmental motifs with only two genes [13,14].

Here, we can see the basic picture holds true for the gene network

at the realistic level with 52 genes.

The landscape in Figure 2 only is a 2-dimensional projection of

the whole 52 dimensional state space. In order to demonstrate the

cell states and the transitions between different cell types in the

complete state space, we projected the expression level of the 22

marker genes to binary states (222 cell states). Here, to analyze the

dynamics of the system, we chose the key 22 marker genes to

explore the underlying landscape and transition jumps between

two nodes based on Langevin dynamics. The first reason choosing

the 22 maker genes is that the 52 dimensional state space is huge,

and it will have 252 states even in the discrete form, which cannot

be easily handled computationally. Another reason is that we

believe using key 22 maker genes can capture major regulatory

dynamics or paths without losing the essential information, since

our purpose is to explore the dynamical mechanism of the stem

cell differentiation system. For example, the stem cell state is

represented by the binary number 1111111111100000000000
(representing expression level from gene 1 to gene 22, 1 for high

expression, 0 for low expression), and for the differentiation state,

it is represented by 0000000000011111111111. Figure 3 (see

Methods Section for detailed methods) shows the differentiation

Figure 1. The diagram for the stem cell developmental network including 52 gene nodes and their interactions (arrows represent
activation and perpendicular bars represent repression). The magenta node represent 11 marker genes for the pluripotent stem cell state,
cyan nodes represent 11 marker genes for the differentiation state, and the yellow nodes represent genes activated by the stem cell marker genes.
The solid black links represent the key links found by the global sensitivity analysis, and the octagon shape nodes represent key stem cell and
differentiation markers found by global sensitivity analysis.
doi:10.1371/journal.pcbi.1003165.g001

Landscape and Paths of Cell Fate Decisions
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and reprogramming process represented by 313 cell states (nodes,

characterized by expression patterns of the 22 marker genes) and

329 transition jumps (edges) between the different cell states

(produced by Cytoscape [21]). The sizes of nodes and edges are

respectively proportional to the occurrence probability of the

corresponding states and paths. Red nodes represent states which

are closer to stem cell states, and blue nodes represent states which

are closer to differentiation states. In particular, we displayed the

22 dimensional kinetic paths (biological paths) from path integral

methods (see methods for the details of path integral), which are

shown as green and magenta paths separately for differentiation

and reprogramming process (see Table S4 and Table S5 for

detailed paths). We can see that the paths for differentiation and

reprogramming are irreversible. The irreversibility of the paths

implies the time asymmetry which may point out the direction of

the development.

From Table S4, monitoring the differentiation process accord-

ing to certain vital marker genes NANOG (column 3), GATA6

(column 16) and CDX2 (column 22), we can see that the

differentiation process experiences a transition from the stem cell

state (high NANOG/low GATA6/low CDX2) to a intermediate

state (IM1, low NANOG/low GATA6/low CDX2), and then to

another intermediate state (low NANOG/low GATA6/high

CDX2), and eventually to the differentiation state (low NA-

NOG/high GATA6/high CDX2). This indicates the importance

of NANOG to the maintenance of pluripotency. For differenti-

ation proceeding, the cell needs to firstly impair the expression of

NANOG, further downregulate other stem cell marker genes

which are promoted by NANOG, and finally reach the

differentiation state (GATA6 dominant). For the reprogramming

path in Table S5, we can see that the cell experiences a transition

from the differentiation state (low NANOG/high GATA6/high

CDX2), to an intermediate state (IM2, high NANOG/high

GATA6/high CDX2), to another intermediate state (high

NANOG/low GATA6/high CDX2), and finally to the stem cell

state (high NANOG/low GATA6/low CDX2). This might imply

that in the reprogramming process the cell first opens the key stem

cell marker genes NANOG by the change of regulation strength

between key maker genes, then other stem cell marker genes

gradually acquire high expression level due to the activation

regulation of NANOG to them. Finally the cell reach the stem cell

state, because the stem cell marker genes which have been

activated repress strongly the differentiation marker genes (such as

GATA6 and CDX2). The biological paths can be validated by

related experiments [18], and we expect that it can be used to

guide the design of new strategies for cellular differentiation and

reprogramming.

Barrier Height and Kinetics for Developmental Network
To quantify the global stability of the stem cell network in terms

of landscape topography, we define global barrier height,

representing potential difference between two attractor minimums

and the saddle point on landscape. We define USP as the potential

energy difference between the pluripotent stem cell state and the

saddle point, Usaddle{UP, and USD as the potential energy

difference between differentiation state and the saddle point,

Usaddle{UD. Here, UP and UD denotes respectively potential at

the minimum for the stem cell attractor and the differentiation

attractor, and Usaddle denotes the potential at the saddle point

between these two basins of attractions. The results of barrier

heights are based on RMSD method from Langevin dynamics

(Figure S2). We projected the whole network landscape to two

dimensions (RMSD1 and RMSD2). For this 2-dimensional

landscape, we can acquire saddle points, local minimums and

then barrier heights.

In this way, USP measures the global stability of the stem cell

state or the stability of the differentiation process and USD

measures the stability of the differentiation state or the stability of

the reprogramming process. When the system has larger USP

(stem cell state barrier or barrier for differentiation process

Udifferentiation) and smaller USD (differentiation state barrier or

barrier for reprogramming process Ureprogramming), the stem cell

state is more stable and the system is inclined to stay in the stem

cell state. The differentiation process (transition from stem cell

state to differentiation state) is hard to realize, because the system

must go across a large barrier in order to escape from the stem cell

state to differentiation state. The reprogramming process (the

reverse process of differentiation, transition from differentiation

state to stem cell state) is relatively easy to realize in this case (small

Ureprogramming). In contrast, if USP (Udifferentiation) is small and USD

(Ureprogramming) is larger for the stem cell system, it will be

advantageous for differentiation process and difficult for repro-

gramming process, because the system only needs to overcome a

Figure 2. A bistable landscape picture for the stem cell
network. Parameters are specified as: k~1 (degradation), b~0:5
(repression), a~0:37 (activation), and diffusion coefficient D~0:01. (A)
Three dimensional landscape and dominant kinetic paths. The yellow
line represents developmental path, and the magenta line represents
reprogramming path. (B) Two dimensional dominant kinetic path and
flux on the landscape. The white arrows represent the direction of flux,
and the red arrow represent the direction of the negative gradient of
potential energy.
doi:10.1371/journal.pcbi.1003165.g002

Landscape and Paths of Cell Fate Decisions
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small barrier to go from the stem cell state to the differentiation

state (small Udifferentiation), but a large barrier from differentiation

state to pluripotent stem cell state (large Ureprogramming).

