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Abstract

We investigate the dynamics of a deterministic finite-sized network of synaptically coupled spiking neurons and present a
formalism for computing the network statistics in a perturbative expansion. The small parameter for the expansion is the
inverse number of neurons in the network. The network dynamics are fully characterized by a neuron population density
that obeys a conservation law analogous to the Klimontovich equation in the kinetic theory of plasmas. The Klimontovich
equation does not possess well-behaved solutions but can be recast in terms of a coupled system of well-behaved moment
equations, known as a moment hierarchy. The moment hierarchy is impossible to solve but in the mean field limit of an
infinite number of neurons, it reduces to a single well-behaved conservation law for the mean neuron density. For a large
but finite system, the moment hierarchy can be truncated perturbatively with the inverse system size as a small parameter
but the resulting set of reduced moment equations that are still very difficult to solve. However, the entire moment
hierarchy can also be re-expressed in terms of a functional probability distribution of the neuron density. The moments can
then be computed perturbatively using methods from statistical field theory. Here we derive the complete mean field
theory and the lowest order second moment corrections for physiologically relevant quantities. Although we focus on finite-
size corrections, our method can be used to compute perturbative expansions in any parameter.
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Introduction

Realistic models of neural networks in the central nervous

system are analytically and computationally intractable, presenting

a challenge to our understanding of the highly complex spiking

dynamics of neurons. Consequently, some degree of simplification

is necessary for theoretical progress and there is a corresponding

spectrum of models with a range of complexity. ‘‘Mean Field’’

models represent the highest degree of simplification and

classically consider the evolution of an ‘‘activity’’ variable which

is some average of the output of a population of neurons. Early

examples of mean field models are those of Wilson-Cowan [1,2],

Cohen and Grossberg [3], and Amari [4]. These models have

proven to be useful in studies of neural dynamics such as in pattern

formation and visual hallucinations [5–7]. However, because of

the nature of the activity variables as averages, they necessarily

neglect individual neuron dynamics as well as population level

effects of phase information and synchrony. Additionally, it is not

clear how the time scales in the equations of mean field models are

related to the response properties of the constituent neurons [8].

The next level of model complexity requires relating population

level activity to single neuron dynamics. This is a question

explored by Knight [9,10], who noted in particular that although

the population firing rate may track an external stimulus, the

single neuron firing rate need not and generally does not. The

important conceptual feature introduced was that a population of

neurons, each of which has some potential variable, v, can be

replaced with a density, r(v), which counts the fraction of neurons

whose potential lies within the infinitesimal range (v,vzdv). The

firing rate of the population is then the current density of the

population at the threshold potential. In the limit of an infinite

population of neurons, one can introduce a continuity equation

derived from the single neuron dynamics, producing what can be

called density mean field theory. The density mean field approach to

analyzing coupled networks has been pursued by Desai and

Zwanzig [11], Strogatz and Mirollo [12–14], Treves [15], Abbott

and van Vreeswijk [16] and others [17–26]. The spike response

formalism considers an integral formulation of the continuity

equations [27]. These density mean field approaches have been

recently put on a mathematically rigorous footing using results

from probability theory [28–31].

Neuronal firing is inherently variable and the source of this

variability has been subject to much study and debate [32–34].

Incorporating neuronal variability into theories is another level of

complexity. Activity mean field models have been shown to exhibit

complex dynamics with high variability when coupled with highly

variable connectivity [35–38], but this is independent of single

neuron dynamics. It is not clear in the context of the density mean

field approach how to quantify the fluctuations arising from the

interactions of discrete neurons in a finite-sized network, where the

fluctuations are not suppressed by averaging over an infinite pool

of neurons. Ad hoc attempts at quantifying finite-size effects include

driving the system with external noise [13], introducing a self-

consistent noise from neural firing [39], or assuming Poisson firing

rates of the neurons within the population [17,22,40]. However, a

systematic means of handling fluctuations due to the finite size of a

population of neurons remain lacking.

Here, we present a systematic expansion around the density

mean field behavior that quantifies the finite-size fluctuations and

correlations of a population of neurons in terms of the interactions

in the network. The expansion utilizes a kinetic theory approach

adapted from plasma physics [41–46]. Because we are interested
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specifically in intrinsic fluctuations which arise across the population

evolving via deterministic dynamics, we do not include any external

‘‘noise’’ or internal stochasticity. The network variability is thus

entirely due to the fact that many possible neuron initial conditions

and parameters are consistent for a given network, which implies

that a given network is selected from an ensemble of networks. One

should think of this ensemble as the ensemble of networks consistent

with an initial experimental setup, or of those networks which are

consistent with the experimentally accessible quantities in the

network. In particular, we show that fluctuations and correlations

and their effect on population behavior can be quantified in a fully

deterministic dynamical system by considering the ensemble of

system histories given a distribution of initial conditions and network

parameters. In the finite size case, the density r(v) will not represent

the fraction of neurons in the network with potential in the interval

(v,vzdv) (as it is in the infinite neuron case), but will represent the

fraction of networks in the ensemble for which there is a neuron

within the interval (v,vzdv). In the cases we consider, there is a

‘‘typical’’ system in the large neuron limit, so that the two are nearly

identical. To a given order in the network size N , one can derive a

moment hierarchy of differential-integral equations for the statistical

moments of the density r(v). The calculations are facilitated by

transforming the moment hierarchy into a functional or path

integral expression of the moment generating functional from which

a perturbative expansion can be derived. We show this for two

synaptically coupled neural networks in the Results and provide

some guidance on generalization to other models in the Discussion.

Our approach is thus in the spirit of Gibbs’ view of statistical

mechanics [47]. Like Gibbs, we do not rely on ergodicity or make

any claims about time averages of the dynamics. The systems we

study do not obey detailed balance and thus there will not be a

necessary correspondence between time averaging and the

ensemble averages we study. Nonetheless, we obtain useful results

for characterizing the fluctuations and correlations in a network.

We consider a specific example with global coupling where these

correlations will have well-defined expansions in terms of the

inverse systems size 1=N and we refer to them as ‘‘finite-size’’

effects. However, we wish to stress that our approach is not

restricted to a finite-size expansion in 1=N per se. Our main result

is to provide a systematic framework to ‘‘average’’ over unknown

or unessential degrees of freedom.

Results

The density description of neural networks
We present a formalism to analyze finite-size effects in a

network of N synaptically coupled spiking neurons. Under fairly

generic conditions, such a system can be reduced to a set of phase

variables with a set of ancillary variables (such as those

representing synaptic input) [48–51]. We consider the phase

dynamics of a set of N phase neurons obeying

_hhi~F (h,u,c) ð1Þ

_uu(t)~{bu(t)zbn(t) ð2Þ

n(t)~
1

N

XN

j~1

X
l

d(t{tl
j) ð3Þ

where each neuron has a phase hi that is indexed by i, u is a global

synaptic drive, n is the population firing rate of the network and tl
j

is the lth firing time of neuron j and a neuron fires when its phase

crosses p. The frequency function F (h,u,c)[RN depends on all the

phases h[RN and a set of m parameters c[Rm, that can be distinct

for each neuron i. The neuron can be in an oscillatory or excitable

regime.

We will develop our theory for a general frequency function F

and apply it to the specific cases of a simple phase oscillator where

F (h,u,c)~I(t)zau(t) [10] and the theta model where

F (h,u,c)~1{coshz(I(t)zau(t))(1zcosh), where c~(I(t),a),
I(t) is an external input and a is a parameter that can be neuron

dependent. The theta model is the normal form of a Type I

neuron near the bifurcation to firing and is equivalent to a

quadratic integrate-and-fire neuron [52]. For some neural

networks, a phase reduction of this sort results in a phase coupled

model, such as the Kuramoto model (e.g. Hansel and Golomb

[53]), which we have previously analyzed [41,42]. In the present

paper, we consider all-to-all or global coupling through a synaptic

drive variable u(t). However, our basic approach is not restricted

to global coupling.

Our goal is to derive the fluctuation and correlation effects

beyond mean field theory for the system. For global coupling,

these effects arise from the finite number of neurons N in the

network. We calculate the effects of finite N on the dynamics of

the system as a perturbation expansion in 1=N around the mean

field limit of N??. In particular, we will compute the

fluctuations and correlations of the synaptic drive u and network

firing rate n, defined as the variability over instances of the network

given initial conditions as well as neuron and network parameters.

We will do this through a probability density functional description

of the neuron firing histories. Before we introduce our density

functional approach, we describe the Klimontovich description of

many-body systems. This description allows us to introduce the

fundamental degrees of freedom in a straightforward manner

without recourse to the statistical field theory formalism used in the

density functional approach. While we focus on finite size effects in

Author Summary

One avenue towards understanding how the brain
functions is to create computational and mathematical
models. However, a human brain has on the order of a
hundred billion neurons with a quadrillion synaptic
connections. Each neuron is a complex cell comprised of
multiple compartments hosting a myriad of ions, proteins
and other molecules. Even if computing power continues
to increase exponentially, directly simulating all the
processes in the brain on a computer is not feasible in
the foreseeable future and even if this could be achieved,
the resulting simulation may be no simpler to understand
than the brain itself. Hence, the need for more tractable
models. Historically, systems with many interacting bodies
are easier to understand in the two opposite limits of a
small number or an infinite number of elements and most
of the theoretical efforts in understanding neural networks
have been devoted to these two limits. There has been
relatively little effort directed to the very relevant but
difficult regime of large but finite networks. In this paper,
we introduce a new formalism that borrows from the
methods of many-body statistical physics to analyze finite
size effects in spiking neural networks.

Finite Size Effects in Spiking Neural Networks
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this paper, our method could also be used to generate perturbation

expansions in other parameters.

Klimontovich description. We adapt the methods of the

kinetic theory as applied to gas and plasma dynamics to create a

probabilistic description of the network dynamics [45,46]. The

approach will allow us to calculate the corrections to mean field

theory due to correlations in the firing times of neurons. In

particular, we employ a Klimontovich description, which consid-

ers the probability density of the phases of a population of neurons

(i.e. the density of the empirical measure)

g(h,c,t)~
1

N

XN

i~1

d(h{hi(t))d(c{ci) ð4Þ

where d(:) is the Dirac delta functional, and hi(t) and u(t) are the

solutions to system (1)–(3). The neuron density gives a count of the

number of neurons with phase h and parameters c at time t. We

have included the parameter vector ci in the neuron density.

Hence, neurons are characterized by their phase and parameter

values. For systems that obey exchange symmetry or exchange-

ability (i.e. the system remains unchanged statistically after a

relabeling of the neurons), the neuron density in (4) gives a

complete description of the system. In systems without exchange-

ability, the neuron density will still capture the complete dynamics

of the system if it includes labels for the information attached to

individual neurons. Using the fact that the Dirac delta functional

in (3) can be expressed as
P

l d(t{tl
j)~

_hhjd(p{hj) the population

firing rate can be rewritten as

n(t)~

ð
dc F (h,u,c)g(p,c,t) ð5Þ

The neuron density formally obeys the conservation equation

L
Lt

g(h,c,t)z
L
Lh

F (h,u,c)g(h,c,t)½ �~0 ð6Þ

which is known as the Klimontovich equation in kinetic theory

and is only valid in the weak or distributional sense since g is not

differentiable. The Klimontovich equation, the equation for the

synaptic drive (2), and the firing rate expressed in terms of the

neuron density (5), fully define the system. For the systems defined

above, we expect that in the limit of a large number of neurons the

ensemble of networks will converge to a ‘‘typical’’ network. In the

infinite neuron limit, this will give the density equations of mean

field theory, whereas for finite but large N , there will be some

variation in systems around the mean field solution. For this

reason, we consider taking expectations of the Klimontovich

equation (6) over initial conditions and neuron parameters, which

produce smooth moment functions for the density. Because the

interacting dynamics have a non-trivial effect on the distribution

functions, computing this average is not always simple. In the next

section, we will formally derive an expression for the measure or

density functional P½g,u� over which these averages are taken.

