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Abstract

The current paradigm for studying hepatitis C virus (HCV) dynamics in patients utilizes a standard viral dynamic model that
keeps track of uninfected (target) cells, infected cells, and virus. The model does not account for the dynamics of
intracellular viral replication, which is the major target of direct-acting antiviral agents (DAAs). Here we describe and study a
recently developed multiscale age-structured model that explicitly considers the potential effects of DAAs on intracellular
viral RNA production, degradation, and secretion as virus into the circulation. We show that when therapy significantly
blocks both intracellular viral RNA production and virus secretion, the serum viral load decline has three phases, with slopes
reflecting the rate of serum viral clearance, the rate of loss of intracellular viral RNA, and the rate of loss of intracellular
replication templates and infected cells, respectively. We also derive analytical approximations of the multiscale model and
use one of them to analyze data from patients treated for 14 days with the HCV protease inhibitor danoprevir. Analysis
suggests that danoprevir significantly blocks intracellular viral production (with mean effectiveness 99.2%), enhances
intracellular viral RNA degradation about 5-fold, and moderately inhibits viral secretion (with mean effectiveness 56%). The
multiscale model can be used to study viral dynamics in patients treated with other DAAs and explore their mechanisms of
action in treatment of hepatitis C.
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Introduction

Hepatitis C virus (HCV) infection is a major cause of chronic

liver disease and a leading reason of liver transplant in the world.

About 130–170 million people are chronically infected with HCV

[1]. Achieving a long-term sustained virologic response (SVR),

defined as an undetectable HCV RNA level in serum 24 weeks

after the end of treatment, is the most effective way to prevent

disease progression [2]. Until 2011, the standard of care for HCV

infection has been the combination of weekly injection of

pegylated-interferon and daily oral ribavirin (PEG-IFN/RBV).

This treatment was limited by both tolerability and efficacy, with

only about 50% of patients infected with HCV genotype 1, the

most prevalent genotype in Western countries, achieving SVR [3].

The approval in 2011 of two HCV protease inhibitors (PIs),

telaprevir and boceprevir, to be used in combination with PEG-

IFN/RBV, marked an undisputable milestone for HCV therapy,

with the SVR rate in phase 3 clinical trials higher than 70% in

HCV genotype 1 treatment-naive patients [4–8]. However, the

enthusiasm for using these first generation PIs is tempered by their

side effects and the emergence of resistance to treatment. A second

generation of PIs, presenting better safety and resistance profiles,

are now in various stages of clinical development, but their direct

and indirect mechanisms of action and in vivo antiviral effectiveness

remain unclear. Yet such information is critical for combining PIs

with other direct-acting antiviral agents (DAAs) that have

independent mechanisms of action to yield highly potent drug

cocktails.

Mathematical modeling of HCV kinetics has provided valuable

insights into the modes of action of PEG-IFN/RBV [9,10] (also

see review in [11,12]). Nevertheless, models developed for PEG-

IFN/RBV therapy may not be useful for understanding the
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determinants of viral decline during PI therapy since these models

do not account for intracellular viral replication, which is the main

target of DAAs. Recently, multiscale HCV models have been

developed that combine both the intracellular and extracellular

viral dynamics [13,14]. One such model formulated as a system of

ordinary differential equations (ODEs) was shown to be able to

explain some patterns of viral kinetics observed during PI

monotherapy, such as the rapid decline of drug sensitive virus

and the rapid emergence of drug resistant virus [13].

In this paper, we use a multiscale model of HCV infection and

treatment that includes the age structure of infected cells, as well as the

dynamics of intracellular viral replication, in order to understand the

effects of PI therapy. An approximation of this model was applied to

understanding the kinetics of viral decline observed during the first two

days following one dose of daclatasvir, a DAA that inhibits the HCV

NS5A protein [14]. Here we formulate the model in detail, present its

mathematical properties, and derive both short-term and long-term

analytical approximations of the model under therapy. We then use

the long-term approximation to fit viral kinetic data obtained from

eight patients treated for two weeks with danoprevir, a potent second

generation PI. We provide for the first time an estimate of the in vivo

antiviral potency of danoprevir in blocking different stages of viral

replication, e.g., reducing intracellular viral RNA production,

enhancing its degradation, and inhibiting viral assembly or secretion.

Materials and Methods

Patient data
The viral kinetic data we analyzed are from eight treatment naive

patients who were infected with HCV genotype 1 and treated with

danoprevir monotherapy (200 mg tablets three times a day) for 14

days [15]. Viral loads were measured post treatment initiation at

hours 0 (baseline), 2, 4, 6, 8, 12, 16, 24 (day 1), 26, 28, 30, 48 (day 2),

52, 144 (day 6), 148, 192 (day 8), 196, 312 (day 13). The NS3

protease sequence was evaluated by population sequencing at days

0, 2, 6 and 13. Three patients 01-94AB, 03-94EZ, and 03-94SN

were found to develop mutations conferring drug resistance, all of

them at position R155K. The models we use to analyze the data

assume that drug effectiveness is constant over the period of

treatment. Hence these models are not suitable for analyzing patient

data once drug resistance is apparent and we thus fit the data from

these three patients until the time at which resistance was identified.

As resistance data were missing at both days 2 and 6 in patients 01-

94AB and 03-94SN, viral load data were fit until a rebound was

observed at day 6 in 01-94AB and at day 2 in 03-94SN. One patient

(04-94XD) had a viral load under the limit of quantification

(43 IU mL{1 [15]) at day 14, and the data fit was done by setting

this viral load to half of the limit of quantification. Data were fitted

using both a standard biphasic model and a long-term approxima-

tion of the multiscale model developed in this study. Because drugs

do not act instantaneously, we assumed the viral load began to

decline a short time, t0, after the onset of therapy.