Figure 4 (A) shows respectively the barrier heights for

differentiation process (USP or Udifferentiation) and the reprogram-

ming process (USD or Ureprogramming) when activation strength a

changes. We can see that with the activation constant a increased,

USP becomes larger and USD declines. It indicates that the

enhancement of activation regulation in the network leads to more

stable stem cell state, making it easier for the transition from the

differentiation state to the stem cell state, and correspondingly the

barrier height of differentiation process USP is raised. Meanwhile,

when activation links are strengthened, the differentiation state

becomes less stable, the system is not inclined to stay at

differentiation state with a smaller barrier height of reprogram-

ming process USD (Ureprogramming). This implies that changing the

strength of the activation links in the gene regulatory network

provide a way to regulate the differentiation process or the

reprogramming process and make the system inclined to

differentiation or inclined to reprogramming determined by the

relative stability of the two basin of attraction - stem cell attractor

and differentiation attractor. The relative stability of these two

attractors can be quantified by the landscape topography - that is,

the barrier height. Indeed, some previous work have showed that

changing self activation regulatory strength provide a possible

mechanism for cell differentiation and reprogramming motifs

involving two genes [11,13,14,22].

We also investigated the kinetics or speed of differentiation and

reprogramming according to the mean first passage time (MFPT),

in order to further quantify the dynamics of differentiation and

reprogramming process. We calculated the mean first passage time

(MFPT) from the trajectory based on Langevin dynamics. In

Figure 3. Differentiation and reprogramming process represented by 313 nodes (every node denotes a cell state, characterized by
expression patterns of the 22 marker genes) and 329 edges (paths). The sizes of nodes and edges are proportional to the occurrence
probability of the corresponding states and paths, respectively. Red nodes represent states which are closer to stem cell states in terms of gene
expression pattern, and blue nodes represent states which are closer to differentiation states. The green and magenta paths denote dominant kinetic
paths from path integral separately for differentiation and reprogramming. Here, we set a probability cutoff to decrease the number of states and
paths, i.e. we only demonstrate the states and paths with higher probability. The largest red node (high NANOG/low GATA6/low CDX2) represents
most major ES state (stem cell state), and the largest blue node (low NANOG/high GATA6/high CDX2) represents most major differentiation state. IM1
represents a intermediate state (low NANOG/low GATA6/low CDX2), and IM2 represents another intermediate state (high NANOG/high GATA6/high
CDX2).
doi:10.1371/journal.pcbi.1003165.g003

Landscape and Paths of Cell Fate Decisions
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Figure S2B, left attractor represent ES state, the right attractor

represents differentiation state, and this landscape is obtained by

collecting the statistics through histogram or distribution of the

temporal trajectories for 52 variables. Starting from a random

initial state at ES attractor, following the temporal evolution

trajectory of system, we can find the time where the system first

enters into the differentiation attractor. The time difference

between initial time and the final time is defined as the first

passage time (FPT) for differentiation process. Repeating this

process and obtaining the average of the FPT is defined as the

MFPT for differentiation process. In the same way, we can obtain

the MFPT for reprogramming.

MFPT reflects the average transition time of the system from

one state to another state in the state space of gene regulatory

networks, and therefore can be used to quantify the ability of a

system switching from one state to another state. The results of

MFPT are shown in Figure 4 (B). It can be seen that for the

differentiation process, the MFPT of differentiation (tdifferentiation,

blue line) is longer when the activation strength a increases. This

implies that when activation is larger the system need more time to

jump from the stem cell state to the differentiation state. Cells have

more chances to stay in the stem cell state, and therefore the

increase of the activation strength is disadvantageous to the

progress of differentiation. On the contrary, the decrease of

activation makes MFPT of differentiation smaller, and thus cells

are inclined to jump from stem cell state to differentiation state.

The decrease of the activation strength represents the direction of

the differentiation process. For the reprogramming process, the

MFPT of the reprogramming treprogramming decreases as the

activation strength increases, which means that when activation

strength increases the system needs less time to jump from

differentiation state to stem cell state, therefore making repro-

gramming easier.

We can find that the global barrier heights and the MFPT have

the same trend for differentiation and reprogramming, and both of

them can serve as the quantitative measure to global stability of the

two attractors and kinetic speeds.

We also explored the influence of changing the repression

strength b and the noise level D on the landscape topography.

Figure 4(C,D) show the landscape results when the repression

strength b is changed. It shows that when b is increased, the

barrier for differentiation process USP (Udifferentiation), the barrier

for reprogramming process USD (Ureprogramming), the MFPT for

differentiation process from stem cell state to differentiation state

(tdifferentiation), and the MFPT for reprogramming process from

differentiation state to stem cell state (treprogramming) all increase.

This might be because that the increase of mutual repression (a lot

of the repression links are mutual repression between stem marker

genes and differentiation marker genes) makes transitions between

stem cell states and differentiation states harder, and thus the

barriers and the MFPT both increase.

Figure 4(E,F) show the landscape results when the noise level D
(diffusion coefficient in Langevin dynamics) is changed. It shows

that when D is increased, the barrier for differentiation process

USP (Udifferentiation), the barrier for reprogramming process USD

(Ureprogramming), the MFPT for differentiation process from stem

cell state to differentiation state (tdifferentiation), and the MFPT for

reprogramming process from differentiation state to stem cell state

(treprogramming) all go down. This can be explained that the increase

of fluctuations makes both the stem cell state and the differenti-

ation state less stable, and the transitions between the stem cell

state and the differentiation state become easier, reflected by the

decrease of the barriers and the MFPT. Meanwhile, in

Figure 4(E,F) we can find that with D decreased the barrier for

differentiation process USP (Udifferentiation) and the MFPT for

differentiation (tdifferentiation) decline slower than the barrier for

reprogramming process USD (Ureprogramming ) and the MFPT for

reprogramming (treprogramming). This shows that as the noise goes

up the differentiation state becomes more stable relatively, which

might provide a possibility for noise-induced differentiation or

reprogramming [23,24]. We need to stress that our non-

equilibrium potential barrier U is dimensionless and directly

related to the steady state probability U~{lnPss while the

equilibrium potential barrier conventionally has a dimension as

kT such that Ueq~{kT lnP. kT plays the role of the noise. This

is why our non-equilibrium dimensionless U usually changes with

noise while Ueq usually does not.