Denoting averages over initial conditions and neuron param-

eters (i.e. those over P½g,u�) by S:T, the average of (6) yields the

equation

L
Lt

Sg(h,c,t)Tz
L
Lh

SF (h,u,c)g(h,c,t)T~0 ð7Þ

where Sg(h,c,t)T~r1(h,c,t):r(h,c,t) is the first moment of g and

called the one-neuron distribution function, which will depend on

higher order moments since F is a function of u and hence g.

Equations for the higher order moments can be constructed from

(6) by multiplying by factors of g. However, each moment will

depend on yet higher moments, resulting in a system of coupled

moment equations called the BBGKY hierarchy. Solving the

entire BBGKY hierarchy is equivalent to solving the original

system and thus provides no computational advantage. However,

perturbative solutions in a small parameter such as 1=N can be

obtained by truncating the hierarchy and solving the truncated

system. This has been the traditional approach in kinetic theory

but is generally difficult to do. In the next section, we present a

computational formalism where moments for the firing rate and

synaptic drive are computed directly from a probability density

functional of the neuron density.

Mean field theory is obtained by neglecting all correlations and

higher order cumulants. Thus, setting SFgT~SFTSgT gives the

self-consistent mean field system

L
Lt

r(h,c,t)~{
L
Lh

F (h,�uu,c)r(h,c,t)½ �

_�uu�uu(t)~{b�uu(t)zb�nn(t)

�nn(t)~

ð
dc F (h,�uu,c)r(p,c,t)

ð8Þ

Higher order moments (distribution functions) rn are likewise

defined. The second moment (2-neuron distribution function),

r2(h,c,t; h’,c’,t’), is the fraction of networks in the ensemble for

which there is a neuron of type c at (h,t) and another of type c’ at

(h’,t’). It is given by

r2(h,c,t; h’,c’,t’)~Sg(h,a,t)g(h’,a’,t’)T

~C(h,c,t; h’,c’,t’)z 1{
1

N

� �
r(h,c,t)r(h’,c’,t’)

z
1

N
r(h,c,t)d(h{h’)d(c{c’)

ð9Þ

We have implicitly defined the function C using the fact that if the

neurons are prepared identically and independently, then C~0.

We call C the connected contribution and the product of r’s the

disconnected contribution. These labels are equivalent to whether the

contribution can be factored into products of lower moments. The

two-neuron density function has connected, disconnected and

finite-size (those with factors of 1=N ) contributions. The finite-size

contributions arise from the deviations in the ensemble average

due to finite sample size. There are two types of finite size

correction. There is a ‘‘sampling’’ correction because of the

‘‘diagonal’’ contribution where the indices i,j from the two factors

of the neuron density g (4) coincide. Since r2 represents the joint

probability density function of two neurons drawn from the

population, there is a finite-size correction due to the fact that once

a neuron has been drawn from the population, that neuron’s phase

h is fixed and the probability density for that neuron is a point

mass at that phase. Thus, the sampling finite size term consist of

removing 1=Nth of the joint probability mass from p2 and adding

it back as the one-neuron density multiplied by the Dirac delta

functional. In the infinite N case, the probability of drawing a

strictly identical neuron twice is zero.

The second type of finite size effect is due to the coupling and is

contained in C (it will be proportional to 1=N). For uncoupled

neurons, if the neurons are not prepared such that C=0, then no

such correlations will be generated by the dynamics. Note that

Finite Size Effects in Spiking Neural Networks
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integration of C over h,c (or h’,c’) gives 0. One can derive similar

expressions for the higher moments, i.e. for the n-neuron densities.

There will be connected terms which cannot be factored into

products of lower moments, there will be disconnected terms

which can be so factored, and there will be finite size corrections

given by the combinatorics of drawing n neurons from a

population of size N.

Density functional description
We have shown that one tractable approach for incorporating

fluctuations and correlations is to truncate the BBGKY hierarchy.

However, solving such truncated systems for any model of

reasonable complexity quickly becomes unwieldy. For this reason,

we adapt the density functional formalism developed for statistical

field theory to obtain a formal expression for the probability

density functional of the neuron density and synaptic drive P½g,u�.
The fundamental degrees of freedom in this approach reflect the

moments of g, albeit in a more compact and manageable form.

The measure P½g,u� is a distribution over the possible network

realizations. The ‘‘variance’’ of this distribution (represented by

the two-neuron distribution function) provides an indication of the

extent to which different realizations of the network will differ

from each other. For the systems we consider, the estimates of the

n-neuron distribution functions behave as a power of 1=N. This

has the side benefit of demonstrating that there is a limit in which

the ensemble converges to a ‘‘typical’’ system described by the 1-

neuron distribution function, r(h,c,t), i.e. the mean field theory.

For the same reason, at large N, we can use the n-neuron

distribution functions as estimates of the fluctuations in the density

for a single system. Because these fluctuations vanish in the limit of

large N, we term them ‘‘finite-size’’ effects. In the examples below,

we concentrate on computing the 2-neuron distribution function

to lowest order in 1=N, which gives estimates of fluctuations of the

network coupling variables and the firing rate.

In this section we present only final results, the complete

derivation and description of the computational method can be

found in the Methods. The essential element of the field theoretic

method is that the density functional be expressed in the form

P½g,u�~e{NS½g,u�, where S½g,u� is called the action. Given this

density functional, moments can be obtained by integrating over

this density. For example, the second moment of u is given by a

functional or ‘‘path’’ integral

Su(t)u(t’)T~

ð
DgDu u(t)u(t’)e{NS½g,u�

where the measure in the integral is over functions of g and u in

some appropriate functional space. A generating functional for all

the moments or cumulants can be similarly defined (see Methods).

The strategy of field theory is to exploit the fact that Gaussian

integrals have closed form expressions in an arbitrary (including

infinite) number of dimensions. Hence, the path integrals can be

performed using Laplace’s method or the method of steepest

descents to obtain an asymptotic series expression for the integrals

in terms of a small parameter, which in this case will be 1=N.

In general, the action S½g,u� is not expressible in simple form.

This is overcome by augmenting the system with an auxiliary set of

imaginary response functions ~gg and ~uu and defining an expanded

action S½g,~gg,u,~uu�. The action can then be Taylor expanded

around a critical or saddle point where
dS

dX
~0 (where

X[(g,~gg,u,~uu)), which produces an expansion of moments of a

‘‘Gaussian’’ distribution, in this case arising from the terms bilinear

in the auxiliary variables (~gg,~uu) and the configuration variables

(g,u). A perturbation expansion can then be constructed by

exploiting the fact that complex Gaussian integrals of the form

ð
D~zzDz ~zz(y)nz(y’)me

ð
~zz(y)D{1(y{y’)z(y’)dydy’

(for some variables (z,~zz)) have closed form expressions in terms of

linear response functions or propagators D and are nonzero only if

m~n. This path integral identity can be used to formulate an

explicit set of rules to obtain expressions for each term of the

perturbation expansion. The computation is simplified by

encapsulating the rules for constructing the terms in the expansion

into diagrams (i.e. Feynman diagrams, see Methods).

The variables in the action can be compared to those in a

stochastic differential equation. The original variables (without a

tilde, e.g. z(t)) denote the configuration variables, while the

auxiliary variables (with a tilde, e.g. ~zz(t)), denote stochastic or noise

forcing terms although in our case the noise is imposed by the

uncertainty in the initial conditions and heterogeneity in a fully

deterministic network. Finally, the method does not compute the

action directly in terms of the neuron density g but rather

transforms it to a new set of neuron density variables Q and ~QQ

through the transformation Q~ge{~gg and ~QQ~e~gg{1. This trans-

formation renders the action to be more amenable to analysis in a

way that is similar in spirit to how the Cole-Hopf transformation

reduces the nonlinear Burger’s equation into the linear heat

equation [54]. Specifically it removes the Poisson-like count-

ing noise from the definitions of the moments. As an example,

whereas

Sg(h,c,t)g(h’,c’,t’)T~C(h,c,t; h’,c’,t’)z 1{
1

N

� �
r(h,c,t)r(h’,c’,t’)

z
1

N
r(h,c,t)d(h{h’)d(c{c’)

the transformed variables have

SQ(h,c,t)Q(h’,c’,t’)T~C(h,c,t; h’,c’,t’)z 1{
1

N

� �
r(h,c,t)r(h’,c’,t’)

As discussed in Methods, the population level coupling implies that

the desired quantities will have an expansion in powers of 1=N.

We describe basic results of this approach on two particular

example networks: the phase model and the quadratic integrate-

and-fire model. For each model, we describe mean field theory,

the linear response of the population, and all the correlation

functions involving the population and the synaptic drive. Each

quantity is calculated to lowest non-trivial order.

Phase model. We first apply the formalism on the simple

phase model defined by

F~IV(t)zau(t) ð10Þ

where a is the magnitude of the coupling of a given neuron to the

global activity u(t) and V indexes the input. (In analytical terms, V
is an element of the sigma algebra representing the realizations of

the inputs I(t), for example an instance of Brownian motion

input).

The action for the phase model as derived in the Methods has

the form

Finite Size Effects in Spiking Neural Networks
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S~SuzSQ ð11Þ

where

Sw~N

ð
dtdhdV½~ww(h,V,t)Ltw(h,V,t)z~ww(h,V,t)

|Lh IV(t)zau(t)f gw(h,V,t)½ ��{ln Z½~ww0(h,V,t0)�

represents the contribution of the transformed neuron density to

the action and

Su~

ðt

t0

dt ~uu(t)
d

dt
u(t)zb~uu(t)u(t){b~uu(t)

�

|

ð
dVda(IV(t)zau(t))

| ~QQ(p,V,t)Q(p,V,t)zQ(p,V,t)f gÞ

represents the global synaptic drive. The action (11) contains all

the information about the statistics of the network. Given the

action, mean field theory and a perturbative expansion around

mean field theory can be derived using standard methods

developed in field theory.

The mean field equations, which are given by a critical point of the

action, are given by (8), which for parameters a and V are rewritten as

_�uu�uu(t)zb�uu(t){b�nn(t)~0

Ltr(h,a,V,t)zLh IVza�uu(t)ð Þr(h,a,V,t)½ �~0

�nn(t)~

ð
dVda IV(t)za�uu(t)ð Þr(p,a,V,t)

ð12Þ

For the phase model, we can solve (12) directly for r(h,a,V,t) to obtain

r(h,a,V,t)~r0 h{

ðt

t0

dt’ IV(t’)za�uu(t’)½ �,a,V

 !

where r0 is the initial distribution. In this case, the functional form

given above is also the general (non-mean field) solution, upon

replacing r0 with g0. Recall that r0 is the population distribution

averaged over the ensemble of prepared networks. If the neurons are

distributed uniformly in phase, then r0!
1

2p. In this case, the global

activity does not affect the phase distribution. On the other hand, if the

neurons are always prepared at the same phase, then r0!d(h{h0),
where h0 is the prepared phase. In this case the neurons will remain in

phase.

Solving for r allows us to write a closed integro-differential

equation for the synaptic drive

_�uu�uu(t)zb�uu(t)~b�nn(t)

~b

ð
dVda IV(t)za�uu(t)ð Þr0

| p{

ðt

t0

dt’ IV(t’)za�uu(t’)½ �,a,V

 !