The standard biphasic model
The Neumann et al. model [9] has been extensively used to study

HCV kinetics during treatment [16–18] (see review in [11,12]). In

this model, target cells, T , are produced at a rate constant s, die at

per capita rate d, and are infected by virus, V , at rate b. Target cells

are assumed to be equivalent and equally available to be infected.

Infected cells are assumed to die at per capita rate d. Virions are

generated at rate p per infected cell, and cleared at rate c per virion.

The model is formulated as the following set of ODEs:

d

dt
T(t)~s{bV (t)T(t){dT(t),

d

dt
I(t)~bV (t)T(t){dI(t),

d

dt
V (t)~(1{E)pI(t){cV (t),

ð1Þ

Treatment is assumed to reduce the average viral production rate

per infected cell from p to (1{E)p, where E is the in vivo antiviral

effectiveness of therapy (0vEv1). If short-term data after treatment

initiation are analyzed, it is often assumed that target cells remain at

their pre-therapy level. As a consequence, the ODE system can be

linearized and solved. Doing so, one finds

V (t)

V0
~Ae{l1tz(1{A)e{l2t, for t§t0 ð2Þ

where A~
Ec{l2

l1{l2

, l1,2~
(czd)+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(czd)2{4Ecd

q
2

, V0 is the

baseline viral load before therapy, and t0 is the pharmacological

delay. This model predicts that viral load declines in a biphasic

manner, where a short but rapid first phase is followed by a

persistent but slower second phase. If E&1, then l1&c and l2&d.

A limitation of this model is that it does not account for the specific

stages of the HCV intracellular replication cycle that are targeted by

different classes of DAAs and the possibly different effects they exert

on the kinetics of viral decline.

A multiscale model
We extend the biphasic model by including the dynamics of

intracellular viral RNA (vRNA). Let R be the quantity of

intracellular genomic (i.e. positive-strand) vRNA present in an

infected cell. The dynamics of R depend on the tradeoff between

vRNA production and loss due to degradation and assembly/

secretion as virions and can be described by the following equation

dR

da
~a(a){½r(a)zm(a)�R(a) ð3Þ

Author Summary

Chronic infection with hepatitis C virus (HCV) remains an
important health-care problem worldwide despite signif-
icant progress in the development of HCV therapy since
the discovery of the virus in 1989. Current treatment
options are focused on direct-acting antiviral agents
(DAAs) that target specific steps of the HCV life cycle.
Danoprevir, one of the DAAs that inhibit the HCV NS3-4A
protease, has induced substantial viral load reductions in
patients receiving therapy. We study the viral decline
during therapy using a multiscale age-structured model
that accounts for the dynamics of intracellular viral
replication, and which includes the major steps in the
HCV life cycle that are targeted by DAAs. We examine the
biological parameters contributing to different phases of
the viral decline after treatment initiation. We also explore
the mechanisms of action of danoprevir and estimate its
treatment effectiveness. The multiscale model provides a
theoretical framework for studying virus dynamics in
hepatitis C patients treated with other DAAs currently in
clinical development, and may help one to optimally
combine drugs with complementary modes of action to
maximize the HCV cure rate.

HCV Dynamics Under Therapy with Danoprevir
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where a is the age of infection, i.e., the time that has elapsed since

an HCV virion has entered the cell. The parameters a, m and r are

the age-dependent rates of vRNA production, degradation and

assembly/secretion, respectively. For simplicity we do not

distinguish between vRNA being packaged into a virion and the

virion being secreted. Once vRNA is packaged it is no longer

available for replication or degradation, and we assume the

packaged virion is secreted. A more complex model would

distinguish these processes but at the expense of additional

parameters. We assume that a cell is infected by a single virion and

hence there is only one vRNA in an infected cell at age 0, i.e.,

R(0)~1. A model similar to Eq. (3) but with constant parameters

has been successfully used to fit intracellular vRNA levels in an in

vitro replicon system [19], giving us confidence that a simple

model can capture many of the major events in vRNA replication.

More complex models exist (e.g., Dahari et al. [20] in which the

model has 9 equations and 18 parameters) but because they

involve many parameters whose values are not known as well as

many other intracellular molecules they are not well suited for our

purpose here of understanding the major effects of PI therapy.

Combining the equations governing the vRNA kinetics and the

cell infection dynamics given by Eq. (1), an age-structured

multiscale model of HCV kinetics results that can be described

by the following partial differential equations (PDE):

d

dt
T(t)~s{bV (t)T(t){dT(t),

L
Lt

I(a,t)z
L
La

I(a,t)~{d(a)I(a,t),

I(0,t)~bV (t)T(t), I(a,0)~I0(a),

L
Lt

R(a,t)z
L
La

R(a,t)~a(a){½r(a)zm(a)�R(a,t),

R(0,t)~1, R(a,0)~R0(a),

d

dt
V (t)~

ð?
0

r(a)R(a,t)I(a,t)da{cV (t),

ð4Þ

The initial distributions of infected cells and intracellular vRNAs

are assumed to be I0(a) and R0(a), respectively. If t~0 is chosen

to be the time of initial infection, then R0(a)~0. The R(a,t)
equation would become an ODE (Eq. 3) if R0(a) were the steady

state distribution since no further time evolution would occur.

Unlike the standard biphasic model, three different antiviral

effects of therapy with DAAs can be distinguished in the multiscale

model, namely blocking vRNA production (i.e., reducing a by a

factor 1{Ea), reducing assembly/secretion of virus (i.e., reducing r
by a factor 1{Es), and enhancing the rate of vRNA degradation

(i.e., increasing m by a factor k), where 0ƒEa, Esƒ1 and k§1 are

the effectivenesses of therapy in affecting different processes in the

viral life cycle. The full model combining both intra and

extracellular viral kinetics under therapy is

d

dt
T(t)~s{dT(t){bV (t)T(t),

L
Lt

I(a,t)z
L
La

I(a,t)~{d(a)I(a,t),

I(0,t)~bV (t)T(t), I(a,0)~�II(a),

L
Lt

R(a,t)z
L
La

R(a,t)~(1{Ea)a(a){½(1{Es)r(a)zkm(a)�R(a,t),

R(0,t)~1, R(a,0)~�RR(a),

d

dt
V (t)~(1{Es)

ð?
0

r(a)R(a,t)I(a,t)da{cV (t),

ð5Þ

where t~0 is the time at which treatment is initiated, �II(a) and
�RR(a) are the steady state distribution of infected cells and

intracellular vRNAs, respectively, before therapy, which will be

calculated in Results. An additional potential antiviral effect of the

therapy on intracellular replication templates will be incorporated

into the model later (see the subsection of Long-term Approxi-

mation).