Dynamical Transition Path for Differentiation and
Reprogramming

We also used Langevin dynamics method to investigate the

dynamics of the system (See methods for details), because it can

provides the dynamical trajectory of the developmental system

under fluctuating environments. Figure S2 show the landscape

comparisons at different activation strength a, we can find that

when a is large (Figure S2 (A), a~0:5) the stem cell state attractor

is dominant, showing only one stable basin of attraction on the

landscape graph, and when a decreases to 0:3, the differentiation

state attractor is dominant (Figure S2 (D), a~0:3). Specifically,

when a gradually decreases from 0.5 to 0.3, the stem cell state

Figure 4. The barrier height and MFPT (mean first passage
time) results when the activation strength a, the repression
strength b as well as the noise level D changes (Langevin
dynamics). (A)(B) show that when a increases, stem cell state becomes
more stable, the barrier for stem cell state USP (or the barrier for
differentiation process Udifferentiation) increases, and the MFPT for
differentiation process from stem cell state to differentiation state
(tdifferentiation) increases. By contrast, When a increases, differentiation
state becomes less stable, the barrier for differentiation state USD (or
the barrier for reprogramming process Ureprogramming) decreases, and the
MFPT for reprogramming process from differentiation state to stem cell
state (treprogramming) declines. (C)(D) show that when b increases, the
barrier for stem cell state USP (Udifferentiation), the barrier for differen-
tiation state USD (Ureprogramming), the MFPT for differentiation process
(tdifferentiation), and the MFPT for reprogramming process (treprogramming) all
increase. (E)(F) show that when noise level D increases, the barrier for
stem cell state USP (Udifferentiation), the barrier for differentiation state
USD (Ureprogramming), the MFPT for differentiation process (tdifferentiation),
and the MFPT for reprogramming process (treprogramming) all decrease.
doi:10.1371/journal.pcbi.1003165.g004

Landscape and Paths of Cell Fate Decisions
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becomes less and less stable (differentiation barrier decreases and

MFPT for differentiation decreases) and the differentiation state

becomes more and more stable (reprogramming barrier increases

and MFPT for reprogramming increases) until being dominant,

demonstrating that the system of stem cell experiences a transition

from stem cell state to differentiation state with activation strength

a decreased. This implies that controlling the strengthes of the

activation links between different marker genes might provide a

mechanism for cell fate determination, differentiation or repro-

gramming. The regulation changes during the developmental

processes are hinted in experiments by the effective regulations of

the transcription factors mediated by Klf4 [25]. Therefore, we can

see that the decrease of the activation strength represents the

direction of development and differentiation. Along this direction,

the Waddington landscape is downhill. This might provide a

possible explanation for the direction (time arrow) for the

developmental process hinted from the downhill trend of the

Waddington landscape caused by the gene regulation changes. We

suggest the direction or time arrow of the development by

changing regulations leading to the underlying divergent funneled

(with more states at the bottom in contrast to convergent funnel in

protein folding) Waddington landscape is from natural selection.

The regulation changes leading to the downhill Waddington

landscapes for development are selected due to the emergence of

the associated biological function (differentiation). The regulations

not leading to the downhill Waddington landscape and failed for

generating successful development and differentiation will not be

selected and therefore become extinct in evolution.

To study the dynamics of developmental process when a
changes from 0:5 to 0:3, we specify activation constant a changing

from large to small with time, a(t)~0:161 � exp({d � t)z0:27.

Here d represents the rate of decreasing of a (parameters in this

equation are selected in order to acquire a suitable dynamical

transition trajectory from a~0:5 to a~0:3). We assume that the

activation strength a decreases in the developmental and

differentiation process due to the regulations of the other genes

in the network. Then we can obtain the trajectory of the stem cell

system with the activation strength a changed (RMSD as

coordinates from Langevine dynamics).

Figure 5 shows the dynamical transition path of the differen-

tiation process (green line) and the reprogramming process

(magenta line) on the underlying landscape. Z axis represents

activation strength a. Three 2-dimensional landscape pictures

represent the landscape of the stem cell network respectively for

a~0:43, a~0:37, and a~0:3. It can be seen clearly that as the

differentiation progresses (represented by decrease of a), the

landscape of the stem cell network changes gradually from a

dominant stable stem cell attractor, to a balanced bistability, and

finally to a dominant stable differentiation attractor. In the mean

time, we can see that the two paths of differentiation and

reprogramming are irreversible (green line and magenta line are

not identical), which is consistent with the dominant path results

from path integral. From transition path trajectories, we can see

that for the development and differentiation process the trajectory

first haunts around the stem cell state attractor, and then jump to

the differentiation state attractor after a decreases to a critical

value (we define it a1 here). By contrast, for the reprogramming

process, the trajectory firstly haunts around the differentiation

state attractor, and jump to the stem cell attractor after a increases

to a critical value a2. We notice that a1 and a2 is not in the same

place, which just effects the fact of irreversible transition paths.

Indeed, a1 is smaller than a2, providing a hysteresis loop for the

bistable switch. This result reflects one of the common character-

istics for biological bistability: the existence of hysteresis for

bistable switch, which comes from the feedback loops and provides

an explanation of the irreversibility for the bistable switch. Figure 5

provides a quantified yet realistic Waddington landscape picture of

differentiation and reprogramming.

As we did for the dominant path, we also monitored the

differentiation and reprogramming kinetic paths with the activa-

tion strength a changed (separately shown in Table S6 and Table

S7) in terms of certain key marker genes NANOG, GATA6, and

CDX2. Similar to the analysis about dominant paths from path

integrals, we can find that for the differentiation process the cell

experiences an intermediate state (low NANOG/low GATA6/low

CDX2 or low stem cell marker/low differentiation marker) along

the path from the stem cell state to the differentiation state. For the

reprogramming path, we can see that the cell also experiences an

intermediate state (high NANOG/high GATA6/high CDX2, or

high stem cell marker/high differentiation marker) along the path

from the differentiation state to the stem cell state. These results

have the consistent predictions with the dominant path analysis,

which is that the cellular differentiation needs to experience an

intermediate double low state (both stem cell marker genes and

differentiation marker genes have low expression level), and the

cellular reprogramming needs to experience an intermediate

double high state (both stem cell marker genes and differentiation

marker genes have high expression level). We expect that these

predictions can be tested by experiments in the future, as well as

help to design the differentiation and reprogramming strategies.

Global Sensitivity Analysis for Repression and Activation
Connections

We also did a global sensitivity analysis of parameters for the

stem cell network in order to discover the key parameters or

connections in the network affecting the stability and kinetic

transitions of both the stem cell state and the differentiation state.

Giving parameters, here representing the strength of 123 links in

the stem cell network at a perturbation level pl, we can explore the

influence of these parameters on the stability of the system by

comparing the change of landscape topography quantified by the

barrier heights.

We firstly exploited the self consistent approximation method

[12,19] to obtain those most important parameters - that is, by

Figure 5. The differentiation and reprogramming trajectories
on the landscape background. Z axis represents activation strength
a. Three 2-dimensional landscape from up to down separately
correspond to a~0:43, a~0:37 and a~0:3. Green color represents
differentiation trajectory (from stem cell state to differentiation state),
and magenta color represents reprogramming trajectory (from
differentiation state to stem cell state).
doi:10.1371/journal.pcbi.1003165.g005
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finding those parameters affecting barrier heights of the system

critically. Specifically, we changed the value of each of the

activation and repression constant Aji and Bji (Eq. (2), the

parameters Aji and Bji are only used for the global sensitivity

analysis) by giving a percentage Ds=s (here, s represents parameter

Aji or Bji, Ds represents the change of parameter s, the value of

Ds=s is controlled as between {1 to 1) as the degree to change.