Note that as long as r0 is known, this mean field equation

reduces the system from a partial differential equation to a two

dimensional ODE, namely:

_�uu�uu(t)zb�uu(t)~b

ð
dVda IV(t)za�uu(t)ð Þr0 p{H(t),a,Vð Þ

_HH(t)~IV(t)za�uu(t)

The population behavior is reduced to the synaptic drive dynamics

along with the dynamics of a fictitious oscillator H(t). This is the

result of the fact that the only important dynamical quantity is the

overall phase shift of each neuron from its initial phase and that

this quantity is the same for each neuron. Knowing the initial

distribution of states is therefore enough to reduce the dimension-

ality of the system.

The steepest descent expansions to the path integrals will be

expressed in terms of the propagators or linear response functions

D, which appear as the inverses of the integral kernels of the

bilinear terms in the actions. The linear response can be derived to

order 1=N by linearizing about the solutions of the mean field

equation. Because there are two fields in the action (synaptic drive

and density), there are four separate propagators:

d

dt
zb

� �
Du

u(t,t’){b

ð
dadV ar(p,a,V,t)Du

u(t,t’)

{b

ð
dadV(IV(t)za�uu(t))Dy

u(xp,t’)~d(t{t’)

d

dt
zb

� �
Du

y(t,x’){b

ð
dadV ar(p,a,V,t)du

y(t,x’)

{b

ð
dadV(IV(t)za�uu(t))Dy

y(xp,x’)~0

LtDy
u(x,x’)zLh (IV(t)za�uu(t))Dy

u(x,x’)
� �

zLhr(x)Du
u(t,t’)~0

LtDy
y(x,x’)zLh (IV(t)za�uu(t))Dy

y(x,x’)
� �

zLhr(x)Du
y(t,t’)~

1

N
d(x{x’)

ð13Þ

where Da
b describes the response in the quantity a to a perturba-

tion in the quantity b, y~Q{r denotes perturbations around the

mean field solution, x~(h,a,V,t) and xp~(p,a,V,t). The equa-

tions for b~y reflect a perturbation that consists of adding a single

neuron to the population with the specified initial condition and

parameters.

If we assume a constant input IV(t)~IV then in order to have a

steady-state, the mean field must satisfy

r0(h,a,V)~
g(a,V)

2p

�uu0~
�IIV
2p

1{
�aa

2p

� �{1

~
�IIV
2pe

ð14Þ

for a fixed parameter probability density g(a,V), where

e~ 1{
�aa

2p

� �
, and �aa and �IIV are the means of a and IV under

the distribution g(a,V). The linear response around this solution is
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d

dt
zbe

� �
Du

u(t,t’){b

ð
dadV(IVza�uu0)Du

y(xp,t’)~d(t{t’)

d

dt
zbe

� �
Dy

u (t,x’){b

ð
dadV(IVza�uu0)D

y
y(xp,x’)~0

LtD
u
y(x,x’)z(IVza�uu0)LhD

u
y(x,x’)~0

LtD
y
y(x,x’)z(IVza�uu0)LhD

y
y(x,x’)~

1

N
d(x{x’)

which we can immediately solve in closed form to obtain

Du
y(x,x’)~0

D
y
y(x,x’)~

1

N
d(h{h’{½IVza�uu0�(t{t’))d(V{V’)d(a{a’)H(t{t’)

Du
u(t,t’)~e{be(t{t’)H(t{t’)

Dy
u (t,x’)~

b

N

X?
k~1

e{be(t{tk)H(t{tk)

ð15Þ

where tk are the firing times of the fictitious oscillator H(t) with

initial condition H(t’)~h’, and is determined by

2pk{p{h’~(IV’za’�uu0)(tk{t’). Du
u is the expected form of the

linear response upon perturbing the synaptic drive u(t), i.e.

exponential decay. The response of u(t) to the population density

y, Dy
u , is a series of exponential pulses at the firing times of the

additional neuron, which is what we would expect if we added a

single neuron at a given phase. The other propagators govern the

response of the population. Since the distribution is uniform and

the firing rate does not depend upon phase, perturbing the

synaptic drive only makes the entire population fire faster, but does

not change the relative phase, thus Du
y~0. On the other hand,

adding a single neuron adjusts the population density by a single

delta function at the location of the new neuron, hence the form of

D
y
y. The fact that single oscillator perturbations are not damped

away by the linear response is an indication that the stationary

state is marginally stable. We expect that finite size effects at the

next order will stabilize these marginal modes assuming there is

some degree of heterogeneity similar to what happens in the

Kuramoto model [41,42].

As described in Methods, the expansion of any n-neuron

correlation function in powers of 1=N can be computed from the

linear response and the ‘‘vertices’’ derived from the action S.

Here we give the lowest order contribution to the 2-neuron

correlation functions. In addition, this will give us the firing rate

fluctuations. For the fluctuations in the synaptic drive du(t) about

an arbitrary mean field state �uu(t), the diagrams at tree level

(O(1=N)) give

Sdu(t)du(t0)T~b

ð
ds00p IV00 (t

00)za00�uu(t00)ð ÞDu
u(t,t00)Dy

u (t0,s00p)

|r(p,a00,V00,t00)z(t<t0){N

|

ð
dhdVDy

u (t,s)
g(a,V)

2p

� �

|

ð
dh0dV0D

y
u (t0,s0)

g(a0,V0)

2p

� �
ð16Þ

where dsp~dV’’da’’dt’’. Inserting the expressions for the linear

response in the stationary state (15) we obtain :

Sdu(t)du(t0)T~
1

N
e{be(t{t0)

X?
k~0

1{
1

2
dk,0

� �
b2

pe

ðt0

t0

dt1e{2be(t0{t1)

|

ð
da00dV00 I 00Vza00�uu0

� �
g(a00,V00)ebeDtk

|
1

2
H(t0{t1{Dtk)zH(t{t1{Dtk)½ �

{
1

N

�uu2
0

e2
1{e{be(t{t0)
� �

1{e{be(t0{t0)
� 	

ð17Þ

for twt’, where the dtk are determined by 2pk~(IV’za’�uu0)Dtk

and dk,0 is the Kronecker delta. The reason for the Kronecker

delta term is to account for the limiting process which defines the

interaction vertex. Essentially only half the neurons within the

vicinity of firing will contribute to the first cycle of firing (about

half are above threshold, half under). On subsequent cycles, all

neurons will contribute. This issue arises here because of an

ambiguity of the continuum representation we are using. The

vertex only measures those neurons which have passed threshold,

whereas the linear response from (15) considers the limiting

behavior of neurons initially configured in the neighborhood of

some phase h’ (consider the last equation in (15)). If the

distribution g(a,V) is smooth, it is more convenient to compute

the term Dy
u (t,sp) convolved with the function (IVza�uu0)

g(a,V)

2p
.

Performing the time integration gives

Sdu(t)du(t0)T~e{be(t{t0) 1

N

X?
k~0

1{
1

2
dk,0

� �
b2

2pe

ð
da00dV00 I 00Vza00�uu0

� �

|g(a00,V00)| e{beDtk 1{e{2be(t0{t0{Dtk )
h i

H(t0{t0{Dtk)
�

ze{beDtk e2be(t{t0){e{2be(t0{t0{Dtk )
h i

H(Dtk{(t{t0))

|H(t{t0{Dtk)zebeDtk 1{e{2be(t0{t0{Dtk )
h i

H(t{t0{Dtk)
	

{
1

N

�uu2
0

e2
1{e{be(t{t0)
� �

1{e{be(t0{t0)
� 	

ð18Þ

The equal time correlation function has a simpler form:

Sdu(t)2T~
1

N

X?
k~0

1{
1

2
dk,0

� �
b2

pe

ð
da’’dV’’ I 00Vza’’�uu0

� �
g(a’’,V’’)

|e{beDtk 1{e{2be(t{t0{Dtk )
� �

H(t{t0{Dtk)

{
1

N

�uu2
0

e2
1{e{be(t{t0)
� �2

ð19Þ

This correlation function quantifies the fluctuations in the global

coupling variable u(t) as a function of time. Recall that we defined

an initial state in which each neuron is statistically independent in

phase and parameters. The time t is the interval elapsed since the

network was in that initial state. Sdu(t)2T is a measure of the

expected variance of the synaptic drive from the mean u(t) at time

t. As mentioned above, due to the fact that higher moments of u(t)
will be suppressed by higher powers of 1=N, this is also an estimate

of the variance of the global coupling as a function of time t from a

known mean field configuration. Because the linear response has a
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spectrum which includes the spectrum of the single neuron

activity, we expect behavior characteristic of the time scales of

single neuron dynamics to appear.

We now turn to the correlations in the density variable

g(h,V,a,t). As discussed in the Methods section, these are given

by (let twt’ and dg~g{r)

Sdg(h,V,a,t)dg(h’,V’,a’,t’)T~D
y
y(h,V,a,t; h’,V’,a’,t’)r(h’,V’,a’,t’)

zSy(h,V,a,t)y(h’,V’,a’,t’)T
ð20Þ

The first term is given by expressions derived above. The second

term is of the same form as the correlation of the synaptic drive

variable.

Sy(x)y(x0)T~b

ð
ds00p IV00 (t

00)za00�uu(t00)ð ÞDu
y(x,t00)Dy

y(t0,x00p)r(p,a00,V00,t00)

z(x<x0){N

ð
dh00dV00da00Dy

y(x,x00)
g(a00,V00)

2p

� �

|

ð
dh00dV00da00Dy

y(x0,x00)
g(a00,V00)

2p

� �
ð21Þ

The above is the general expression. For the fluctuations about

steady state, Du
y~0 from (15), giving the simple relation

Sy(x)y(x’)T~{
1

N

1

4p2
g(V,a)g(V’,a’) ð22Þ

which is just the negative of the product of the mean field steady

state solutions at each argument x,x’ times a factor of
1

N
. This

term is due to the factor 1{
1

N
from the sampling correction in the

two-neuron distribution function (see equation (9) and below).

The 2-neuron distribution function is given by

Sg(x)g(x0)T~
1

N
d(h{h0{½IVza�uu0�(t{t0))d(V{V0)d(a{a0)

H(t{t0)
g(a0,V0)

2p
z

N{1

N

1

4p2
g(V,a)g(V0,a0)

ð23Þ

At equal times (t~t’) we have

Sg(x)g(x0)T~
1

N
d(h{h0)d(V{V0)d(a{a0)

g(a0,V0)

2p
z

N{1

N

1

4p2
g(V,a)g(V0,a0)

ð24Þ

which shows that (22) is the correction term for the normalization

of the two-neuron distribution function. So for the case of the

simple phase model, the fluctuations in the density about steady

state are given by the sampling fluctuations from the steady state

distribution. Note that for large N this means that the variance of

the number of neurons at firing (h~p) is equal to the mean times a

factor of
1

N
, which is equivalent to the Poisson counting

assumption of Brunel-Hakim [17]. As we will show in the next

section, this will not hold in general. Note the form of the linear

response (15) for the term Du
y. The fact that the linear response

Du
y~0, eliminated the first term in (21), which is the contribution

to the fluctuations from the coupling. Comparing to the general

form of the linear response (13), we see that the equation for Du
y

has a source term proportional Lhr. Because the phase model has

a uniform steady state, this source term is zero. For a model with a

non-uniform steady state (such as the quadratic integrate-and-fire

model, which we examine in the next section) this will not be the

case, and there will be further corrections to the fluctuations in g.