Results

Analysis of viral decline data using the standard biphasic
model

We first fit the patient data using the standard biphasic model

(Eq. 2). There are 5 parameters in the prediction of viral decline,

including the baseline viral load V0 and the pharmacological delay

t0. Because of the lack of frequent sampling in the first several

hours after treatment initiation, V0 and t0 could not be estimated

precisely. Thus, we fixed V0 to the last observed viral load before

continuous viral reduction was observed, and t0 was defined as the

mean between the time when V0 was measured and the time of

the next observed data point. For instance, with the sampling of

this study, if the last viral load measurement before the viral

decline was at 2 hours, and the next viral load was taken at

4 hours, then t0~3 hours. An alternative would be to fix t0 to the

time for danoprevir to reach its maximum serum concentration,

but as liver concentrations differ we prefer the method given

above. The other 3 parameters, c, E, and d were estimated by non-

linear least squares regression using the Levenberg-Marquardt

algorithm [21].

The biphasic model provides good fits to patient data. The best

fits are shown in Figure 1 (red dashed line). Estimates of parameter

values on the basis of the best fits are given in Table 1. The

biphasic model predicts that danoprevir blocks viral production

with mean effectiveness E~0:996. For this model, the slopes of the

first-phase and second-phase viral decline reflect the viral

clearance rate, c, and the death rate of infected cells, d,

respectively. The average estimates of c and d are 10:35 d{1

and 0:42 d{1, respectively (Table 1). These values are substan-

tially greater than what was typically found during IFN-based

therapy [9], where c and d are in the order of 6 d{1 and

0:14 d{1, respectively. Interestingly, in another study [14] in

which the biphasic model was used to analyze HCV viral decline

in patients receiving the HCV NS5A inhibitor daclatasvir, the

average estimates of c and d were 23:3 d{1 and 1:06 d{1,

respectively, which are also significantly higher than estimates

during IFN-based therapy. It is unlikely that the administration of

DAAs such as danoprevir or daclatasvir will enhance the clearance

rate of virus, although they could lead to higher estimates of d by

causing the loss of intracellular viral RNA [13] and ultimately the

‘‘cure’’ of infected cells as has been seen in vitro [22,23]. To model

this effect, as well as to explain the higher value of c seen with

DAAs, we introduce a multiscale model (Eq. 5) that accounts for

the different stages of intracellular viral replication that are

specifically targeted by DAAs.

Analysis of the multiscale model
We analyze the multiscale model and derive analytical

approximations that will be used to fit patient data. We begin

with the infected steady state of the pre-therapy model (4). For the

pre-therapy model, we note that t~0 can be any time and does

not have to be the time of initial infection. For example, t~0
could be the time one starts observing an infected patient. If the

patient has not been infected for too long then the steady state has

HCV Dynamics Under Therapy with Danoprevir
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not been reached. A full analysis is needed to determine if the

solution of the system will converge to the steady state.

Let

v(a)~e
{
Ð a

0
d(t)dt

, p(a)~e
{
Ð a

0
½r(t)zm(t)�dt

: ð6Þ

Then v(a) and p(a) can be interpreted as the probability of an

infected cell and an intracellular vRNA surviving to age a,

respectively. At steady state, the density of infected cells that have

an age a is

�II(a)~b �VV �TTv(a), ð7Þ

where �VV and �TT are the steady-state viral load and target cells,

respectively. The steady-state level of vRNA within an infected cell

of age a is

Table 1. Parameter values with standard errors in parenthesis estimated by fitting the standard biphasic model to viral load data.

Patient V0 ( log10IU:mL{1) t0 (days) c (day{1) EE d (day{1)

01-94AB 6.24 0.12 11.50 (0.80) 0.999 (0.000066) 0.42 (0.060)

01-94GK 7.24 0.12 7.38 (0.33) 0.9995 (0.000071) 0.15 (0.019)

03-94EA 5.79 0.04 10.50 (0.72) 0.998 (0.00022) 0.17 (0.037)

03-94EZ 6.56 0.12 11.35 (0.76) 0.998 (0.00060) 0.65 (0.35)

03-94HD 6.72 0.04 12.44 (1.07) 0.998 (0.00036) 0.29 (0.038)

03-94KG 6.98 0.04 9.40 (1.16) 0.98 (0.0034) 0.35 (0.035)

03-94SN 5.74 0.04 10.03 (0.61) 0.997 (0.00090) 1.0 (0.32)

04-94XD 6.63 0.12 10.26 (0.69) 0.9995 (0.00063) 0.33 (0.040)

Mean 6:48 0:08 10:351 0:996 0:422

SD 0:54 0:043 1:54 0:0065 0:28

1Corresponding to a half-life t1/2 = 0.067 days.
2Corresponding to a half-life t1/2 = 1.65 days.
doi:10.1371/journal.pcbi.1002959.t001

Figure 1. Comparison of viral load data with model predictions for each patient. The prediction from the standard biphasic model is
shown by the red dashed line and the prediction from the long-term approximation of the full multiscale model is shown by the black solid line. In
most cases the two predicted viral load decay curves overlap and cannot be distinguished. The parameter values used to generate the theoretical
curves are the best fit values given in Table 1 and 2, respectively. Viral rebounds occur due to drug resistance and the decay data (circles) was only fit
until resistance was detected or rebound was observed. The limit of viral load detection is indicated by the black dashed line.
doi:10.1371/journal.pcbi.1002959.g001