Then for every mutation of parameters we compared the change

of the landscape topography in terms of the barrier heights for

both differentiation DUSP (Udifferentiation) and reprogramming

DUSD (Ureprogramming). In this way, we acquired 20 most critical

parameters or connections (14 of them are activation links and 6 of

the others are repression links, see Text S1 and Figure S3 for

details).

In the following, we employed the Langevin dynamics to further

obtain the change of barrier heights when these 20 parameters are

changed, because by the Langevin dynamics the landscape of the

system can be acquired directly by the statistics of the trajectories

of the system - not through approximation. Figure 6 shows the

results of the global sensitivity analysis for the 20 parameters or

connections (see Text S1 for details). Figure 6 (A) shows the results

for 6 repression links, and Figure 6(B) shows the results for 14

activation links. Blue bars represent the change of the barrier for

stem cell state (USP), and the red bars represent the change of the

barrier for differentiation state (USD).

In Figure 6 (A), x axis represent 6 parameters or connections.

The 6 links are respectively corresponding to: 22 a 1 (link R1,

CDX2 a OCT4), 1 a 16 (link R2, OCT4 a GATA6), 3 a 16 (link

R3, NANOG a GATA6), 15 a 16 (link R4, GATA4 a GATA6),

35 a 16 (link R5, LMCD1 a GATA6), 46 a 16 (link R6,

PRDM14 a GATA6). Here, 22 a 1 represents the repression

regulation from gene CDX2 to gene OCT4 (see Text S1 for the

detailed relation of the order numbers of genes and the

corresponding genes). We can see that when the repression of

CDX2 to OCT4 increases, USP (stem cell state barrier) decreases

significantly and USD (differentiation state barrier) decreases

slightly, making it easier to jump from stem cell state attractor to

differentiation state attractor. Some experimental results have

showed the importance of CDX2 to cell differentiation, which

indicate that at the blastocyst stage Oct4 is gradually downreg-

ulated in the outer trophectoderm (TE, one cell type of

differentiation state) cells by Cdx2 through direct physical

interaction and transcriptional regulation [26]. In addition,

repression link R6 (46 a 16 representing gene PRDM14 represses

gene GATA6, here we defined a name for every repression and

activation link, see Table S2 and Table S3 for the definition of link

names) represents the repression of gene PRDM14 to gene

GATA6. According to experimental results when PRDM14 is

activated, the reprogramming is enhanced [27], which is also

reflected in our global sensitivity analysis results that strengthening

repression link R6 make USP increase and USD decrease.

For the repression link R2 (OCT4 a GATA6), R3

(NANOG a GATA6), R4 (GATA4 a GATA6), R5 (LMCD1
a GATA6), they are all the repression regulations from either

stem cell marker genes (OCT4, NANOG) or other genes (GATA4,

LMCD1) to the key differentiation marker gene GATA6. So, our

global sensitivity analysis provide some predictions that increasing

above 4 repression links will promote cellular reprogramming,

since the increase of these 4 repression links make the stem cell

barrier USP increase and differentiation barrier USD decrease.

The repression of the differentiation marker gene GATA6 will

strength the stem cell maker genes NANOG due to the repression

of GATA6 to NANOG, and then promote the cellular

reprogramming. We found some experimental evidences that

indicated the forced expression of Gata6 in embryonic stem (ES)

cells is sufficient to induce the proper differentiation program [28].

This can provide some confirmation for the above 4 repression

links, since these links are all the repression links to GATA6, and

the global sensitivity analysis for these 4 links shows that increasing

them will inhibit differentiation. Therefore, these predictions are

reasonable and can be further validated by experiments. We can

also see that among the 6 top important repression links, 5 of them

are related to the repression of gene GATA6 (when these 5

repression links are strengthened, reprogramming becomes easier

in that USP increases and USD decreases), which should be due to

the repression of GATA6 to stem cell marker gene NANOG.

Figure 6(B) shows the global sensitivity analysis results for 14

activation links, in which x axis represents separately: A1:

A1:3R1(NANOGROCT4);A2 : 4R1(OCT4SOX2ROCT4);A3 : 3R
2(NANOGRSOX2);A4 : 4R2(OCT4SOX2RSOX2);A5 : 3R3(NA-

NOGRNANOG);A6 : 4R3(OCT4SOX2RNANOG);A7 : 5R3(KLF4R
NANOG);A8 : 7R3(ZIC3RNANOG);A9 : 11R3(PBX1RNANOG);

A10 : 1R4(OCT4ROCT4SOX2);A11 : 2R4(SOX2ROCT4SOX2);

A12 : 2R7(SOX2RZIC3);A13 : 3R7(NANOGRZIC3);A14 : 3R11(NA-

NOGRPBX1) (arrows represent activation regulation, A1,:::,A14
represent the name of the activation links, see supporting information

for details). It can be seen that increasing the strength of the 14

activation connections all increase the barrier heights of stem cell state

and decrease the barrier heights of the differentiation state, which

means that the stem cell state becomes more stable and the

differentiation state becomes less stable and it’s easier for the system

to make a transition from differentiation state to the stem cell state, i.e.

increasing these activation links promote reprogramming progression

of the system. We can see that among these 14 activation links, the first

11 of them are all activation links from other genes to the key stem cell

marker genes (OCT4, SOX2, NANOG, OCT4SOX2). Undoubtedly,

strengthening these 11 activation links will promote the cellular

Figure 6. Results of the global sensitivity analysis in terms of
barrier height and MFPT (mean first passage time) when
parameters are changed. The results in (A) are for 6 repression links
(named respectively as R1,R2,…,R6, see Table S2) based on the change
of barrier heights (DBarrier). The results in (B) are for 14 activation links
(named respectively as A1,A2,…,R14, see Table S3) based on barrier
heights. Blue bars represent the change of USP (barrier for differenti-
ation process), red color represent the change of USD (barrier for
reprogramming process). (C) and (D) separately show the correspond-
ing results in terms of the change of MFPT (DMFPT ). Blue bars
represent the MFPT change for differentiation process, and red bars
represent the MFPT change for reprogramming process. (E) shows the
corresponding global sensitivity for the knockdown of individual genes.
doi:10.1371/journal.pcbi.1003165.g006
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reprogramming process. Especially, among the 4 activation links which

influence barrier greatly (link A3,A5,A7,A10, Figure 6(B)), two of them

are activation links to NANOG, this shows activating NANOG is a

robust way for reprogramming [29,30]. For the last 3 activation links

from global sensitivity analysis, we can see that they represent the

activation of the key stem cell marker genes (NANOG, SOX2) to other

stem cell marker genes (ZIC3, PBX1). The increase of these 3

activation links will increase the expression of NANOG, because of the

activation of ZIC3 and PBX1 to NANOG, and thus promote the

cellular reprogramming process. We also found some experimental

evidences supporting our global sensitivity results described above.