It occurs in the phase model because perturbations in the synaptic

drive do not perturb the density in steady state. Thus the only

fluctuations of the density in steady state are from the sampling

fluctuations.

The correlation function between the global coupling and the

density is given by (with twt’).

Sdu(t)dg(x’)T~Dy
u (t; x’)r(x’)zSdu(t)y(x’)T ð25Þ

Again, the first term is composed of factors derived above. The

remaining unique term is given by

Sdu(t)y(x0)T~b

ð
dx00p IV00 (t

00)za00�uu(t00)ð ÞDu
u(t,t00)Dy

y(x0,x00p)

|r(p,a00,V00,t00)zb

ð
dx00p IV00 (t

00)za00�uu(t00)ð Þ

|Du
y(t,t00)Dy

u (x0,x00p)r(p,a00,V00,t00)

{N

ð
dh00dV00da00Dy

u (t,x00)
g(a00,V00)

2p

� �

|

ð
dh00dV00da00Dy

y(x0,x00)
g(a00,V00)

2p

� �

ð26Þ

In steady state, this term is

Sdu(t)y(x0)T~
b

N

ðt
m

t0

dt00 IV0za0�uu0ð Þe{be(t{t00)d(h0{p{½I 0Vza0�uu0�

|(t0{t00))
g(a0,V0)

2p
{

1

N

�uu0

e
1{e{be(t{t0)
� � g(a0,V0)

2p

~
b

N

Xkmax

k~0

e{be(t{tk ) g(a0,V0)

2p
{

1

N

�uu0

e
1{e{be(t{t0)
� �

|
g(a0,V0)

2p

ð27Þ

where tm~min(t,t’), the tk are defined such that

h’{p{½IV’za’�uu0�(t’{tk)~2pk, and kmax is the largest k such

that tkvtm.

The firing rate of the population is given by

n(t)~

ð
dVda IV(t)zau(t)ð Þg(p,V,a,t) ð28Þ

The mean field solution for this is

Sn(t)T~

ð
dVda IV(t)za�uu(t)ð Þr(p,V,a,t) ð29Þ

and in steady state we have

Sn(t)T~

ð
dVda IVza�uu0ð Þ g(a,V)

2p

~
�IIVz�aau0

2p
~�uu0

ð30Þ
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The second moment of the firing rate is given by

Sn(t)n(t0)T~

ð
dada0d VdV0 IV(t)za�uu(t)ð ÞðIV0 (t)

za0�uu(t)ÞSg(sp)g(s0p)TzO
1

N2

� � ð31Þ

Using our expression for the variance of g in steady state, we have

Sdn(t)dn(t0)T~{
1

N
�nn2z

1

N

ð
dadV IVza�uu0ð Þ g(a,V)

2p

|
X?
k~0

d(t{t0{Dtk)

ð32Þ

where dn~n{�nn and the Dtk are such that 2pk~½IVza�uu0�Dtk. At

equal time we have the simple form

Sdn(t)dn(t’)T~{
1

N
�nn2z

1

N
�nnd(0) ð33Þ

which is equivalent to the Poisson finite size ansatz. The delta

function evaluated at zero is a singularity which arises upon

attempting to isolate a counting process at a single point on the real

line. This can be regularized by considering an estimate of this

quantity in a time interval Dt. The variance in the counts will vary as

SDn(t)Dn(t’)T&{
1

N
�nn2(Dt)2z

1

N
�nnDt

where Dn~

ðtzDt=2

t{Dt=2

dn(t’) dt’. This indicates that the population

firing rate will appear as that from a population of independent

Poisson neurons even though the individual neurons are regular.

For intuition as to why this is the case, consider dividing up the

interval ({p,p) into bins of equal size and distributing N neurons

into these bins. This is the initial state of the network when

initialized in steady state. The distribution of the neuron counts in

each bin will follow a hypergeometric distribution. In the limit of

small bin size and large N , the number of neurons in each bin will

approximate a Poisson distribution. The factor of
1

N
arises from

normalizing the coupling by
1

N
. Recall that the absence of any other

correction is an artifact of the uniformity of the steady state of the

phase model. This will not be the case for the quadratic integrate-

and-fire model.

Figure 1 shows comparisons between our analytical predictions

and numerical simulations. In (a) through (d), the network the

parameters IV and a are constant and homogeneous (i.e.

g(a,V)~d(a{�aa)d(IV{�II)). Figure 1 (a)–(c) shows examples of

the variance of the synaptic drive as a function of time. As seen in

the figures, the correlation function has contributions that appear

at the firing times of the fictitious oscillator H(t) (Recall that H(t)
is a function which parameterizes the linear response). Each such

‘‘firing event’’ produces a new positive transient response in the

correlation function. As t??, each firing event produces ever

smaller perturbations as the correlation approaches steady state.

Note also in those figures that the analytic computation at order

1=N becomes better as N grows larger, and that the overall

magnitude scales as 1=N . Deviations are observable for small N,

particularly for the case I~b~a~1:00. Note also the firing rate

of the fictitious oscillator increases as the population input

increases. Comparison of numerical and analytic results for

NSdn(t)2T is shown in Figure 1 (d). We measured this quantity

by binning the firing counts in a time window Dt and have also

subtracted the ‘‘Poisson’’ contribution. The analytic result is the

first term from equation (33). Figure 1 (e) shows the two-time

correlation function Sdu(t)du(t’)T, where we have fixed t’~100.

As expected by our prediction in equation (18), the oscillations are

much more pronounced. Figure 1 (f) shows the effects of

heterogeneity on the synaptic drive. The drive distribution was

chosen to be uniform, with inputs to each neuron chosen from the

interval ½0:5,1:5). The oscillations in the synaptic drive are

damped by the heterogeneity and there is an effective increase in

the mean drive fluctuations as expected from the theory. In this

case the heterogeneity clearly dominates as a contribution to the

fluctuations, as can be seen by comparing figures 1 (a) and 1 (f),

which differ by close to a factor of four in steady state.

The quadratic integrate-and-fire model
The second model we analyze is the quadratic integrate-and-fire

model, whose single neuron dynamics are given by

_vvi(t)~v2
i (t)zIi(t)zaiu(t) ð34Þ

This model exhibits a finite-time blow-up that is considered to be

‘‘firing’’ at which point the neuron’s membrane potential vi(t) is

reset to {?. We couple the neurons in the same manner as in the

phase model with the synaptic drive u(t). Ermentrout and Kopell

mapped this model to an oscillator using the transformation

vi(t)~ tan2 hi(t)=2 [55] to obtain

_hhi(t)~1{cos hi(t)z(Ii(t)zaiu(t))(1zcos hi(t)) ð35Þ

This form of the model is often called the theta model [55]. Hence,

the function F is given by:

F ½h,u,a,V�~1{cos hz(IV(t)zau(t))(1zcos h) ð36Þ

A convenient feature of this model is that neurons cross the firing

phase h~p at a constant rate _hh~2.

Defining the neuron density in the same way as before

g(h,V,a,t)~
1

N

X
i

d(h{hi(t))d(a{ai)d(V{Vi) ð37Þ

the continuity equation is

Ltg(h,V,a,t)z

Lh 1{cos hz(IV(t)zau(t))(1zcos h)ð Þg(h,V,a,t)½ �~0
ð38Þ

The action, constructed according to the procedure outlined in the

Methods section, is

S~SuzSQ ð39Þ

where the population part of the action is

SQ~N

ð
dtdhdV ~QQ(h,V,t)LtQ(h,V,t)z~QQ(h,V,t)Lh 1{cos h½½

z(1zcos h) IV(t)zau(t)f gQ(h,V,t)��{ln Z½~QQ0(h,V,t0)�
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Figure 1. Phase model. A. Numerical computations (green line) and analytical predictions (black line) for N~10 (top), N~100 (middle), N~1000

(bottom) of NSdu(t)2T for I~1:0, b~0:1, a~1:0. B. Numerical computations (green line) and analytical predictions (black line) for N~10 (top),

N~100 (middle), N~1000 (bottom) of NSdu(t)2T for I~1:0, b~1:0, a~1:0. C. Numerical computations (green line) and analytical predictions (black

line) for N~10 (top), N~100 (middle), N~1000 (bottom) of NSdu(t)2T for I~5:0, b~1:0, a~1:0. D. Numerical computations (green line) and

analytical predictions (black line) for N~10 (top), N~100 (middle), N~1000 (bottom) of NSDn(t)2T for I~1:0, b~0:1, a~1:0, where the ‘‘Poisson’’
contribution has been subtracted. E. Two-time correlator NSdu(t)du(t’~100)T for I~1:0, b~0:1, a~1:0, and N~100. F. Equal time correlators in a

heterogeneous network; NSdu(t)2T and NSDn2T for �II~1:0, b~0:1, a~1:0 and N~100. I is taken from the interval ½0:5,1:5) for each neuron.
Ensemble averages for all simulations are taken over 1024000 samples.
doi:10.1371/journal.pcbi.1002872.g001
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and the part representing the synaptic drive is

Su~

ðt

t0

dt ~uu(t)
d

dt
u(t)zb~uu(t)u(t)

�

{~uu(t) b

ð
dVda ~QQ(p,V,t)Q(p,V,t)zQ(p,V,t)f g

�
{ln Z½~uu(t0)�

ð40Þ

Mean field theory is given by

Ltr(h,V,t)zLh 1{cos hz(1zcos h) IV(t)za�uu(t)f gð Þr(h,V,t)½ �~0

_�uu�uu(t)zb�uu(t){2b

ð
dVdar(p,V,a,t)~0

ð41Þ

Note that because the firing rate is constant at h~p, the input to

the synaptic drive is only dependent upon r(p,V,a,t) and not

directly on the synaptic drive itself.

It is useful to examine the steady state of this model in some

detail. For a constant drive IV(t)~IV, the steady state obeys

r0(h,a,V)~
g(a,V)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
IVz�uu0

p

p(1{cos hz(IVza�uu0)(1zcos h))
ð42Þ

For (IVza�uu0)w1, this solution is a unimodal distribution peaked

at h~p whose width narrows in proportion to the size of the input.

Conversely, for (IVza�uu0)v1, the peak is at h~0. The higher the

input, the more likely it is that any given neuron will be found near

the firing phase, h~p. The synaptic drive variable must satisfy a

consistency condition:

�uu0~2

ð
dV

ð
dar0(p,a,V)~

1

p

ð
dVdag(V,a)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
IVza�uu0

p
ð43Þ

This equation can be viewed as the steady state solution to a

Wilson-Cowan type rate equation. The firing rate for the

quadratic integrate-and-fire model is given, in the mean field

approximation, by

�nn(t)~2

ð
dVdar(p,V,a,t) ð44Þ

In steady-state we have

�nn(t)~2

ð
dVdar0(p,V,a)~

1

p

ð
dVdag(V,a)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
IVza�uu0

p
ð45Þ

so that we can identify
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
IVza�uu0

p
as the ‘‘gain’’ function for the

neurons of type (V,a).

The linear response for the coupled theta model is given by the

equations:

d

dt
zb

� �
Du

u(t,t’){2b

ð
dadVDu

y(xp,t’)~d(t{t’)

d

dt
zb

� �
Dy

u (t,x’){2b

ð
dadVD

y
y(xp,x’)~0

LtD
u
y(x,t’)zLh (1{cos h)z(1zcos h)(IV(t)za�uu(t))Du

y(x,t’)
h i

zaLh½(1zcos h)r(x)�Du
u(t,t’)~0

LtD
y
y(x,x’)zLh (1{cos h)z(1zcos h)(IV(t)za�uu(t))Dy

y(x,x’)
h i

zaLh½(1zcos h)r(x)�Dy
u (t,x’)~

1

N
d(x{x’)

where again x~(h,V,a,t) and xp~(p,V,a,t).