HCV Dynamics Under Therapy with Danoprevir
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�RR(a)~p(a)z

ða

0

p(a)

p(u)
a(u)du: ð8Þ

When d(a), a(a), r(a), and m(a) are all constants, we have

v(a)~e{da, p(a)~e{(rzm)a, and

�II(a)~b �VV �TTe{da, �RR(a)~
a

rzm
z(1{

a

rzm
)e{(rzm)a: ð9Þ

Plugging �II(a) and �RR(a) into the V equation in (4), we have

ð?
0

r(a)�RR(a)b �VV �TTv(a)da~c �VV : ð10Þ

Let

N~

ð?
0

r(a)�RR(a)v(a)da: ð11Þ

Thus, N gives the total number of virions produced by one infected

cell over its lifespan. This number is usually called the viral burst size

[24,25]. Solving Eq. (11), we obtain �TT~c=(bN). From the first

equation of (4), we obtain the steady-state viral load,
�VV~(bNs{dc)=(bc). Substituting �VV and �TT into Eq. (10), we

obtain �II(a)~(bNs{dc)e{da=(bN). Let R0~bNs=(dc). R0 is the

basic reproductive ratio of model (4). The infected steady state

(�TT ,�II(a),�RR(a), �VV ) of model (4) is feasible, i.e. has all variables positive,

if and only ifR0w1. In Text S1, we further show that the infection-

free steady state is locally asymptotically stable when R0v1 and

unstable when R0w1, and that the infected steady state is locally

asymptotically stable whenever it exists, i.e., when R0w1.

Approximation solutions of the multiscale model under
therapy

We assume that d(a), a(a), r(a), and m(a) are all constants.

Using the method of characteristics one can then show that (see

Text S1) after initiation of therapy at time t~0, R(a,t) and I(a,t)
are

R(a,t)~

A

B
z(1{

A

B
)e{Ba for avt,

A

B
z(�RR(a{t){

A

B
)e{Bt for a§t,

8>>>>><
>>>>>:

ð12Þ

I(a,t)~

bV (t{a)T(t{a)e{da for avt,

�II(a{t)e{dt for a§t,

8>>><
>>>:

ð13Þ

where

A~(1{Ea)a, B~(1{Es)rzkm, ð14Þ

and �RR(a) and �II(a) are the steady-state distributions, given in Eq.

(9). Even though the distributions of R(a,t) and I(a,t) have an

analytical form, V (t) does not. Consequently, the implementation

of the full multiscale PDE model and its use for fitting viral load

data involve cumbersome calculations. Therefore, it is important

to study whether reasonable assumptions can be made to derive

relevant analytical approximations of this model in the context of

DAA-based therapy.

Short-term approximation. We first approximate the viral

load decline by assuming that after therapy is initiated infected

cells remain at their steady-state distribution, i.e.,

I(a,t)~�II(a)~b �VV �TTe{da. This is equivalent to assuming that

new infections (corresponding to the case of avt) after treatment

initiation still occur at the same rate as before treatment. This

assumption is reasonable only for a short time after therapy

initiation because the rate of new infections will decline in the

presence of effective treatment. With this assumption, the total

number of infected cells is
Ð?

0
I(a,t)da~b �VV �TT=d, which is exactly

the number of infected cells before therapy in the standard

biphasic model (2). Assuming that infected cells remain at their

pre-therapy level was also used in [9] to study the short-term viral

decline under IFN therapy.

Using R(a,t) in Eq. (12), we solve the V (t) equation in model (5)

and obtain (see Text S1)

V (t)

V0
~e{ctz(1{Es)

cr

N

Azd

(Bzd)cd
(1{e{ct)

�

z
1

Bzd{c

N

r
{

Azd

(Bzd)d

� �
(e{ct{e{(Bzd)t)

�
,

ð15Þ

where

N~r

ð?
0

�RR(a)v(a)da~
r(azd)

d(rzmzd)
,

A and B are given in (14), and V0~ �VV is the baseline viral load

before the onset of therapy. Because the assumption of a constant

rate of new infection is reasonable only for a short period after

therapy initiation, we call Eq. (15) a short-term approximation of

the viral decline after therapy.

Long-term approximation. Alternatively, we can approx-

imate the viral load decline by neglecting all new infections

after the onset of therapy, i.e. assuming I(a,t)~0 for avt. This

is reasonable if therapy is potent enough so that viral levels

decline profoundly and continuously after therapy is initiated.

From Eq. (12), R(a,t) converges to a non-zero steady state

solution A=B. However, this may not be realistic as in vitro cell

culture systems have shown that under potent therapy vRNA

declines continuously and that a complete eradication of

vRNA can be obtained after weeks of treatment [22,23].

Consequently, to study long-term therapy we modify the

equation of R(a,t) by introducing a new term, e{ct, which

represents the decay of replication templates (e.g. replication

complexes or negative strand HCV RNA) under therapy. Such

an exponential term was also used in a model in [19] to fit

intracellular vRNA levels in an in vitro replicon system. A

more complete model would include another intracellular

equation for replication complexes (such as the equation in

[13]) but would involve more unknown parameters (see

Discussion). In fact, we show in Text S1 that the inclusion of

e{ct in the R equation is consistent with the formulation of the

intracellular model in [13] that explicitly includes the

dynamics of replication templates.

With an exponential decay in vRNA production during

treatment, the R(a,t) equation becomes

HCV Dynamics Under Therapy with Danoprevir
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L
Lt

R(a,t)z
L
La

R(a,t)~(1{Ea)ae{ct{½(1{Es)rzkm�R(a,t), ð16Þ

with the initial condition R(a,0)~�RR(a) given in (9).