Experiments show that the increase of Klf4 promote reprogramming

[25]. Additionally, among the 14 the 14 activation links, 5 of them are

the activation regulation to NANOG. Some experiments show that

Activation of Nanog can overcome barriers to lead reprogramming

[31]. And some other links among the 14 activation links are activation

links to OCT4 or SOX2. The experiments have confirmed that the

activation of Oct4 and Sox2 can promote reprogramming [1]. Some

recent recent experiments also indicate Zic3 can induce conversion to

pluripotent stem cells [32].

Therefore, our global sensitivity analysis results are confirmed

by some experiments. Our global sensitivity analysis results also

provide the quantitative prediction about the effects of regulation

links on the differentiation or reprogramming, which can be tested

by further experiments. We need to emphasize that compared

with the conventional sensitivity analysis which is usually local our

sensitivity analysis is global since it is based on the global landscape

topography quantified by the barrier height.

Additionally, we also quantified the global sensitivity of

parameters through MFPT (mean first passage time), since MFPT

reflects the average transition time from one basin of attraction to

another, and therefore provides another quantitative measure for

the stability of the system. Figure 6(C) and (D) show the influence

of parameter change on the MFPT respectively for 6 repression

links and 14 activation links. Comparing Figure 6(A) with (C), and

(B) with (D), we can find that MFPT and barrier height give the

consistent results on the global sensitivity analysis. Larger USP

(Udifferentiation) makes the transition from stem cell state to

differentiation state harder, and thus means larger MFPT for

differentiation. In contrast, larger USD (Ureprogramming) makes the

transition from differentiation state to stem cell state harder, and

thus larger MFPT for reprogramming. Therefore, USP

(Udifferentiation) is corresponding to MFPT for differentiation, and

USD (Ureprogramming ) is corresponding to MFPT for reprogram-

ming.

We also did the mutation for the knockdown of single nodes to see

their influence to the landscape. Figure 6 (E) show the influence of

knockdown of single genes on the barrier heights, (only showing the

genes having large influence on barrier heights). The genes whose

knockdown affect barrier heights critically include: GATA6,CD-

X2,OCT4,SOX2,NANOG,KLF4,ZIC3,PBX1. GATA6 and CDX2

are two key differentiation marker genes, so their knockdown promote

reprogramming (increase barrier of stem cell state and decrease

barrier of differentiation state). OCT4,SOX2,NANOG,KLF4,-

ZIC3,PBX1 are key stem cell marker, and it’s reasonable that their

knockdown promote differentiation (increase barrier of differentiation

state and decrease barrier of stem cell state). These key gene markers

have been highlighted in Figure 1.

We also did some mutations to see their effects on kinetic path

based on path integral approach. Figure 7 show the influence of

parameters on the kinetic paths separately for mutation 1 (increase

the repression of CDX2 to OCT4), mutation 2 (increase the

repression of OCT4 to GATA6), mutation 3 (increase the repression

of NANOG to GATA6), mutation 4 (increase the repression of

GATA4 to GATA6). The left attractor represent the stem cell state,

and the right one represents the differentiation state. The blue paths

are before mutations, the magenta paths are the results after

mutations. The global sensitivity analysis (Figure 6(A)(C)) of mutation

2 (increase the repression of OCT4 to GATA6) show that mutation 2

can make stem cell state (left attractor in landscape) more stable, and

differentiation state less stable, or the MFPT for differentiation

become longer. While by comparison of paths in Figure 7 (B), the

differentiation path (path from left attractor to right attractor)

becomes more deviating (change from blue path to magenta path)

from the shortest path, or the differentiation path become longer (so

spending more time or MFPT increases), and the opposite results are

for the reprogramming path. This is consistent with the barrier

height and MFPT results in Figure 4(A)(C). In the same way, the

path sensitivity for mutation 3, and mutation 4 (Figure 7(C)(D)) also

show the differentiation path becomes more deviating (change from

blue path to magenta path) from the shortest path, and thus spend

more time, which are also consistent with the global sensitivity

analysis results in terms of barrier height and MFPT in

Figure 4(A)(C). In addition, for mutation 1 (Figure 7(A)), the path

comparison shows that after mutation the differentiation path

becomes closer to the shortest path, meaning that the differentiation

process become easier. This is also consistent with the barrier and

MFPT sensitivity for mutation 1, which shows that the differentiation

state become more stable, i.e. this mutation promotes the

differentiation process.

In summary, the global sensitivity analysis in terms of barrier,

MFPT, and kinetic path provide a way to uncover the key factors

critically determining the process of cellular differentiation and

reprogramming (highlighted in black solid links in Figure 1). Some

of our predictions are consistent with the experimental evidences.

More importantly, we provided certain predictions about which

regulation links in the stem cell network are critical to

differentiation or reprogramming (Figure 6), which can be directly

Figure 7. Global sensitivity for kinetic paths. The developmental
and reprogramming paths comparisons before and after mutations are
shown separately for mutation 1 (increase link R1, i.e. the repression of
CDX2 to OCT4)(A), mutation 2(increase link R2, i.e. the repression of
OCT4 to GATA6)(B), mutation 3 (increase link R3, i.e. the repression of
NANOG to GATA6)(C), and mutation 4 (increase link R4, i.e. the
repression of GATA4 to GATA6)(D). The blue paths represent kinetic
paths before mutations, and the magenta paths represent the kinetic
paths after mutations. The blue arrows represent differentiation
direction (from left stem cell attractor to the right differentiation
attractor), and the magenta arrows represent reprogramming direction
(from right attractor to left attractor). The diffusion coefficient D~0:01.
doi:10.1371/journal.pcbi.1003165.g007
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validated from relevant experiments in terms of both MFPT or the

differentiation and reprogramming pathway.

Conclusions
We uncovered the landscape of a stem cell developmental and

differentiation network. Landscape shows that the stem cell gene

regulatory network has two stable basins of attractions at specific

parameter regions, one of which represents the pluripotent stem

cell state and the other of which represents the differentiation

state. In terms of the path integral approach, we acquired the

kinetic paths for both development and reprogramming. Both

landscape and curl flux determine the dynamics of the stem cell

network. Flux leads the kinetic paths of the system deviating from

the steepest descent path from gradient of potential, and the

differentiation path and the reprogramming path are irreversible.

Barrier heights based on landscape topography provide quanti-

tative measures for the stability and kinetic transition of the two

attractors. MFPT provide an avenue to acquire the information

of transition rate or kinetic speed for the system to jump from an

attractor to another. By the global sensitivity analysis in terms of

barrier heights, MFPT, and kinetic path, we provided some

predictions about the key genes and connections affecting

differentiation and reprogramming significantly, which can be

tested by experiments. Importantly, the key links and genes from

global sensitivity analysis and biological paths we acquired can be

used to guide the differentiation designs or reprogramming

tactics.