Consider the steady state and transform the angle variable for

each a,V with

w(h)~2 tan{1
tan

h

2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
IVza�uu0

p ð46Þ

Then we have

dw

dh
~

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
IVza�uu0

p

(1{cos h)z(IVza�uu0)(1zcos h)
~2pr0(h,V,a) ð47Þ

This change of variables makes the steady state uniform in h for

each V,a. The equations for the linear response in steady state in

terms of w are

d

dt
zb

� �
Du

u(t,t’){2b

ð
dadV

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
IVza�uu0

p
Du

y(yp,t’)~d(t{t’)

d

dt
zb

� �
Dy

u (t,y’){2b

ð
dadV

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
IVza�uu0

p
D

y
y(yp,x’)~0

LtD
u
y(y,t’)z2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
IVza�uu0

p
LwD

u
y(y,t’)z{a

g(V,a)sin w

2p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
IVza�uu0

p Du
u(t,t’)~0

LtD
y
y(y,y’)z2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
IVza�uu0

p
LwD

y
y(y,y’){a

g(V,a)sin w

2p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
IVza�uu0

p Dy
u (t,y’)~

1

N
d(y{y’)

where y~(w,V,a,t) and yp~(p,V,a,t) (note that w(p)~p).

The linear response for the theta model is most easily expressed

in terms of the Laplace variable s and is given by

Du
u(s)~

1

szbzbQ(s)

Dy
u (s,w’,V’,a’)~

b

N
n(a’,V’,�uu0)Ka’,V’(p{w’,s)Du

u(s)

ð48Þ

where

n(a,V,u0)~2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
IVza�uu0

p
q(w,V,a,t)~

a

p
g(V,a)sin(w{n(a,V,�uu0)t)

Q(t)~

ð
dVda

a

p
g(V,a)sin(p{n(a,V,�uu0)t)

Ka,V(w,t; w’,t’)~d(w{w’{n(a,V,�uu0)(t{t’))H(t{t’)

Du
u is similar to the linear response of the synaptic drive in the

phase model with the addition of the feedback response of the

population through the filter Q(s). Dy
u is the same as in the phase

model with this transformation. It is a series of pulses with the

pulse shape given by the linear response and the pulse times

determined by the firing times of a fictitious oscillator driven at

rate n(a,V,u0).

We also have

Du
y(s,w,V,a)~

q(w,V,a,s)

n(a,V,�uu0)
Du

u(s)

D
y
y(s,w,V,a; w0,V0,a0)~

1

N
Ka,V(w{w0,s)d(a{a0)

d(V{V0)z
q(w,V,a,s)

n(a,V,�uu0)

Dy
u (s,w0,V0,a0)

ð49Þ
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These results produce the primary qualitative difference between

the phase and the theta models. The first term in D
y
y is analogous

to the phase model calculation. It represents a perturbation of

adding a single oscillator with initial coordinate w’ evolving at rate

n(a,V,u0). The second term and the non-zero value of Du
y arise

from the non-uniform distribution of the steady state, which arises

from the functional dependence on h of the neural input function.

This term produces deviations from the ‘‘Poisson’’ behavior of the

firing rate fluctuations.

We can use these expressions to compute the tree level

correlations with:

Sdu(t)du(t0)T~2b

ð
dVda

ðtm

t0

dtDu
u(t,t)Dy

u (t0; t,p,V,a)r(p,V,t)

z(t<t0){N

ð
dhdVDy

u (t,x)r(p,V,t0)

� �

|

ð
dh0dV0D

y
u (t0,x0)r(p,V0,t0)

� �

with tm~min(t,t’). The other correlation functions are given by

Sy(w,V,t)y(w0,V0,t0)T~2b

ð
dVda

ðtm

t0

dtDu
y(x,t)D

y
y(x0; t,p,V,a)r(p,V,t)z(t<t0)

{N

ð
dw00dV00da00Dy

y(x; w00,V00,a00,t0)r

�
w,V00,a00,t0ð ÞÞ

|

ð
dw00dV00da00Dy

y(x0; w00,V00,a00,t0)r(w,V00,a00,t0)

� �

and

Sdu(t)y(w’,V’,t’)T~2b

ð
dVda

ðtm

t0

dtDu
u(t,t)Dy

y(x’; t,p,V,a)r(p,V,t)

z2b

ð
dVda

ðtm

t0

dtDu
y(x’,t)Dy

u (t; t,p,V,a)r(p,V,t)

{N

ð
dwdVdaDy

u (t; w,V,a,t0)r(w,V,t0)

� �

|

ð
dw’’dV’’da’’Dy

y(x’; w’’,V’’,a’’,t0)r(w’’,V’’,a’’,t0)

� �

These are more difficult to put in closed form, other than in terms

of the response function for the synaptic drive. Instead we show

numerical results.

We can use the linear response formulas above to compute

analytic formula for steady state. Changing coordinates and using

the steady state mean field values we have

Sdu(t)du(t0)T~2b

ð
dVda

ðtm

t0

dtDu
u(t,t)Dy

u (t0; t,p,V,a)n(a,V,u0)

|
g(a,V)

2p
z(t<t0){

1

N
U(t)U(t0)

where the Laplace transform of U(t) is given by

U(s)~
b�nn0

s
Du

u(s)

and

�nn0~
1

2p

ð
dVda

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
IVza�uu0

p

is the firing rate of the population in steady state. The correlations

in the synaptic drive variable has the same basic form as that of the

phase model. Because of the structure of Dy
u it will also have the

same pulse behavior at an interval defined by a fictitious oscillator

evolving according to the population activity. The primary

difference is the replacement of the response function for the

synaptic drive with the response for the theta coupling and the

firing rate with the theta model firing rate.

The two-neuron density function, by contrast, is different by

virtue of the non-uniform nature of the steady state. In this case,

Du
y=0 so there will be a contribution at first order in the

perturbation expansion (i.e. tree level) to the density fluctuations.

Similarly, there is an extra term for the correlation function

Sdu(t)y(x)T. Each of these correlation functions is only comput-

able in closed form in terms of the response functions, which we

compute numerically.

The firing rate fluctuations for the theta model are simpler than

the phase model because the input for each neuron is the constant

2 at h~p. For the firing rate obeying

n(t)~2

ð
dVdar(p,a,V,t) ð50Þ

the second moment of the firing rate is

Sn(t)n(t0)T~

ð
dadVda0dV0½Dy

y
(xp,x’

p)r(x’
p)

zSy(xp)y(x’
p)Tzr(xp)r(x0p)�

ð51Þ

for twt’. The equal time second moment is given by

Sn(t)n(t)T~

ð
dadVda’dV’Sy(xp)y(x’

p)Tz�nn(t)2z
1

N
�nn(t)d(0)

ð52Þ

where the d(0) term has the same meaning as in the phase model.

In the phase model case, the analogous expression to the first term

on the right hand side was zero, and the population firing rate

appeared to be the firing rate of the average of N Poisson firing

neurons. In the theta model case, however, there is a correction of

order 1=N. From (52), it is simple to show that the firing rate

fluctuations in a bin of size Dt obey

SDn(t)Dn(t)T&
ð

dadVda’dV’Sy(xp)y(x’
p)T(Dt)2z

1

N
�nn(t)Dt ð53Þ

Comparisons between analytic and numerical results for the

quadratic integrate-and-fire model are given in Figure 2. In (a)

through (e), the parameters IV and a are constant and

homogeneous. One can see the qualitative similarity between the

phase and quadratic integrate-and-fire models in the behavior of

the activity correlations, Sdu(t)2T. Both share the same pulsatile

behavior driven by the fictitious oscillator, i.e. both show the

spectral characteristics inherited from the single neuron dynamics.

Finite Size Effects in Spiking Neural Networks
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The density fluctuations, however, have an effect on the

fluctuations in the firing rate. These effects can be seen in

Figures 2 (c), (d). In addition to the nontrivial firing rate fluctuation

dynamics, the quadratic integrate-and-fire model also shows near-

critical behavior, owing to the phase transition between the

‘‘asynchronous state’’ and synchronous firing. For a population

with no external drive, this transition occurs at a~0. With I~0,

as in Figure 2 (c,) this represents a configuration in which the

system is usually not firing, but with the occasional neuron moving

across threshold. The reader is encouraged to draw an analogy

with ‘‘avalanche’’ dynamics, in which the population will briefly

fire in bursts and then go silent. While there is a small but fixed

average firing rate, the fluctuations are large owing to this transient

behavior. Even a small drive will regularize the system, as in

Figure 2 (d). The finite size expansion is expected to break down

near a phase transition, accordingly here it is expected to

breakdown at the onset of synchrony. The breakdown of the

expansion is evident in Figure 2 (c), where one can see enormous

discrepancy between the analytic and numerical computations.

Figure 2 (e) shows the two-time correlation function Sdu(t)du(t’)T
where t’~100. Figure 2 (f) shows the effects of heterogeneity on

the synaptic drive, where the drive distribution was chosen to be

uniform, with inputs to each neuron chosen from the interval

½0:5,1:5). The oscillations in the synaptic drive are damped and

there is an effective increase in the mean drive fluctuations as

expected from the theory. Again the heterogeneity is the dominant

contribution to the fluctuations, as can be seen by comparing

figures 2 (a) and 2 (f), which differ by close to a factor of six in

steady state. Figure 3 shows a comparison of the firing rate

fluctuations. In contrast to the Phase Model, there is non-trivial

temporal behavior owing to the phase dependence of the neuron

dynamics.

Discussion

We have constructed a system size expansion for the density

formulation of spiking neural networks and computed the

fluctuations and correlations of network variables to lowest order.

In particular, we explicitly calculate two-neuron and higher order

moments in the network. We have demonstrated our method in

globally coupled networks with two different neuron types. We

note that all the fluctuations and correlations are ‘‘finite-size’’

effects, i.e. they do not exist in mean field theory. There will also

be finite-size effects on the mean firing rate and synaptic drive,

which could also be calculated using our methods. However, in the

systems we studied, the finite-size corrections to the mean field

density in the steady state are necessarily zero by neuron

conservation. The steady state is uniform and the fluctuation

effects will not (for these models) break the symmetry.

The method is based on the Klimontovich equation, which is an

exact formal continuity equation for the finite-size neuron density.

Solutions to the Klimontovich equation only exist in the weak or

distributional sense because the neuron density is a collection of

Dirac delta functionals and is not differentiable. In the limit of

infinite system size, it can be shown that under some conditions,

the neuron density becomes a smooth function that obeys a strong

continuity equation called the Vlasov equation [45,46] that

describes the mean field dynamics of the system. Previous work

on large networks of coupled oscillators took the infinite system

size limit immediately and started with the Vlasov equation

[11,15,16]. If the oscillators are subjected to white noise, then the

Vlasov equation becomes the McKean-Vlasov equation [12–

14,54,56], which has sometimes been erroneously called a

nonlinear Fokker-Planck equation. Recent work has put these

density mean field methods onto a rigorous mathematical footing

[28–31]. These authors prove that under reasonable assumptions,

a network of stochastically coupled neurons under various

conditions conditions will obey the McKean-Vlasov equation

(Vlasov equation with diffusion) in the mean field limit. The

network obeys the ‘‘propagation of chaos’’ property where

neurons that are initially statistically independent will remain

independent and the fluctuations are purely Gaussian. They also

show that a self-consistent set of moment equations for the mean

and variance when stochastically forced.