Using this new equation for R(a,t) and neglecting all new

infections after the onset of therapy, we obtain (see Text S1)
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In this approximation, we neglect all new infections during

therapy. This is reasonable after therapy has substantially reduced

the viral load. Thus, we call Eq. (17) a long-term approximation of

the viral decline after therapy.

Numerical comparisons. Under effective drug therapy, the

viral load decreases and the rate of new infections, bV (t)T(t), also

decreases. Thus, we have b �VV �TTwbV (t)T(t)w0. From the

assumptions used to derive approximations, we expect that V (t)
given by the short-term approximation is greater than the

prediction of the PDE model, which in turn is greater than the

long-term approximation. Numerical results confirm these pre-

dictions. In Figure 2A, we show that the short-term approximation

agrees well with the solution of the PDE model during the early

stage of therapy. However, the short-term approximation

approaches a steady state quickly, which is greater than the

solution of the multiscale PDE model. In Figure 2B, we compare

the long-term approximation with the numerical solution of the

PDE model. The long-term approximation is an underestimate of

the PDE solution. However, in the parameter range of interest the

difference between them is extremely small and the long-term

approximation converges to the PDE solution quickly (Figure 2B).

Duration of the phases of viral decline. The presence of

three exponential terms in the long-term approximation Eq. (17)

implies that the multiscale model, unlike the standard biphasic

model, may have as many as three phases of viral load decline

during therapy. The first exponential term represents the

clearance of virus from the circulation (with rate c). The other

two terms represent loss of the material needed to make new virus

through a combination of processes. The second exponential term

represents the loss of intracellular vRNA by export and

degradation as well as the elimination of infected cells (with rate

(1{Es)rzkmzd), while the third term represents the reduction in

vRNA due to loss of replication templates in infected cells as well

as the elimination of infected cells (with combined rate czd).

Three exponential terms do not mean that a triphasic viral

decline will always be observed during therapy. In fact, we

show in Text S1 that the rapid first phase of viral decline with

rate c will be observed only if therapy efficiently blocks viral

assembly or secretion, i.e. if Es is close to 1. Moreover, in this

case we calculated that the first-phase viral decline may not last

more than 8 hours based on parameter values estimated from

data fitting. Therefore, the rapid first-phase viral decline may

not be identified from clinical data if viral load measurements

are not taken very frequently after the initiation of treatment.

We show in Text S1 that there will not be a visible second-

phase viral decline (with the slope (1{Es)rzkmzd) unless Ea,

the effectiveness of therapy in blocking intracellular viral

production, is close to 1. Numerical simulations with different

combinations of Es and Ea confirm these predictions (Figure 3).

In Text S1, we also show the effect of k on the viral load

decline. Changing k only affects the phase of viral decline with

slope (1{Es)rzkmzd.

Analysis of viral decline data using the multiscale model
We analyzed patient data using the long-term approximation of the

multiscale model under therapy. The long-term approximation (Eq.

17) has 11 parameters, including the baseline viral load V0 and the

pharmacological delay t0. We chose V0 and t0 to have the same values

as determined for the biphasic model (Table 1). Because parameters

that are not related to treatment should not depend upon the DAA

being used, we chose m~1 d{1, c~22:3 d{1 (corresponding to a

half-life t1=2~45 minutes), d~0:14 d{1 (corresponding to t1=2~5

days), r~8:18 d{1 and a~40 d{1 (Table 2), which are consistent

with what was estimated in vitro [26] and also in patients treated with

daclatasvir [14] and IFN [9]. The remaining parameters were the four

treatment effectiveness parameters Ea, Es, c and k and these were

estimated using the same method as used for the biphasic model. Note

that changing m will affect k since only km can be estimated. Similarly,

changing d will mainly affect c because czd is estimated from the

slope of the last phase of viral decline (Figure 3).

The long-term approximation of the multiscale model provides

good fits to the viral load data. The best fits are shown in Figure 1

for comparison with the prediction of the biphasic model.

Parameter estimates on the basis of the best fits are presented in

Table 2. The model predicts that danoprevir significantly reduces

vRNA production within infected cells, with mean effectiveness

Ea~0:992, and has a modest effect in blocking viral assembly or

secretion, with mean Es~0:56. Finding an effect of danoprevir on

virion assembly or secretion is consistent with a recent finding that

the HCV protease domain is important in late steps in the viral life

cycle that involve intracellular assembly of virus [27]. With a

modest drug efficacy Es, the rapid viral decline with slope c occurs

over a very short interval and is not visible in the data from these

patients (see Text S1). Because Ea is close to 1, the viral decline

with slope (1{Es)rzkmzd is visible. Thus, the viral load decline

observed during the first two days of treatment mainly reflects a

combined effect of danoprevir in reducing viral secretion and in

enhancing the degradation of vRNA, with mean k~4:94 (Table 2).

The viral load decline after day 2 is due to a combined effect of

the loss of infected cells, with rate d, and the exponential reduction

in vRNA production, with rate c (see Eq. 23). We fixed

d~0:14 d{1, which is the mean value estimated during IFN-based

therapy [9], based on the idea that this value represents the rate of

immune-mediated death of infected cells, whereas c represents the

rate of ‘‘cure’’ of infected cells due to the loss of replication

complexes. Phenomenologically, c represents the enhancement in

the rate of viral decline after day 2 compared to what was observed

during IFN-based therapy. Interestingly, we estimated that the

mean of c was 0:28 d{1, so that the mean long-term viral decline

during treatment with danoprevir, dzc, was roughly 3 times more

rapid than during IFN therapy. Interestingly, this 3-fold more rapid

decline is consistent with the results obtained with the biphasic

model where d alone represents the rate of long-term decline. In this

case, the mean value of d for danoprevir was 0:42 d{1 (Table 1),

i.e., 3 times greater than 0:14 d{1, the d for IFN.