The current stem cell network we employed only provides some

general biological markers and their interaction about stem cell

differentiation and reprogramming. With more biological details

added into the stem cell network, such as a network including

certain differentiation marker genes representing some different

differentiation states [33], it can be anticipated that we can explore

the landscape and paths not only for the differentiation or

reprogramming process, but also for transdifferentiation process

(the transition between different differentiation state cell types). In

addition, in our current model, we only simulated the single cell

behavior, not considering the effects of cell division. We hope that

we can absorb the cell division to the model, since the cell division

rate can influence the stem cell or differentiation cell populations

[34].

Our approach provides a general way to investigate the global

properties—landscape topography, transition rate, kinetic path—

of large gene regulatory networks which only have information on

interaction directions (activation or repression) without interaction

strength. In particular, we provide a approach to investigate

biological paths of high dimensional systems. Our approach can be

applied to other gene regulatory networks or protein networks.

Methods

Model for the Stem Cell Developmental Network
A human stem cell network has been constructed by searching

for literatures, which includes most of the main regulations in

human embryonic stem cell (hESCs) as shown in Figure 1 [18].

This network includes 52 protein nodes (Table S1) and their

interactions (total 123 links including 84 activation links and 39

repression links), in which red arrows represent activation and blue

bars represent repression. There are 11 marker genes for

Pluripotency state (iPS state or stem cell state) and 11 marker

genes for differentiation state, which are separately colored in

purple and cyan. The orange nodes represent genes that are

activated by iPS marker genes, and the light red color nodes

denote other genes.

The iPS marker genes include OCT4, SOX2, NANOG, Oct4-

Sox2, KLF4, FOXD3, ZIC3, ZFP42, GDF3, TDGF1, PBX1, and

the differentiation marker include FOXA2, AFP, SOX17,

GATA4, GATA6, T, GATA2, GATA3, hCGa, hCGb, CDX2.

Basically, the dynamics of the network is determined by the

mutual repression of major ES marker genes (NANOG, OCT4,

SOX2) and major differentiation marker genes (GATA4, CDX2).

When the ES markers are highly expressed, the system will be in

ES state, and when the differentiation markers are highly

expressed, the system will be in differentiation state. Specifically,

the trophectoderm lineage is determined by the antagonism

between Oct4 and Cdx2 (mutual repression links in the network),

whereas the mutually repressions between Gata6 and NANOG

determine the primitive endoderm lineage [30,35,36]. Some other

regulations of the network include the self-activation of some key

marker genes (NANOG, GATA6, CDX2), as well as the mutual

activation between ES marker genes. So, the bistable regulatory

dynamics for the full 52 gene network is mostly determined by the

antagonism between Oct4 and Cdx2, and the antagonism between

GATA6 and NANOG. These major regulation links are for

embryo stem cells [30,35,36].

These marker genes constitute a major stem cell gene regulatory

network, which orchestrates some important cellular functions,

such as the cell differentiation and reprogramming. For instance,

transcription factors OCT4, SOX2 and NANOG play important

roles to the early development of cell and propagation of

undifferentiated embryonic stem cell [36,37]. The protein

OCT4 and the protein FOXD3 are transcriptional regulators

expressed in embryonic stem cells. Down regulation of OCT4 is

an essential requirement during gastrulation for proper endoderm

development [38].

For the 52 node network, we constructed 52 corresponding

ordinary differential equations describing dynamics of the system,

in terms of Hill function representing their activation or repression

interactions. The equation has the form as:

Fi~{k � Xiz
Xm1

j~1

a � Xj
n

SnzXj
n z

Xm2

j~1

b � Sn

SnzXj
n ð1Þ

Here in Eq (1), i = 1,2,…,52, so totally there are 52 equations. S
represents the threshold (inflection point) of the explicitly

sigmoidal functions, i.e., the strength of the regulatory interaction,

and n is the Hill coefficient which determines the steepness of the

sigmoidal function [22]. Here, parameters for Hill function are

specified as: S~0:5,n~3. In addition, k is self-degradation

constant, b is repression constant, and a is activation constant.

In the above equation, the first term represents self-degradation,

the second term represents activation from node j to node i (m1

represents the number of activations to node i, and this term

represents self-activation when i~j), and the last item denotes

repression from node j to node i (m2 represents the number of

repressions to node i, and this term represents self-repression when

i~j). Here firstly we designated parameters value uniformly (Eq.

(1)), i.e. all activation strength a is same, and also for the repression

strength b, because so far we have no access for the information

about the regulation strength — or the magnitude of activation

and repression parameters — between different genes in the stem

cell network.

In the global sensitivity analysis section (throughout the paper

we use Eq(1) as the driving force, and the Eq (2) is only used in

global sensitivity analysis section), we will change each specific

activation strength Aji (representing the activation constant for the
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regulation from node j to node i) and repression strength Bji

(representing the repression constant for the regulation from node j

to node i) (Eq. (2)) to see their influence on the dynamics of the

system. Throughout the paper, we use a and b to separately

denote uniform activation constant and repression constant. The

parameters Aji and Bji (Eq (2)) are only used in global sensitivity

analysis section. The default parameter values (Figure 2) are set as:

k~1,a~0:37,b~0:5.

Fi~{k � Xiz
Xm1

j~1

Aji � Xj
n

SnzXj
n z

Xm2

j~1

Bji � Sn

SnzrpjiXj
n ð2Þ

About the value of parameters, we choose parameter values

according to the following criteria:

1. We chose parameter values according to some previous work

[11,13,22]. In the work of Huang et [22], they explored a two

gene system, where the region for producing bistability is given

as: threshold S = 0.5–1.5, Hill coefficient n = 4–8.

2. For the degradation, activation and repression strength, we set

them uniformly for different variables and set them in the same

magnitude, because so far for stem cell network there is no such

information about regulation strength which should come from

the detailed biochemistry reactions involved in cellular

developmental system. This method of choosing parameters

has been used by some other works [11,13,22].

3. We chose those parameters that can satisfy some biological

constrains, including producing steady state solution as well as

producing bistability, since our purpose is to explore the

cellular differentiation and reprogramming dynamics (two

stable states). The random parameter selection does not satisfy

these biological constraints.

4. In barrier height and MFPT section (changing activation

strength a and repression strength b), as well as in global

sensitivity analysis section, we did the perturbation for both

activation strength and repression strength, which show the

relative robustness of current parameter regions. We also

provided the results of different parameters for different genes.

Self Consistent Mean Field Approximation
The time evolution the dynamical systems are governed by the

diffusion equations. Given the system state P(X1,X2,:::,Xn,t),
where X1,X2,:::,Xn is the concentration or populations of

molecules or species, we expected to have N-coupled differential

equations, which are difficult to solve. Following a self consistent

mean field approach [8,12,19], we split the probability into the

products of individual ones: P(X1,X2,:::,Xn,t)*Pn
i P(Xi,t) and

solve the probability self-consistently. This effectively reduces the

dimensionality from MN to M|N, and thus makes the problem

computationally tractable.