Our approach is based on the traditional Gibbs picture of

statistical mechanics, to wit: the variability in the dynamics (in the

absence of externally supplied noise or explicitly probabilistic

dynamics) is a reflection of the distribution of ‘‘microscopic

dynamics’’ which are consistent with the ‘‘macroscopic dynamics’’,

population level variables such as the global coupling, u(t). The

fluctuations in the firing rate n(t) arise from the variability across

neuron distributions which are approximately consistent with the

mean field value. Those variables which converge to well defined

values as N?? define the set of ‘‘macroscopic’’ variables. In the

examples we have shown, the global coupling u(t) and the

population density r(h) are considered macroscopic. In a more

general network, such as one with heterogeneous coupling, the

identification of macroscopic variables is likely to be a more

complex issue. Put another way, in our simple cases there is a clear

sense of the ‘‘typical’’ system for large N to which all initial

conditions and parameters approach. There is no general

requirement that ‘‘typical’’ systems exist.

The Gibbs picture is realized by taking the ensemble average of

the Klimontovich equation, which leads to a moment hierarchy

where lower ordered moments (or cumulants) of the neuron

density depend on higher order moments. The moment hierarchy

is an exact ensemble averaged description of the finite-size system.

However, in general, solving the moment equations is as difficult if

not more difficult than integrating the original system directly. For

systems with a well defined large N limit, the moments, such as the

two-neuron correlation function, represent the finite size effects.

Estimates for the moments can be obtained by truncating the

moment hierarchy and solving a reduced system of equations,

wherein 1=N is a natural expansion parameter.

A truncated moment hierarchy is still unwieldy to solve. Our

approach is to compute the moments directly by constructing a

formal expression for the probability density functional of this

distribution. This density functional is a ‘‘doubly’’ infinite

dimensional object since its elements are infinite dimensional

functions. Its formal construction hinges on the fact that it is

proportional to a point mass (in an infinite dimensional functional

space) located at a population density function that obeys the

Klimontovich equation. Intuitively, this can be thought of as a

Dirac delta functional with the Klimontovich operator as an

argument. This expression is rendered computationally useful by

noting that a Dirac delta functional in infinite dimensions has a

Laplace transform representation where the integration is over a

space of functions or fields and a set of imaginary response fields

corresponding to the Laplace transform variables. The exponent

of the integrand is called the action and fully specifies the

distribution over the neuron density and synaptic drive.

Methods developed in quantum and statistical field theory are

then employed to construct perturbative expansions for desired

quantities such as moments. The expansions use the infinite

dimensional analogue of the method of steepest descents. The

action is expanded around a critical point at which the gradient is

zero. The critical point condition yields mean field theory. The

first order correction, or tree level, expands the action to quadratic

Finite Size Effects in Spiking Neural Networks
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Figure 2. Quadratic integrate-and-fire model. A. Numerical computations (green line) and analytical predictions (black line) for NSdu(t)2T for
I~1:0, b~0:1, a~1:0 for N~10 (top), N~100 (middle), N~1000 (bottom) neurons. B. Numerical computations (green line) and analytical

predictions (black line) for NSdu(t)2T for I~0, b~1:0, a~0:1 for N~10 (top), N~100 (middle), N~1000 (bottom) neurons. C. Numerical

computations (green line) and analytical predictions (black line) for NSdu(t)2T (top) and NSDn2(t)T (bottom) for I~0, b~1:0, a~1:0, N~1000. D.

NSdu(t)2T (top) and NSDn2(t)T (bottom) for I~0:1, b~1:0, a~1:0, N~1000, where the Poisson contribution has been subtracted. E. Two-time

correlator NSdu(t)du(t’~100)T for I~1:0, b~0:1, a~1:0, and N~100. F Equal time correlators in a heterogeneous network; NSdu(t)2T and NSDn2T
for �II~1:0, b~0:1, a~1:0 and N~100. I is taken from the interval ½0:5,1:5) for each neuron. Ensemble average for all simulations are taken over
1024000 samples.
doi:10.1371/journal.pcbi.1002872.g002
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order yielding an infinite dimensional Gaussian integral. The

integral has a closed form expression in terms of the inverse of the

Hessian matrix, which is analogous to the inverse of the covariance

matrix of a finite dimensional normal distribution. Just as in a

finite dimensional steepest descent expansion, the terms in the

perturbative series will be in terms of the elements of the inverse of

the Hessian matrix, which in our case correspond to the equations

satisfied by the linear responses. Hence, the perturbative

expansion of the time dependent moments of the coupled network

will be in terms of the linear responses.

Previously, we applied this strategy to the Kuramoto model

where oscillators are coupled directly through their phase

differences. The corresponding action is a function of the

population density together with the response field. The linear

response satisfies the linear Vlasov equation. The tree level

expression for the second moment of the population density, which

captures the fluctuations due to finite-size effects, is identical to a

solution of the truncated moment hierarchy known as the Lenard-

Balescu solution in plasma physics [45]. Here, we consider a

network of neurons coupled via synapses that are triggered

whenever a given neuron fires. Hence, the field theory now

involves the density and synaptic drive fields with their auxiliary

fields. There are now four linear response functions, which makes

the computations more complex.

Finite size effects were considered by Brunel and Hakim [17].

They assumed that the connections were sparse enough so that the

arrival times of synaptic events at a given neuron would be

uncorrelated. They then assumed that these inputs could be

modeled by a Poisson process that was scaled by the number of

inputs. We considered the opposite regime of a fully connected

network. We find that for the phase model, the Poisson ansatz is

essentially correct to order 1=N. The theory of coupled diffusions

in probability theory provides an explanation called ‘‘propagation

of chaos’’ where the uncertainty in the initial conditions is

propagated forward by the deterministic dynamics of the system

[54,56,57].

Our approach generates a natural explanation for Poisson like

firing rates in a population of neurons. Indeed, it is a natural

consequence of the neurons firing in a stable asynchronous state.

The number of neurons firing is the number of neurons out of N
randomly chosen that fall into a small bin of size dh around the

firing threshold. In the limit of large N, this should follow a

Poisson distribution. For this reason, Poisson firing of the

population is a natural assumption. However, as we have shown,

if the neurons have some phase dependence in their voltage

evolution, this will produce fluctuations in the firing rate beyond

the simple sampling induced Poisson fluctuations.

The mean field theory for our system is comparable to a

differential equation form of the spike response theory [27]. The use

of phase oscillators allows for a continuity equation without a jump

condition at the boundaries in a threshold crossing integrate-and-

fire neuron. It may be possible to perform a similar finite size

expansion within the spike response theory by incorporating the

boundary conditions. The mean field equations have Wilson-

Cowan rate equation form in that all the inputs to population

activity enters through the firing rate function. This arises because of

our choice of the global synaptic drive dynamics where the synaptic

inputs of the population are first summed and then ‘‘filtered’’. If we

had instead chosen synaptic dynamics such that the synaptic inputs

are first filtered and then summed, we would arrive at the ‘‘Amari’’

formulation of the mean field equations in which the external inputs

to the activity equation lie outside of the rate function.

We considered the example of an all-to-all network. In this case, the

N-neuron joint distribution for the network obeys exchangeability,

Figure 3. Numerical computations (green line) and analytical predictions (black line) of the firing rate fluctuations NSDn2T for the
quadratic integrate-and-fire model for I~1:0, b~1:0, a~1:0 for N~10 (top), N~100 (middle), N~1000 (bottom) neurons with
Poisson contribution subtracted. Ensemble average is taken over 1024000 samples.
doi:10.1371/journal.pcbi.1002872.g003
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which means that the marginalization of the distribution over any set

of N{1 neurons yields the same distribution. For such a system, the

neuron density function is a complete description of the network.

However, we can always write down a neuron density function for any

network even if it does not posses an exchange symmetry. For such a

situation, the density function still captures useful global dynamics of

the network. In the case of heterogeneous neuron parameters, as we

considered here, the network is exchangeable in the infinite N mean

field limit and close to exchangeable for large but finite N. Hence, our

formalism is directly applicable in this case. Such networks are said to

be ‘‘self-averaging’’ in that the large network can be divided into sub

networks, whose average behavior mirrors the full network. However,

the situation with heterogeneous connection weights is more

complicated. In such a system, it is not certain that the network is

self-averaging in the infinite N limit. If so then the mean field

equations are not a useful description of the system. An analogy can be

drawn to spin glasses, where depending on parameters, the system

may or may not be self-averaging. The conditions under which a

heterogeneous network of spiking neurons is self-averaging is a

question that we wish to pursue in the future.

However, even in the case of a heterogeneous network without

self-averaging, we can still apply our formalism if we consider the

network to be comprised of local populations which exhibit

exchangeability [28–31,43]. In this case, each local population

would be represented by its own neuron density, which are then

coupled to other neuron densities. Each local density would obey

its own Klimontovich equation and corresponding moment

hierarchy. If the local populations are sufficiently large then the

hierarchies can be truncated in a finite-size expansion as shown

here. However, even if the local populations are not large or even

consisting of a single neuron, our formalism could still be applied.

A moment hierarchy or density functional for the entire system

could still be constructed. Although a perturbation expansion

cannot be constructed using the inverse system size as a small

parameter, an expansion could still be constructed using some

other small parameter such as the inverse of a slow synaptic time

constant or the inverse of the number of connections. The mean

field limit would consist of a network of coupled local activity

fields. This could then be generalized to a network of coupled

moment equations such as the activity and correlations. We had

previously derived generalized activity equations for an abstract

spike count model [43].

There is always a tension in computational neuroscience

between detailed realistic models versus simpler reduced models.

The main purpose of this work is to build quantitative tools to

bridge the gap between the two approaches. We have developed a

principled method of coarse-graining a neural system that is

relatable to experimentally accessible quantities. Even with the

exponential increase in available data and computational power,

detailed realistic modeling will still have limitations. For one, a

large scale simulation of the brain may not necessarily be easier to

understand than the brain itself. An exhaustive exploration of

parameter space will be intractable even if Moore’s law holds up

for centuries. Thus, there will always be a role for theoretical

analysis of simple models. However, one of the criticisms of

reduced models is that they are ad hoc and cannot be easily linked

to the underlying physiology. Hence, there is a need for methods

to derive reduced models directly from detailed models. Addi-

tionally, one would also like to derive reduced models that can

incorporate single neuron effects such as synchronization and

correlated firing, which are lost in classical mean field models. This

motivated our desire to derive generalized activity equations that

include such discrete neuron effects. Applications for generalized

activity equations include studying the effects of correlation-based

learning rules as seen in spike-timing dependent plasticity,

understanding the role of oscillations in motor and sensory

processing, and probing the neurophysiological basis of cognitive

disorders by analyzing how perturbations to neural parameters

affect cortical circuit function.

Methods

Action and generating functionals
The population statistics of the network is encoded in a

hierarchy of moment functions of the population density, g and

the synaptic drive u(t). We now show that these moments can be

systematically encoded into a generating functional specified by an

action, from which each can be calculated via perturbation theory.

The system is fully specified by Equations (2), (5), and (6), which we

rewrite as

_uu(t)zbu(t){b

ð
dc F (h,u,c)g(p,c,t)~0 ð29Þ

L
Lt

g(h,c,t)z
L
Lh

F (h,c,t)g(h,c,t)½ �~0 ð6Þ

where we have substituted (5) into (2) and the equations are subject

to appropriate initial and boundary conditions.