The estimate of c varies among patients. In three patients (01-

94GK, 03-94EA, and 03-94HD), the estimates of c were not

significantly different from 0. In two patients (03-94EZ and 03-

94SN), the estimates of c were large (0:55 d{1 and 0:96 d{1,

respectively). However, only data until day 2 were used in these

two patients, due to viral rebound (see Materials and Methods),

which inflates the uncertainty in their parameter estimates. In the

other two patients (03-94KG and 04-94XD), although no

HCV Dynamics Under Therapy with Danoprevir
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resistance was detected, the viral decline between day 2 and day 14

was modest. In the patients with c not significantly different from

0, either the viral decline was not enhanced by eradication of viral

replicative intermediates in infected cells or the default value

chosen for d was too high, masking any potential effect of

intracellular loss of viral replicative intermediates as our model fits

can only accurately estimate czd (Figure 3).

We also tested the sensitivity of our estimates to changes in the

values of r and a. We refitted the long-term approximation to the

viral load data assuming r~0:818 d{1 (10-fold smaller than used

Figure 2. The approximate and the numerical solutions of the multiscale model. A. The short-term approximation (blue solid) is compared
with the solution of the multiscale PDE model (black dashed). B. Difference between the long-term approximation and the solution of the multiscale
PDE model. Parameter values, chosen from Table 2 and [30], are t0~0, s~1:3|105 cells=mL, d~0:01 day{1 , b~5|10{8 mL day{1 virion{1,
d~0:14 day{1 , Ea~0:992, a~40 day{1 , c~0:28 day{1 , Es~0:56, r~8:18 day{1, k~4:94, m~1 day{1 , and c~22:3 day{1.
doi:10.1371/journal.pcbi.1002959.g002
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in previous fitting) and a~400d{1 (10-fold larger than used in

previous fitting), i.e., assuming the pre-therapy steady state vRNA

(given by a=(rzm)) and viral production (given by ra=(rzm)) are

50 and 5-fold higher, respectively, than used in the previous fittings.

Although the viral load predictions were similar (not shown), some

parameter estimates were different (Table 3). Specifically, the

estimates of c and Es remained nearly unchanged. The mean

estimate of Ea, 0.97, was slightly smaller than the previous mean

estimate, 0.992. The mean estimate of k, 8.06, was higher than the

previous mean estimate, 4.94. One can explain the discrepancy in

the estimate of k as follows. Because Es is modest and Ea is close to 1,

the rapid viral decline with slope c is very short and the first visible

phase of viral decline is essentially determined by (1{Es)rzkmzd.

Thus, k needs to be higher to compensate for the effect of assuming

a 10-fold smaller rate of viral secretion, r.

Discussion

Direct-acting antiviral agents that interfere with various

intracellular molecular processes in the HCV life cycle are

revolutionizing therapy for patients chronically infected with

HCV [28,29]. Two protease inhibitors, telaprevir and boceprevir

have been approved by the US Food and Drug Administration to

treat HCV infection when used in combination with PEG-IFN/

RBV. They can effectively block the NS3-4A protease-dependent

cleavage of the HCV polyprotein, which is essential for viral

replication. The addition of either of them to therapy with PEG-

IFN/RBV has significantly increased the rate of SVR [4–8].

These compounds, viewed as the first generation of PIs, have

several shortcomings: side effects including serious rash for

telaprevir, the necessity to be taken three times a day, and limited

effectiveness for non-genotype 1 patients. Moreover, these drugs

have a poor resistance profile and drug resistant virus rapidly

emerges when these PIs are used as monotherapy [30]. Although

still in clinical development there are good expectations that the

second generation of PIs will overcome some of these shortcom-

ings (see reviews in [31,32]). Danoprevir is one such compound

and it has shown potent antiviral activities in vitro, in the HCV

replicon model, as well as in treatment-naive and treatment-

experienced patients in combination with PEG-IFN/RBV

[15,33,34] or mericitabine, an HCV polymerase inhibitor [35].

Despite robust antiviral responses of danoprevir and other DAAs,

their mechanisms of action and in vivo antiviral efficacy remain

unclear.

Figure 3. Phases of viral decline affected by the effectiveness of therapy in blocking intracellular viral production and assembly/
secretion. When therapy significantly blocks both intracellular viral production (Ea~0:99) and assembly/secretion (Es~0:99), the viral load decline
has three phases (blue solid), with slopes c, (1{Es)rzkmzd, and czd, respectively. The duration of the first phase (D1) is about 0.25 days and the
duration of the second phase (D2) is about 0.88 days using the parameter values below. When Es~0, the first-phase viral decline with the slope c is
not visible (red dashed). When Ea~0, the second-phase viral decline is not visible (black dash-dotted). Parameter values t0~0, c~22:3 day{1,
r~8:18 day{1 , a~40 day{1 , d~0:14 day{1 , m~1 day{1 , k~4:94, c~0:28 day{1 , and V0~6:48 log10 IU mL{1 are from Table 2. Because t0 was
chosen to be 0, when comparing the predicted duration of the first phase in this figure with clinical data one may want to add the length of the
pharmacological delay to D1 .
doi:10.1371/journal.pcbi.1002959.g003
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The standard biphasic viral dynamic model is commonly used

to study HCV dynamics in patients on therapy and to estimate the

values of parameters such as the virion half-life, the productively

infected cell loss rate, and the effectiveness of therapy in blocking

viral production. By fitting this model to the viral load decline in

HCV patients receiving high daily doses of IFN, Neumann et al.

[9] estimated that the viral clearance rate, c, was about 6:2 d{1,

corresponding to a serum half-life, t1=2, of 2.7 hours. The model

was also used to fit the viral load data in patients treated with

DAAs [18]. In patients receiving the HCV NS5A inhibitor

daclatasvir, the estimate of c was 22:3 d{1, corresponding to a

t1=2 of 45 minutes [14]. Using this model to fit viral load decline

from eight patients during two weeks of danoprevir monotherapy,

we estimated a mean c of 10:4 d{1 corresponding to a t1=2 of

1.6 hours. Because the viral clearance rate is a physiological

parameter, it should not depend on the specific antiviral agent

used in a study. An obvious discrepancy in the estimates of c
suggests that the biphasic model, which does not include the

dynamics of intracellular viral replication within infected cells,

may not be optimal for analyzing data in patients treated with

DAAs.