However, for the multi-dimensional system, it is still hard to

solve diffusion equations directly. We can start from moment

equations and then simply assume specific probability distribution

based on physical argument, meaning that we give some specific

connections between moments. In principle, once we know all

moments, we can construct the probability distribution. For

example, Poisson distribution has only one parameter, so we may

calculate all other moments from the first moment, that is the

mean. Here we use gaussian distribution as approximation, then

we need two moments, mean and variance.

When diffusion coefficient D is small, the moment equations

can be approximated to [39,40]:

_�xx�xx(t)~F ½�xx(t)� ð3Þ

_ss(t)~s(t)AT(t)zA(t)s(t)z2D½�xx(t)�: ð4Þ

Here, x, s(t) and A(t) are vectors and tensors, and AT(t) is the

transpose of A(t). The matrix elements of A is Aij~
LFi½X (t)�

Lxj(t)
. In

terms of this equation, we can solve x(t) and s(t). Here, we

consider only diagonal elements of s(t) from mean field splitting

approximation. Therefore, the evolution of probabilistic distribu-

tion for each variable could be acquired using the mean and

variance based on gaussian approximation (see Text S1 for

detailed deduction process of Gaussian Approximation method):

P(x,t)~
1ffiffiffiffiffiffi

2p
p

s(t)
exp{

½x{�xx(t)�2

2s(t)
ð5Þ

The probability obtained above corresponds to one fixed point

or basin of attraction. If the system allows multistability, then there

are several probability distributions localized at every basin of

attraction, but with different variations. Therefore, the total

probability is the weighted sum of all these probability distribu-

tions. The weighting factors (w1,w2) are the size of the basin,

representing the relative size of different basin of attraction. For

example, for a bistable system, the probability distribution takes

the form: P(x,t)~w1Pa(x)zw2Pb(x), here w1zw2~1. Here, we

determine the weights wi by giving a large number of random

initial conditions for ODEs to find solution, and then collect the

statistics for different solution. For example, for a bistable system,

if 10% initial condition goes to the first steady state, and 90%
initial condition goes to the second steady state, then the weight w1

for the first basin is 0.1 and w2 for the second basin is 0.9. The

multistability comes from the solution of 52 ODEs giving a large

number (100000) of random initial values. We give large number

of random different initial conditions for ODEs for solution at a

fixed parameter set. By collecting the statistics of the solution, we

can determine if the system is monostable or bistable or mutistable

at current parameter region. In our current work, for 52

dimensional system, we can acquire 52 dimensional probability

distribution. To exhibit the results in a 2-dimensional space, we

integrated out the other 50 variables and left two variables

NANOG and GATA6.

Finally, once we have the total probability, we can construct the

potential landscape by the relationship with the steady state

probability: U(x)~{lnPss(x). In the gene regulatory network

system, every parameter or link contributes to the structure and

dynamics of the system, which is encoded in the total probability

distribution, or the underlying potential landscape.

For nonequilibrium gene regulatory systems, the driving force

F can not be written as the gradient of potential U , like the

equilibrium case. In general, F can be decomposed into a

gradient of the potential and a curl flux force linking the steady

state flux Jss and the steady state probability Pss [10,12]

(F~zD=Pss
: L
Lx

PsszJss(x)=Pss~{D
L
Lx

UzJss(x)=Pss). Pss

denotes steady state probability and potential U is defined as
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U~{lnPss. The probability flux vector J of the system in

concentration or gene expression level space x is defined as [32]:

J(x,t)~FP{D: L
Lx

P.

In the 52-dimensional protein concentration space, it’s hard to

visualize 52-dimensional probabilistic flux. Approximately, we

explored the associated 2-dimensional projection of flux vector:

J1(x1,x2,t)~F1(x1,x2)P{D
L

Lx1
P and J2(x1,x2,t)~F2(x1,x2)

P{D
L

Lx2
P.

In addition, to validate the Gaussian approximation method, we

provided the landscape results from Gaussian distribution

approximation of the 2-dimensional case for GATA1/PU1

[11,13], and made comparisons for this 2-dimension case between

Gaussian approximation method and Langevin dynamics method

(Figure S4). We can see that the landscapes from Gaussian

approximation preserve the similar global properties (the number

of attractors, the relative stability of basin of attractions) as the

Langevin dynamics method.

Paths for Differentiation and Reprogramming from
Discretized Dynamics

The landscape in Figure 2 only is the 2-dimensional projection

of the whole 52 dimensional state space. In order to demonstrate

the cell states and the transitions between different cell types in the

complete state space, we projected the expression level of the 52

gene variables to binary states, and acquired discretized dynamics

results of the network (Figure 3).

We first used the Langevin dynamics to obtain the stochastic

dimensionless trajectories of the 52 dimensional system. Then the

trajectory is converted to discrete trajectories by setting the value

((maximum value - minimum value)/2+minimum value) of every

variable as the cutoff (cutoff is chosen so that two up/down states

are well separated), i.e. the value higher than the cutoff is set to 1

(indicating high expression), while the value lower than the cutoff

is set to 0 (indicating low expression). So, we can obtain the

discrete trajectories for 52 variables of the system. For a 52

dimension system, there will be 252 states even in discrete case

(every variable has two value, 1 represent high expression, 0

represent low expression), which cannot be handled computation-

ally. So, we chose the major 22 marker genes to present the

discrete system, which has 222~4194304 states. For example, the

stem cell state is represented by the binary number

1111111111100000000000 (representing expression level from

gene 1 to gene 22, 1 for high expression, 0 for low expression), and

for the differentiation state, it is represented by

0000000000011111111111. By the statistics for the discrete

trajectory, we can obtain the appearing probability separately

for 222 different states. To present the results, we set a probability

cutoff 0.0002 (only states with higher probability than 0.0002 are

chosen, the cutoff is chosen so that the major states can be

presented in a figure, not too many or too few states, i.e. we only

demonstrate the states and paths with higher probability). Figure 3

shows the differentiation and reprogramming process represented

by 313 cell states (nodes) and 329 transition jumps (edges) between

the different cell states. We believe that these 313 states with

higher probability can capture the major states and regulation

dynamics of the system. The sizes of nodes and edges are

separately proportional to the occurrence probability of the

corresponding states and paths. Red nodes represent states which

are closer to stem cell states, and blue nodes represent states which

are closer to differentiation states. Especially, we acquired the

dominant kinetic paths as the biological paths from path integral

formulism (see Path Integral section for detailed methods), which

are shown as green and magenta paths (Figure 3) separately for

differentiation and reprogramming process.

Kinetic Path from Path Integral
In the cell, there exist external noise and intrinsic noise, which

can be significant to the dynamics of the system [41,42].

Therefore, a network of chemical reactions in noisy fluctuating

environments can be addressed by: _xx~F(x)zf. Here,

x~(x1(t),x2(t),:::,x52(t)) represents the vector of protein concen-

tration or gene expression level. F(x) is the vector for the driving

force of chemical reaction. f is Gaussian noise term whose

autocorrelation function is vfi(x,t)fj(x,0)w~2Dd(t), and D is

diffusion coefficient matrix.