We wish to derive a probability density functional P½g,u� for the

dynamical variables u(t) and g(h,c,t), from which we can derive all

statistical measures for the network dynamics. We can factorize the

density functional into P½uDg�P½g� and compute the probabilities

separately. The density functionals are usually represented in

terms of an action, which for the networks we consider are given

by (11) and (39).

The derivation is applicable to any dynamical system, so we

derive it for a generic variable x(t) that is governed by the

differential equation

dx

dt
{f (x)~0 ð54Þ

with an initial probability density for x0, P(x0). The dynamical

system is fully deterministic and the density functional will describe

the ensemble of many such systems starting from different initial

conditions. Given the probability density at time t’, the probability

density at a later time t can be written as

P(x(t))~

ð
dx(t’)d(x(t){X (t))P(x(t’)) ð55Þ

where X (t) is the solution of the dynamical system (54) with fixed

initial condition X (t’)~x(t’).
The generating function for the moments of P(x(t)) is given by

the Laplace transform of P(x(t)):

Z½~xx(t)�~
ð

dx(t)P(x(t))e~xx(t)x(t) ð56Þ

where the variable ~xx(t) is called the ‘‘response field’’. The

moments are obtained from the generating function by taking

derivatives with respect to ~xx(t’) and setting ~xx(t’) to zero. The

natural log of the generating function is called the cumulant or

connected generating function. Derivatives of ln Z generate

cumulants, i.e. those contributions to the moments which cannot

be factored into products of smaller moments. The nonlinear
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terms in ln Z therefore represent the ‘‘noise’’ or correlations in the

distribution being represented. For example, the connected

generating function for a Gaussian with mean m and variance s2

is ln Z½l�~mlz 1
2

s2l2 and for a Poisson distribution with mean m

it is ln Z½l�~m el{1
� �

.

Inserting (55) into (56) yields

Z½~xx(t)�~
ð

dx(t’)e~xx(t)X (t)P(x(t’))

~
1

2pi

ð
dx(t’)d~xx(t’)e~xx(t)X (t){~xx(t’)x(t’)Z½~xx(t’)�

where we have used the inverse Laplace transform for P(x(t’)).
Setting t~t’zDt and taking Dt to be much smaller than any time

scale in (54) allows us to write the solution as an Euler step

X (t)~x(t’)zDtf (x(t’)) ð57Þ

which leads to

Z½~xx(t)�~ 1

2pi

ð
dx(t’)d~xx(t’)e~xx(t’zDt) x(t’)zf (x(t’))Dt½ �{~xx(t’)x(t’)Z½~xx(t’)�

~
1

2pi

ð
dx(t’)d~xx(t’)e

~xx(t’zDt){~xx(t’)
Dt

x(t’)z~xx(t’zDt)f (x(t’))

h i
Dt

Z½~xx(t’)�
ð58Þ

Any given time interval t[½t0,T) can be divided into M

subintervals of length Dt. Repeated application of (58) then

expresses the generating functional at time t~T as

Z½~xx(T)�~ 1

(2pi)M

ð
P

M{1

j~0
dx(tj)d~xx(tj)

e

PM{1
j~0

~xx(tjzDt){~xx(tj )

Dt
x(tj )z~xx(tjzDt)f (x(tj ))

h i
Dt

Z½~xx(t0)�

where tj~t0zjDt. Taking the M?? limit gives the functional or

path integral

Z½~xx(T)�~
ð

D~xx(t)Dx(t)e~xx(T)x(T){S½~xx(t),x(t)�

where the measure is defined as

D~xx(t)Dx(t)~ lim
M??

P
M{1

j~0

dx(tj)d~xx(tj)

2pi

with the ~xx(ti) integrations following a contour parallel to the

imaginary axis and the x(tj) integrations following a contour

parallel to the real axis. The action S½~xx(t),x(t)� is

S½~xx(t),x(t)�~
ðT

t0

dt~xx(t)
d

dt
x(t){f (x(t))

� �
{W ½~xx(t0)� ð59Þ

where we have integrated by parts and expressed the initial

generating functional in terms of the cumulant generating

functional W ½~xx(t0)�~ln Z½~xx(t0)�. Note that the bracketed term

is the left hand side of the differential equation (54). This property

is generic and provides a short cut for deriving the action. Because

the initial distribution is normalized we have

Z½0�~
ð

dxP(x)~1 ð60Þ

The path integral thus defines a normalized measure when

~xx(T)~0. The generating function for the synaptic drive u(t) will

directly follow this prescription, where the initial probability

density P(u(0)) is for similarly prepared networks. The action will

have the form of (59), with (29) replacing the ODE for x.

For the population density g, the generating function becomes a

generating functional and the expectation value which defines it is

a functional integral over the possible values of the field g(h,V,t).
Again we introduce a response field ~gg(h,V,t) in order to define

Z½~gg(h,c,t)�~Sexp N

ð
dtdhdc~gg(h,c,t)g(h,c,t)

� �
T ð61Þ

where the expectation value is taken over the ensemble of similarly

prepared networks. The experimental preparation of the network

is equivalent to choosing the initial network configuration from

some ensemble distribution. We will address the exact form of this

distribution below, but for now it will suffice to note that this

implies an initial generating functional for the initial time t0. We

focus on the time evolution of Z here. The derivation above in

terms of the single variable x(t) works equally well in the network

case (consider the arguments to the field as indices for a

configuration vector ~xx(t)). The probability density functional of

g at a t is given by

P½g(t)�~
ð

Dg0d(g{g(h,c,t))P½g0� ð62Þ

where g(h,t) is the solution to the Klimontovich equation (6). This

produces the probability density functional

P½g,~gg�~e{S½g,~gg� ð63Þ

with action

S½g,~gg�~N

ð
dtdhdc ~gg(h,c,t)Ltg(h,c,t)z~gg(h,c,t)Lh½

F (h,uja)g(h,c,t)½ ��{ln Z½~gg(h,c,t0)�
ð64Þ

The action completely defines the system and all moments of the

ensemble distribution can be computed from it. However, in

general, closed form expressions will not be possible and thus

perturbation theory is used. The appearance of the factor of N
tells us immediately how to calculate finite size corrections to the

infinite N network in terms of a perturbative expansion in 1=N (cf.

a steepest descent evaluation of a standard integral with integrand

!eNf (x) for large N).

For the coupled system, we have both the synaptic variable u(t)
as well as the population density g. The action for the coupled

system is just the sum of the actions for the variables u(t) and g.

S~S½~uu(t),u(t)�zS½~gg(h,c,t),g(h,c,t)� ð65Þ

where coupling terms have been included implicitly in the

dependence of u and g upon each other.

Initial distributions. The initial values of the generating

functions will be determined by the ensemble distribution of the
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initial state. In the simplest case, we will consider that the initial

state of the synaptic drive variable u(t0) is fixed; furthermore, we

will choose it to be fixed at u(t0)~0. This means that

W ½~uu(t0)�~~uu(t0)u0~0

The initial state of the population density g is imposed by the N-

neuron distribution of the initial state of the network, r(~hh,~cc) (note

that we use the terminology of plasma physics where the ensemble

distribution is equivalent to an N variable joint probability density

function). In order to compute the initial state of Z, we must

compute the following ensemble average over this distribution.

Z½~gg0(h,c,t0)�~Se
N
Ð

dhdc~gg(h,c,t0)g(h,c,t0)T
P½g0�

~

ð
P
i

dhidcie
N
Ð

dhdc~gg(h,c,t0)g0(h,c,t0)r(~hh,~cc)

ð66Þ

Using the definition of the population density g (equation (4)), we

can write

N

ð
dhd~aa~gg(h,~aa,t0)g(h,~aa,t0)~

X
i

~gg(hi,~VVi,t0) ð67Þ

where the index i runs over the neurons in the network. This

means that the initial generating functional Z is equivalent to

Z½~gg(h,c,t0)�~
ð
P
i

dhidcie
P

i
~gg(hi ,ci ,t0)r(~hh,~cc) ð68Þ

which is the generating function for the ensemble distribution

specified by r(~hh,~cc). Consider an initial distribution that is

independent for each neuron, which means that r factors into a

product over all neurons in the network. Thus

Z½~gg(h,c,t0)�~
ð
P
i

dhidcie
~gg(hi ,~cci ,t0)r1(hi,ci)

� �

~

ð
dhdce~gg(h,c,t0)r1(h,c)

� �N

~ 1z

ð
dhd~cc e~gg(h,c,t0){1

� �
r1(h,c)

� �N

~exp N ln 1z

ð
dhdc e~gg(h,c,t0){1

� �
r1(h,c)

� �� �
ð69Þ

where r1 is the one-neuron distribution function marginalized

from the N-neuron distribution. We choose the notational

convention r~r1. The first term of an expansion of the logarithm

in (69) about r1~0 gives precisely the term which would appear in

a Poisson distribution. The remaining terms account for the

sampling corrections to the n-neuron distributions due to a finite

number of neurons.

If the neurons are not prepared independently then the

expressions for the connected n-neuron distributions (such as C)

will appear as coefficients of powers of ~gg in the exponent along

with a combinatoric factor of
N

n

� �
, e.g.

Z½~gg(h,c,t0)�~exp N ln 1z

ð
dhdc e~gg(h,c,t0){1

� �
r1(h,c,t0)

� ��

z
N(N{1)

2

ð
dhdh’dcdc’C(h,c,t0; h’,c’,t0)~gg(h,c,t0)~gg(h’,c’,t0)

�ð70Þ

assuming the other connected n-neuron distributions are zero at

t0.

Doi-Peliti-Janssen transformation. Just as the nonlinear

terms in the cumulant generating function ln Z½l� are the ‘‘noise’’

terms, the nonlinear terms in the response fields ~uu and ~gg in the

actions S determine the correlations in the fields u(t) and g. Since

the dynamics are deterministic, the initial distribution for the

ensemble is the only part of the action which provides non-trivial

correlations. This follows because the only introduction of ‘‘noise’’

per se has been through the the fact that the initial conditions and

parameters of the network are drawn from a distribution. However,

once those are decided, the dynamics are fixed and completely

deterministic. It is difficult to compute the effects of fluctuations due

to the initial state because the term e~gg{1 that appears in the initial

generating functional. This term is ‘‘linearized’’ by a transformation

similar to a Cole-Hopf transformation, which we call the Doi-Peliti-

Jannsen transformation [58], given by

Q(h,c,t)~g(h,c,t)e{~gg(h,c,t)

~QQ(h,c,t)~e~gg(h,c,t){1
ð71Þ

The form of ~QQ is specified by the Poisson distribution, while the form

of Q is derived by imposing the requirement that the transformation

preserves bilinear derivative forms, i.e.

~ggLtg?~QQLtQzboundary terms ð72Þ

These boundary terms do not contribute to the moments and can be

ignored. The Doi-Peliti-Jannsen transformation replaces the

Poisson term e~gg(h,c,t){1 in the action with ~QQ(h,c,t). Hence, an

action which is bilinear in Q, ~QQ represents a Markov counting

process whose solution is a Poisson distribution with mean Q~SgT.

In a more general case, the Doi-Peliti Janssen transformation

provides an elegant means of expanding around Poisson solutions

and is thus useful for models whose statistics should be near

Poisson, such as population densities in networks, in which the

statistics are essentially coupled counting processes, though not

simple ones. The moments of the variables Q are the joint

distributions of g with the finite size sampling corrections removed.

We call these moments factorial moments or normal ordered moments,

borrowing the terminology from the field theory literature. The

moments of Q do not include the effects of coincident indices,

which is to say they are moments from a distribution without

replacement (i.e. there is no probability of drawing the same

neuron twice). The distribution implied by the moments of g is

derived from drawing with replacement.