In this paper, we introduced a more sophisticated multiscale

model including intracellular viral replication that can be used to

study the viral kinetic changes in patients treated with DAAs.

Unlike the standard biphasic model that only considers the effect

of treatment in reducing the average viral production/release per

infected cell [9], the multiscale model allows one to estimate three

specific effects of the therapy, namely inhibition of vRNA

production, enhancement of vRNA degradation, and inhibition

of viral assembly and/or secretion.

Analysis of the multiscale model (Text S1 and Figure 3) shows

that the first phase of viral decline occurring during the first 6 to

8 hrs after therapy initiation and representing virion clearance in

serum can be observed only if therapy substantially blocks viral

assembly/secretion. If therapy can also efficiently inhibit intracel-

lular viral production, there is a visible second-phase viral decline,

mainly reflecting the loss of material available for producing new

virions. This new understanding of the origin of viral decline can

be used to explore the mechanisms of action of DAAs. For

example, by fitting the long-term approximation of this model to

the first two days of viral load data in patients treated with the

NS5A inhibitor daclatasvir, it was predicted that daclatasvir

Table 2. Parameter values with standard errors in parenthesis estimated by fitting the long-term approximation to viral load data
and assuming m~1 d{1, c~22:3 d{1, d~0:14 d{1, a~40 d{1 and r~8:18 d{1.

Patient V0 (log10 IU:mL{1) t0 (days) k ª (day{1) EEa EEs

01-94AB 6.24 0.12 6.64 (0.50) 0.23 (0.056) 0.997 (0.00066) 0.78 (0.060)

01-94GK 7.24 0.12 3.52 (0.22) 20.0141 (0.022) 0.999 (0.00015) 0.69 (0.051)

03-94EA 5.79 0.04 5.97 (1.18) 0.0003 (0.047) 0.994 (0.0025) 0.71 (0.18)

03-94EZ 6.56 0.12 6.24 (1.64) 0.55 (0.32) 0.996 (0.0020) 0.13 (0.34)

03-94HD 6.72 0.04 4.07 (0.93) 0.095 (0.048) 0.99 (0.0040) 0.92 (0.036)

03-94KG 6.98 0.04 4.19 (1.46) 0.20 (0.036) 0.97 (0.012) 0.55 (0.25)

03-94SN 5.74 0.04 4.10 (0.72) 0.96 (0.23) 0.995 (0.0015) 0.00 (NA)

04-94XD 6.63 0.12 4.81 (0.22) 0.22 (0.026) 0.999 (0.00030) 0.80 (0.042)

Mean 6.48 0.08 4.94 0.28 0.992 0.56

SD 0.54 0.043 1.18 0.33 0.0096 0.33

1This value is not significantly smaller than 0.
doi:10.1371/journal.pcbi.1002959.t002

Table 3. Parameter values with standard errors in parenthesis estimated by fitting the long-term approximation to viral load data
and assuming a~400 day{1, r~0:818 day{1, and other fixed parameters as given in Table 2 caption.

Patient V0 (log10 IU:mL{1) t0 (days) k ª (day{1) EEa EEs

01-94AB 6.24 0.12 8.27 (0.82) 0.23 (0.056) 0.99 (0.0031) 0.78 (0.060)

01-94GK 7.24 0.12 5.70 (0.27) 20.0141 (0.026) 0.997 (0.00071) 0.69 (0.051)

03-94EA 5.79 0.04 8.11 (2.02) 0.00033 (0.047) 0.97 (0.012) 0.71 (0.18)

03-94EZ 6.56 0.12 12.67 (1.82) 0.55 (0.32) 0.98 (0.0088) 0.13 (0.35)

03-94HD 6.72 0.04 4.63 (1.14) 0.095 (0.048) 0.96 (0.019) 0.92 (0.037)

03-94KG 6.98 0.04 7.49 (2.57) 0.19 (0.036) 0.85 (0.060) 0.55 (0.25)

03-94SN 5.74 0.04 11.45 (0.72) 0.96 (0.23) 0.98 (0.0072) 0.00 (NA)

04-94XD 6.63 0.12 6.21 (0.37) 0.22 (0.026) 0.994 (0.0015) 0.81 (0.042)

Mean 6.48 0.08 8.06 0.28 0.97 0.57

SD 0.54 0.043 2.77 0.32 0.048 0.33

1This value is not significantly smaller than 0.
doi:10.1371/journal.pcbi.1002959.t003
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efficiently blocks both intracellular viral RNA production and

virion assembly/secretion [14]. Thus, during therapy with

daclatasvir, the first-phase viral decline reveals the information

on the virion clearance rate in serum and the mean half-life of

HCV RNA in serum was estimated to be about 45 minutes. This

estimate is approximately 4 times shorter than previous estimates

made during IFN-based therapy [9,36]. However, it agrees with

the estimates made during the anhepatic phase and immediately

after graft reperfusion in the majority of patients who underwent

liver transplantation [37,38]. Also, the estimated virion half-life of

45 minutes can be obtained without the use of the multiscale

model by simply estimating via linear regression the rate of viral

decline plotted in Figure 4 of ref. [39].