The dynamics for the probability of starting from initial

configuration xinitial at t = 0 and ending at the final configuration

xfinal at time t, in terms of the Onsager-Machlup functional, can

be formulated [13,43] as: P(xfinal ,t,xinitial ,0)~

ð
Dx exp½{

ð
dt

(
1

2
+:F xð Þz 1

4
(dx=dt{F(x)):

1

D(x)
:(dx=dt{F(x)))�~

ð
Dx exp

½{S(x)�~
ð

Dx exp½{
ð

L(x(t))dt�.

D(x) is the diffusion coefficient matrix. The integral over Dx
denotes the sum over all possible paths from the state xinitial at time

t~0 to xfinal at time t. The exponent factor gives the weight of

each path. Therefore, the probability of network dynamics from

initial state xinitial to the final state xfinal is equal to the sum of all

possible paths with different weights. The S(x) is the action and

L(x(t)) is the Lagrangian or the weight for each path.

The path integrals can be approximated with a set of dominant

paths, since each path is exponentially weighted, and the other

subleading path contributions are often small and can be

neglected. Therefore, the dominant path with the optimal weights

can be acquired through minimization of the action or Lagrang-

ian. In our case, we identify the optimal paths as the biological

paths, i.e. differentiation and reprogramming paths.

Langevin Dynamics Method
A network of chemical reactions in noisy fluctuating environ-

ments can be addressed by _xx~F(x)zf. Here,

x(t)~(x1(t),x2(t),:::,x52(t)) represents the vector of protein

concentration. F(x) is the vector for the driving force of chemical

reaction. In the cell, there exist external noise and intrinsic noise,

which can be significant to the dynamics of the system [42], so the

noise term f is added to force item for which Gaussian distribution

is assumed, since the force _xx~F(x) depict only the averaged

dynamics of the system. The noise item is satisfied with:

vfj(x,t)w~0 and vfi(x,t)fj(x,t’)w~2Dijdijd(t{t’)(dij~1 for

i~j, and dij~0 for i=j). Here d(t) is the Dirac delta function, and

D is diffusion coefficient matrix. The noise term is associated with

the intensity of cellular fluctuations either from the environmental

external fluctuations or intrinsic fluctuations. Under large n
expansions, the process follows Brownian dynamics.

Following the Brownian dynamical trajectories with multiple

different initial conditions by solving the above SDE (stochastic

differential equations) iteratively, we can obtain the steady state

distribution function P(x) for the state variable x (relative gene

expression value in the gene regulatory network), which is relevant to

the potential energy function U(x) as P0(x)~
1

Z
expf{U(x)=Dg. Here the partition function Z~

Ð
dx exp

f{U(x)=Dg. In this way, we acquire the potential energy landscape.
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Supporting Information

Figure S1 A flowchart for methods employed. GRN represents

the gene regulatory network.

(EPS)

Figure S2 Landscape change when activation strength a increase.

(A) a~0:5, (B) a~0:38, (C)a~0:36, (D) a~0:3. We can see as the

activation strength a decreases the bistable landscape experience a

transition from stem cell state (left attractor) to differentiation state

(right attractor). The diffusion coefficient D~2. For 52 dimensional

system, for visualization, we harnessed RMSD (root mean squared

distance) as the coordinate to reduce the dimensionality to 2

dimension (RMSD~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i (xi{x

ref
i )2

q
, N is the number of

variables, and x
ref
i is the reference state, here we chose two

potential minima as the reference states). RMSD represents the

distance between a state point and reference point in state space. In

this way, from 52-dimensional trajectory, we can generate two new

coordinates RMSD1 and RMSD2, separately representing the

distance from a state point to the reference state 1 (the potential

minimum of stem cell attractor) and the reference state 2 (the

potential minimum of differentiation state attractor).

(PDF)

Figure S3 Using self consistent approximation method to get

barrier changes when parameters are changed. The results in A are

for 84 activation links, and The results in B are for 39 activation

links. Blue stairs represent the barrier for stem cell state USP for

different mutations, red stairs represent the barrier for differenti-

ation state USD for different mutations. X axis in A represent all 84

activation links, and X axis in B represent all 39 repression links.

(EPS)

Figure S4 Comparisons of self consistent approximation method

and Langevin dynamics for a 2 gene model. (A) shows the network

structure of 2 gene model (GATA1/PU1). (B) shows the comparisons

of landscape using self consistent approximation method (first row) and

Langevin dynamics method (second row). Parameters are set: D = 0.05

(diffusion coefficient), k = 1 (degradation), b = 1 (repression), S = 0.5,

n = 4, and a (activation) is changed from left to right (1.2, 1, 0.2).

(PDF)

Table S1 Names of 52 gene in the stem cell network and the

corresponding order number.

(PDF)

Table S2 Repression link names in the sensitivity analysis and

the corresponding regulations they represent. The order numbers

for causal and target genes are shown, which are corresponding to

the gene name in Table S1.

(PDF)

Table S3 Activation link names in sensitivity analysis and the

corresponding regulations they represent. The order numbers for

causal and target genes are shown, which are corresponding to the

gene name in Table S1.

(PDF)

Table S4 Differentiation path characterized by high/low

expression level of 22 marker genes in Figure 3 of main text.

The line of gene ID represent the corresponding genes in Table

S1. From the line stem cell to line differentiation, every line

represents a cellular states. Stem cell represent the stem cell

states, and differentiation represents differentiation states. 1

denotes high expression level, and 0 represents low expression

level.

(PDF)

Table S5 Reprogramming path characterized by high/low

expression level of 22 marker genes in Figure 3 of main text.

The line of gene ID represent the corresponding genes in Table

S1. From the line differentiation to line stem cell, every line

represents a cellular states. Stem cell represent the stem cell states,

and differentiation represents differentiation states. 1 denotes high

expression level, and 0 represents low expression level.

(PDF)

Table S6 Differentiation path as activation strength a changed

characterized by high/low expression level of 22 marker genes in

Figure 5 of main text. The line of gene ID represent the

corresponding genes in Table S1. From the line differentiation to

line stem cell, every line represents a cellular states. Stem cell

represent the stem cell states, and differentiation represents

differentiation states. Intermediate represents the intermediate

double low state (both stem cell marker and differentiation marker

genes have low expression level). 1 denotes high expression level,

and 0 represents low expression level.

(PDF)

Table S7 Reprogramming path as the activation strength a

changed characterized by high/low expression level of 22

marker genes in Figure 3 of main text. The line of gene ID

represent the corresponding genes in Table S1. From the line

differentiation to line stem cell, every line represents a cellular

states. Stem cell represent the stem cell states, and differenti-

ation represents differentiation states. Intermediate represents

the intermediate double high state (both stem cell marker and

differentiation marker genes have high expression level). 1

denotes high expression level, and 0 represents low expression

level.

(PDF)

Text S1 Supplementary results and methods.

(PDF)
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