Feynman Rules for neural models
The neural models we describe have two different fields, one for

the synaptic drive variable and one for the density variable (along

with the response field counterparts). As above, the class of models

we consider is given by

_uu(t)zbu(t){b

ð
dcF (h,u,c)g(p,c,t)~0 ð29Þ

ð70Þ
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L
Lt

g(h,c,t)z
L
Lh

F (h,u,c)g(h,c,t)½ �~0 ð6Þ

Each term in the expansion of any given moment (such as SgT or

SggT) can be represented in an economical fashion via the use of

diagrams. The basic elements of these diagrams are completely

determined by the action, as derived above. To begin, we expand

each action about some solution of mean field theory

(�uu(t),r(h,c,t)), i.e. shift the variables by u(t)~�uu(t)zdu(t),
Q~rzy. This gives us S~SuzSy, where

Su~

ð
dt~uu d _uuzbdu{b

ð
dcF (p,duz�uu,c) ~yy(p,c,t)z1

h i�

| y(p,c,t)zr(p,c,t)½ �{b

ð
F (p,�uu,c)r(p,c,t)

�

Sy~N

ð
dtdhdc½~yy(h,c,t)Lty(h,c,t)z~yy(h,c,t)

|Lh F (h,duz�uu,c)y(h,c,t)z F (h,duz�uu,c){F (h,�uu,c)f g½

|r(h,c,t)��{N ln 1z

ð
dhdc~yy(h,c,t0)r0(h,c)

� �

zN

ð
dhdc~yy(h,c,t0)r0(h,c)

ð73Þ

Each term in the action (post expansion) containing anything other

than precisely one response field and one configuration field is

called a ‘‘vertex’’ term because these terms constrain the types of

vertices for our diagrams. The terms with one response field and

one configuration field are linear responses and correspond to

edges of the graphs. For our models, the linear responses are the

solutions of

d

dt
zb

� �
Du

u(t,t0){b

ð
dc

dF ½p,�uu,c�
du

r(p,c,t)Du
u(t,t0)

{b

ð
dcF ½p,�uu,c�Du

y(xp,t0)~d(t{t0)

d

dt
zb

� �
Du

u(t,t0){b

ð
dc

dF ½p,�uu,c�
du

r(p,c,t)Du
u(t,t0)

{b

ð
dcF ½p,�uu,c�Du

y(xp,t0)~0

LtD
u
y(x,x0)zLh F (h,�uu,c)Du

y(x,x0)
h i

zLh
dF (h,�uu,c)

du
r(x)

� �
Du

u(t,t0)~0

LtD
u
y(x,x0)zLh F (h,�uu,c)Du

y(x,x0)
h i

zLh
dF (h,�uu,c)

du
r(x)

� �
Du

u(t,t0)~
1

N
d(x{x0)

There are four linear response functions, and so four types of

edges. Time is considered in diagrams to move from right to left.

Edges are represented by a combination of solid and dashed lines.

A completely solid line represents the linear response Du
u, i.e. a

response in u due to a linear perturbation in u. Completely

dashed lines represent DQ
Q, i.e. a response in the density due to

perturbations in the density. Mixed edges represent the ‘‘off

diagonal’’ linear responses, with the perturbation on the

rightward end of the edge and the configuration variable on

the left edge.

Figure 4. Vertices of the Feynman Rules for the neural models. F (n) indicated the nth derivative of F with respect to u. ‘‘Vertex Points’’ refers
to the arguments at which vertex operators are evaluated. Those arguments that are not fixed (e.g. h~p) are integrated over. The first row is derived
from Su , the second and third from Sy . The last row represents the initial state terms.
doi:10.1371/journal.pcbi.1002872.g004
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Graphs are constructed by connecting the vertices shown in

Figure 4 using the four edges defined by the linear response.

The terms in the diagrams are constructed by multiplying each

vertex factor shown in Figure 4 by the factors of the linear

response corresponding to each of the edges and integrating

over the open variables indicated by each vertex. Moments are

given by the sum of all diagrams with open edges corresponding

to the variables in the moment, e.g. the moment Su(t)u(t’)T is

given by the sum of all graphs with two leftward edges that end

in solid lines. Finally, it can be shown [59] that the order of

each diagram in 1=N is given by the number of ‘‘loops’’ in the

topology of each graph, with higher moments having ‘‘tree

level’’ graphs (those with no loops) of order 1=Nm, where m is

the order of the moment, i.e. the tree level graphs for Su(t)u(t’)T
are O(1=N).

The graphs for the two point correlations are shown in Figures 5.

They correspond to the following terms:

Sdu(t)du(t0)T~b

ð
ds00p F (h00,�uu,c00)Du

u(t,t00)Dy
u (t0,s00p)r(p,c00,t00)

z(t<t0){N

ð
dhdcDy

u (t,s)r0(h,c)

� �

|

ð
dh0dc0Dy

u (t0,s0)r0(h,c)

� �
ð74Þ

Sy(x)y(x0)T~b

ð
ds00p F (h00,�uu,c00)Du

y(x,t00)Dy
y(x0,s00p)r(p,c00,t00)

z(x<x0){N

ð
dhdcD

y
y(x,s)r0(h,c)

� �

|

ð
dh0dc0Dy

y(x0,s0)r0(h,c)

� �
ð75Þ

Sdu(t)y(x0)T~b

ð
dx00p F (h00,�uu,c00)Du

u(t,t00)Dy
y(x0,x00p)r(p,c00,t00)

zb

ð
dx00p F(h00,�uu,c00)Du

y(t,t00)Dy
u (x0,x00p)r(p,c00,t00)

{N

ð
dh00dc00Dy

u (t,x00)r0(h,c)

� �

|

ð
dh00dc00Dy

y(x0,x00)r0(h,c)

� �
ð76Þ

and the variations in the density are given by

Sg(x)g(x’)T~SQ(x)~QQ(x’)TSQ(x’)TzSQ(x)Q(x’)T

~D
y
y(x,x’)r(x’)zSQ(x)Q(x’)T

ð77Þ

and

Sdu(t)g(x’)T~Sdu(t)~QQ(x’)TSQ(x’)TzSdu(t)Q(x’)T

~Dy
u (t,x’)r(x’)zSdu(t)Q(x’)T

ð78Þ

where we’ve assumed twt’. Higher moments can be constructed

by considering higher order diagrams.

Reduction to ODEs
In order to compute the linear response for the quadratic

integrate-and-fire model, we use a reduction to a simple system of

ODEs. We start with the propagators in steady state in the w
representation:

d

dt
zb

� �
Du

u(t,t’){2b

ð
dadV

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
IVzau0

p
Du

y(yp,t’)

~d(t{t’)

d

dt
zb

� �
Dy

u (t,y’){2b

ð
dadV

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
IVzau0

p
Dy

y(yp,x’)~0

LtD
u
y(y,t’)z2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
IVzau0

p
LwD

u
y(y,t’){a

g(V,a)sin w

2p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
IVzau0

p Du
u(t,t’)~0

LtD
y
y(y,y’)z2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
IVzau0

p
LwD

y
y(y,y’){a

g(V,a)sin w

2p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
IVzau0

p Dy
u (t,y’)

~
1

N
d(y{y’) ð79Þ

Define

C(a,V):a
g(V,a)

2p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
IVzau0

p

n(a,V):2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
IVzau0

p ð80Þ

Then we have

Du
y(y,t0)~C(a,V)

ðt

t0

dt sin(w{n(a,V)(t{t))Du
u(t,t0)

Dy
y(y,y0)~C(a,V)

ðt

t0

dt sin(w{n(a,V)(t{t))Dy
u (t,y0)

z
1

N
d(w{w0{n(a,V)d(a{a0)d(V{V0)

ð81Þ

Figure 5. Feynman diagrams for the connected two point
correlation functions in the neural field models. By row they are
Sdu(t)du(t’)T, Sy(h,c,t)y(h,c,t)T, and Sdu(t)y(h,c,t)T.
doi:10.1371/journal.pcbi.1002872.g005
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We are interested in solving for the value at w~p. Define

ru(t,a,V; t’)~Du
y(yp,t’)~C(a,V)

ðt

t0

dt sin(p{n(a,V)(t{t))Du
u(t,t’)

~C(a,V)

ðt

t0

dt sin(n(a,V)(t{t))Du
u(t,t’)

ð82Þ

where yp:(w~p,a,V,t). Also define

ry(t,a,V; w,a’,V’; t’)~C(a,V)

ðt

t0

dt sin(p{n(a,V)(t{t))Dy
u (t; w,a’,V’,t’)

~C(a,V)

ðt

t0

dt sin(n(a,V)(t{t))Dy
u (t; w,a’,V’,t’)

ð83Þ

The equations for Du
u(t,t’) and Dy

u (t,y’) are

d

dt
zb

� �
Du

u(t,t0){b

ð
dadV n(a,V)ru(t,a,V; t0)~d(t{t0)

d

dt
zb

� �
Dy

u (t,y0){b

ð
dadV n(a,V)ry(t,a,V; w,a,V,t0)

~
b

N
n(a0,V0)d(p{w{n(a,V)(t{t0))

~
b

N

X
k

d(t{t0{Dt
Q
k)

ð84Þ

where Dt
w
k are defined such that 2pkzp{w{n(a,V)Dt

w
k~0.

Let’s derive equations for the r’s. Taking the time derivative

gives us
d

dt
ru(t,a,V,t0)~C(a,V)sin(0)Du

u(t,t0)

zC(a,V)n(a,V)

ðt

t0

dt cos(n(a,V)(t{t))Du
u(t,t0)

ð85Þ

a second derivative gets us

d2

dt2
ru(t,a,V,t0)~C(a,V)n(a,V)Du

u(t,t0)

{C(a,V)n2(a,V)

ðt

t0

dt sin(n(a,V)(t{t))Du
u(t,t0)

~C(a,V)n(a,V)Du
u(t,t0){n2(a,V)r(t,a,V,t0)

ð86Þ

So the pair of propagators involving Du
u(t,t’) is given by

d

dt
zb

� �
Du

u(t,t’){b

ð
dadV n(a,V)ru(t,a,V; t’)~d(t{t’)

d2

dt2
ru(t,a,V,t’)~C(a,V)n(a,V)Du

u(t,t’){n2(a,V)ru(t,a,V,t’)

ð87Þ

The same procedure works for the other pair to give us

d

dt
zb

� �
Dy

u (t,y0){b

ð
dadV n(a,V)ry(t,a,V; Q,a,V,t0)

~b
X

k

d(t{t0{Dt
Q
k)

d2

dt2
ry(t,a,V; Q,a0,V0,t0)~C(a,V)n(a,V)Dy

u (t,y0)

{n2(a,V)ry(t,a,V; Q,a0,V0,t0)

ð88Þ

Propagators convolved with initial conditions. We start

with Dy
u (t,y’). Convolving the relevant pair of propagators with the

initial (steady state) density r0~
g(a,V)

2p
gives us

U(t)~

ð
dhdadVDy

u (t; h,a,V,t0)
g(a,V)

2p
ð89Þ

This reduces to the same set of equations as for Du
u(t,t’) with the

addition of a constant driving term.

d

dt
zb

� �
U(t){b

ð
dadV n(a,V)r(t,a,V; t’)~

bu0

N

d2

dt2
ru(t,a,V,t’)~C(a,V)n(a,V)U(t){n2(a,V)ru(t,a,V,t’)

ð90Þ

All of the reduced equations were solved numerically with the

midpoint method.
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