When therapy only moderately blocks viral assembly/secretion,

as shown with danoprevir (Table 2) or IFN [14], there is continued

packing of vRNAs, made in infected cells before therapy began,

and continued release of virions during therapy, which masks the

intrinsic virion clearance rate in serum. In this case, the rapid

exponential decline of virus reflecting clearance at rate c is not

observed, and the first visible phase of viral decline mainly reflects

the loss rate of vRNA within an infected cell. Here we estimate

that danoprevir when given as 200 mg three times a day leads to

an enhancement of the vRNA degradation rate by a mean factor

of approximately 5. When using the standard biphasic model

rather than the multiscale model, this early viral decline phase was

attributed to a high viral clearance rate, c, of 10:35d{1. This is

substantially higher than the typical value of 6 d{1 estimated

during IFN-based therapy [9]. As our new model indicates that

this phase mainly reflects vRNA degradation rather than viral

clearance, these results suggest that danoprevir induces a more

profound enhancement of vRNA degradation than IFN. Likewise,

using the standard biphasic model to fit the viral decline in patients

treated with 1250 mg telaprevir given twice a day, c was estimated

to be equal to 16:7 d{1 [18]. However, using the new modeling

approach, we showed elsewhere that telaprevir, like danoprevir,

enhances the vRNA rate of degradation with mean k~4:05 [14].

Direct comparisons of the effects of telprevir and danoprevir

should not be made as these results come from different studies,

with different patient populations and different doses of drug, but

nonetheless these studies suggest both drugs behave similarly.

Why danoprevir and telaprevir enhance the intracellular viral

RNA degradation rate remains unclear. It might result from the

restoration of cellular antiviral capabilities [40]. Type I IFNs and

other inflammatory cytokines can be induced in infected cells that

recognize vRNA [41]. However, the HCV NS3-4A protease

interferes with this pathway by cleaving the Toll-like receptor 3

adaptor protein TRIF [42], and blocking the activation of IFN

regulatory factor 3 (IRF-3), a key cellular antiviral signaling

molecule [43]. Thus, inhibition of the NS3-4A protease may

simultaneously block viral replication and restore a cellular

antiviral response that might promote intracellular viral RNA

degradation. One candidate pathway involves ADAR1, an

adenosine deaminase that acts on double-stranded RNA. This

enzyme is induced by type I IFN, and it specifically eliminates

HCV RNA by adenosine to inosine editing [44].

Approximately two days after the start of danoprevir therapy, a

subsequent and persistent phase of viral decline was observed that

was about three times faster than typically found during IFN-based

therapy [9]. Using the standard biphasic model, one would

attribute this enhanced phase of viral decline to an elevated loss

rate of infected cells. However, it seems unlikely that this elevated

loss rate is due to cell death as no increase in the level of alanine

aminotransferase (ALT), an enzyme released from damaged or

dead hepatocytes, was observed in the 8 patients treated with

danoprevir. We hypothesized that the elevated rate of viral decline

is due to a continuous reduction in vRNA production, with the

rate c. This assumption seems reasonable because HCV negative

strand RNAs (or equivalently replication complexes) degrade [20]

and are not replaced or inefficiently replaced if RNA replication is

largely inhibited by effective therapy. A more complete model

would include the dynamics of formation and elimination of

replication complexes, as done in [13]. However, we would then

have additional intracellular equations and need to determine

more unknown parameters. Assuming an exponential decay in the

vRNA production rate (ae{ct) is the simplest way to capture this

effect. The same approach was used to study the dynamics of

genotype 1b subgenomic replicon RNA under treatment with

IFN{a [19].

The long-term approximation in which all new infections are

neglected agrees well with the prediction of the full model in the

context of an effective therapy. However, the approximation

cannot be applied to the full data set from three patients (01-94AB,

03-94EZ, and 03-94SN) in which viral rebound was observed

during the 2-week monotherapy. Virologic escape during

danoprevir monotherapy was reported to be HCV subtype

dependent and mainly due to the emergence of drug resistance

associated with the substitution R155K [45]. Further, even in

patients with no observed escape resistant variants may be present

and slowing viral decline rates. This is probably a common feature

of all drugs with a low genetic barrier to resistance. Thus, the

current model, assuming no drug resistance, may be underesti-

mating the effect of danoprevir. Extending the model to include

two strains [30] or multiple strains [46–48] is one method to study

the evolution of drug resistance, estimate the in vivo fitness of drug-

resistant HCV variants, and quantify the effects of resistant

variants on the kinetics of HCV RNA decline. In addition, the

current model assumes constant drug efficacy. Pharmacokinetic/

pharmacodynamic models could be included to describe the time-

varying treatment effectiveness [49–51]. However, more data are

needed for parameter estimation.

In the context of potent therapy leading to a continuous viral

decline, mathematical analysis of the standard biphasic model

has shown that an additional effect of drug in blocking infection

and/or viral entry has no or very limited effect on the kinetics of

viral decline [9,52]. This is the reason why such an effect was

not studied here. However, in the context of emerging drug

resistant virus or new cell infection, the ability of a drug to block

viral entry should be considered as it could have a significant

effect in delaying or preventing a viral breakthrough by

preventing the ability of resistant virus to infect and propagate

in new cells.

Another limitation of our model is that we have assumed that c
is constant and not influenced by danoprevir. As far as we know

there is no evidence that a protease inhibitor such as danoprevir

will influence virion clearance. However, if danoprevir did

increase c from about the 6 d{1 seen with IFN to the

10:35 d{1 estimated here using the standard model, i.e. by a

factor of 2, then the viral load would decline by a factor of 2

during the first phase and not by the more than 2 orders of

magnitude observed. Thus, any increase of c would not explain the

profound drop in viral load seen during the first phase.

Nonetheless, we cannot rule out the possibility that c is increased

along with the other effects we predicted, such as the block in

HCV RNA replication.

In summary, we employed a multiscale model that includes

both intracellular RNA replication and extracellular infection

dynamics to study the viral load change in HCV patients treated

with DAAs. We determined the biological parameters that
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contribute to different phases of viral decline after initiation of

therapy. Applying the model to viral load data from patients

treated with a new HCV protease inhibitor, danoprevir,

suggests that danoprevir significantly blocks intracellular viral

production and enhances viral degradation, while it moderately

inhibits viral assembly/secretion. The multiscale model provides

a theoretical framework that can be used to explore the

mechanisms of action of other DAAs and thus should be useful

in furthering drug development for HCV and for optimizing

antiviral therapy.
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