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Abstract

Precise patterns of spatial and temporal gene expression are central to metazoan complexity and act as a driving force for
embryonic development. While there has been substantial progress in dissecting and predicting cis-regulatory activity, our
understanding of how information from multiple enhancer elements converge to regulate a gene’s expression remains
elusive. This is in large part due to the number of different biological processes involved in mediating regulation as well as
limited availability of experimental measurements for many of them. Here, we used a Bayesian approach to model diverse
experimental regulatory data, leading to accurate predictions of both spatial and temporal aspects of gene expression. We
integrated whole-embryo information on transcription factor recruitment to multiple cis-regulatory modules, insulator
binding and histone modification status in the vicinity of individual gene loci, at a genome-wide scale during Drosophila
development. The model uses Bayesian networks to represent the relation between transcription factor occupancy and
enhancer activity in specific tissues and stages. All parameters are optimized in an Expectation Maximization procedure
providing a model capable of predicting tissue- and stage-specific activity of new, previously unassayed genes. Performing
the optimization with subsets of input data demonstrated that neither enhancer occupancy nor chromatin state alone can
explain all gene expression patterns, but taken together allow for accurate predictions of spatio-temporal activity. Model
predictions were validated using the expression patterns of more than 600 genes recently made available by the BDGP
consortium, demonstrating an average 15-fold enrichment of genes expressed in the predicted tissue over a naı̈ve model.
We further validated the model by experimentally testing the expression of 20 predicted target genes of unknown
expression, resulting in an accuracy of 95% for temporal predictions and 50% for spatial. While this is, to our knowledge, the
first genome-wide approach to predict tissue-specific gene expression in metazoan development, our results suggest that
integrative models of this type will become more prevalent in the future.
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Introduction

Gene expression is regulated through the interplay of transcrip-

tion factors binding to cis-regulatory modules (CRMs), chromatin

modifications and the basal transcriptional machinery recruited to

promoter elements. CRMs function as discrete regulatory

elements [1,2], that can act at varying genomic distances from

their target genes [3]. Despite recent advances in our understand-

ing of the regulatory steps of transcription, the ability to predict

both spatial and temporal aspects of gene expression remains

surprisingly limited. Efforts in this direction can be broadly divided

into two groups: (1) Predicting cis-regulatory or enhancer activity,

where recent studies in yeast [4] Drosophila [5–7] and C.elegans [4]

have made substantial progress. In one such study the tissue

specificity of the neighboring gene’s expression was used to guide

the search for specific TF combinations [7], while in another the

combination of sequence motif matches was used to predict gene

expression [4]. Although, these are important steps, integrating the

activity of multiple cis-regulatory elements that regulate overlap-

ping or distinct aspects of a gene’s spatio-temporal expression

remains a key challenge (Fig. 1a, Fig. S1). (2) Using chromatin

state dynamics to predict gene expression [8–12]), with or without

information on transcription factor (TF) and insulator data. For

example, in Drosophila a logistic regression was used to predict

temporal (not tissue-specific) gene expression in embryogenesis

[11], showing a performance better than random for 23.6% genes,

with a 2.5 fold enrichment over control experiments where the

connectivity between TFs and their targets was reshuffled. In

c.elegans an SVM classifier was used for a similar task of discerning

highly and lowly expressed transcripts based on measured

chromatin marks [13], although tissue specificity was not

examined. This approach, based on transcripts and chromatin

marks in their immediate vicinity (+/24 kb) achieves high

accuracy (average AUC for all stages = 0.82), reflecting the strong

correlation between transcription and chromatin marks on the

gene body, such as the H3K79 methylation and Pol II occupancy

consistent with the results by Karlic et al [14]. However, while

virtually all regulatory elements appear to reside within 5 kb of the
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transcriptional start site (TSS) in C. elegans, this is not the case in

other species.

In Drosophila, mouse and humans there are many examples of

remote CRMs acting at large distances from the TSS [15–18]

spanning many intervening genes [19,20], where large chromatin

loops are thought to bring the enhancers and the target gene’s

promoter in close physical proximity [21]. In addition, genes,

especially developmental regulators, are controlled by multiple

CRMs, giving rise to partially overlapping patterns of activity

[22,23]. In order to capture, and thereby predict, the full spectrum

of a gene’s spatial expression, two key issues need to be addressed

directly: (1) accurately linking CRMs to their target genes and (2)

integrating the activity from multiple CRM, as is done naturally

for most developmental genes in multicellular species. There is

currently very little biological information or understanding of

how the activity of multiple elements is integrated at the promoter

level. While some studies have suggested that each CRM acts in an

additive manner so that the gene’s expression pattern is the simply

sum of all elements, other studies have shown that the gene can be

expressed in a broader [8,24]) or more restricted [9,10] spatial

domain than the sum of its individual regulatory elements. It is

therefore currently not clear how best to integrate separate

computational models of cis-regulatory elements to accurately

reflect this convergence of regulatory information controlling a

gene’s expression in vivo. These difficulties have limited spatial

predictions of gene expression to a small number of very well

characterized genes [6,25], or more globally to focusing on

predicting on-off states in single cell systems [26,27], thereby

circumventing the inherent complexity of spatial expression within

a multicellular organism.

High-resolution ChIP-chip or ChIP-seq approaches facilitate

the mapping of distant regulatory elements based on transcription

factor occupancy [26–32], co-factor binding [33] or chromatin

marks [34], providing new possibilities to develop better predictive

models of global gene expression patterns. However, there are still

several levels of information missing, including a complete catalog

of all enhancers active during specific stages of development,

information on the identity and timing of the TFs recruited to each

enhancer, cell-type specific information on chromatin status, the

activity state of the associated target gene and a general lack of

information on the physical association of CRMs with promoter

elements. Despite this incomplete knowledge, we asked if the

current level of information is sufficient to accurately predict

spatio-temporal gene expression within the context of a multicel-

lular embryo, reasoning that the predictive power of the model

should only improve as more information becomes available.

Results

We developed a probabilistic model, integrating diverse types of

data generated from whole embryos and thereby containing mixed

signals from many tissues, to predict both spatial and temporal

aspects of gene expression, with particular emphasis on the

mesoderm and derived muscle types. More specifically, using

Drosophila embryogenesis as a model system, we integrated six

types of data relevant to transcriptional regulation: (i) 19,000 TF

binding peaks derived from ChIP-chip experiments for mesoderm

specific TFs, clustered into 8008 non-overlapping cis-regulatory

modules (ChIP-CRMs), (ii) spatio-temporal activity data for 343

CRMs from in vivo transgenic reporter assays, (iii) the genomic

distance of CRMs in relation to transcriptional start sites, (iv)

37,923 occupancy peaks for 6 insulator binding proteins, (v)

H3K4me3 enrichment measured for promoter regions of 14689

genes, and (vi) spatio-temporal expression of 5,995 genes derived

from in-situ hybridization (see Table S1 for a detailed data

description). Note, as chromatin modifying enzymes for canonical

histones and insulator binding proteins are ubiquitously expressed,

the whole embryo data from (iv) and (v) does not contain any

inherent cell-type specific (spatial) information, and (v) represents

merged temporal signal over the entire period of embryogenesis,

which is 24 hr in Drosophila. TF occupancy (i) and gene expression

(vi) data provide information on potential regulatory input and the

final spatio-temporal output, respectively, but little means to

connect the two, highlighting the need to integrate diverse layers of

information.

Previous studies suggest that cis regulatory elements function, to

a large extent, independently of each other [35]. Assuming that

this is correct, there are two natural levels to model gene

expression based on: (i) the relationship between TF occupancy

and CRM activity and (ii) the relationship between models of

multiple CRMs’ activity and a gene’s expression (Fig. 1a). This first

step was recently addressed using support vector machine (SVM)

models, which demonstrated that TF occupancy alone is sufficient

to predict spatio-temporal CRM activity during mesoderm

development [5]. It was postulated [36] that the same method

could in principle be adapted to model gene expression prediction,

although this would require linking CRMs to their appropriate

target genes and integrating inputs from multiple CRM models to

reflect a target gene’s expression. Taking advantage of the wealth

of data on TF occupancy at mesodermal CRMs [5], we tested this

assumption by building a simple additive model that assigns each

CRM to the nearest gene and then sums the SVM prediction

scores for all assigned CRMs to obtain a spatio-temporal

expression prediction at the gene level. Overall, the predictions

were of poor quality (Fig. S2), indicating that a model based on

these simple assumptions does not reflect the biological complexity

of the system. Using well-characterized gene loci to examine why

the model failed revealed that enhancers do not always regulate

the nearest gene, but often a more distant gene (Fig. 1a twist locus)

Author Summary

Development is a complex process in which a single cell
gives rise to a multi-cellular organism comprised of diverse
cell types and well-organized tissues. This transformation
requires tightly coordinated expression, both spatially and
temporally, of hundreds to thousands of genes specific to
any given tissue. To orchestrate these patterns, gene
expression is regulated at multiple steps, from TF binding
to cis-regulatory modules, general transcription factor and
RNA polymerase II recruitment to promoters, chromatin
remodeling, and three-dimensional looping interactions.
Despite this level of complexity, the regulation of gene
expression is typically modeled in the context of tran-
scription factor binding and a single enhancer’s activity as
this is where the majority of experimental data is available.
Recent advances in the measurement of chromatin
modifications and insulator binding during embryogenesis
provide new datasets that can be used for modeling gene
expression. Here we use a Bayesian approach to integrate
all three levels of information to combine the activity of
multiple regulatory elements into a single model of a
gene’s expression, implementing an expectation maximi-
zation strategy to overcome the problem of missing data.
Importantly, while the data for histone modifications and
insulator binding represents merged signals from all cells
in the embryo, the model can extract cell type specific and
stage-specific predictions on gene expression for hundreds
of genes of unknown expression.

Predicting Spatio-Temporal Gene Expression
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Figure 1. Generating a predictive model of spatio-temporal gene expression. (a) A typical genomic locus within the Drosophila genome.
Depicted tracks represent, from top to bottom: Transcription factor (TF) binding (log2 ChIP-chip signal shown for one factor, blue), computed cis-
regulatory modules (CRMs) from 15 developmental conditions (green). A zoomed heat map shows a detailed view of TF binding for one CRM for all 5
TFs and 5 time-points, the level of blue represents the degree of ChIP enrichment in log2. Insulator (INS) binding is shown in red (ChIP signal shown
for CP190, one of 6 factors in dark red), Histone H3K4me3 for a selected time-point (orange) and gene models from RefSeq are indicated in black
(inactive genes) or red (active genes) depending on the level of H3K4me3 signal. The boundaries of insulator occupancy places all CRMs in the vicinity
of three genes, twi and CG30194 and l(2)06496, while the enriched H3K4me3 signal at the twi and l(2)06496 promoter indicates that they are the only
genes actively expressed genes at these stages. The activity of only one enhancer is known within this locus (twi-PE). The spatio-temporal expression
patterns of the twi gene is shown, characterized by in-situ hybridization. (b) A schematic representation of the iterative Bayesian modeling approach.

Predicting Spatio-Temporal Gene Expression
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or can even act across an intervening inactive gene to reach its

appropriate target (Fig. S1a bagpipe locus). Such inactive ‘bystand-

er’ genes [37] can be located within the intron of a target gene

(Fig. S1c Fas3 locus) or vice versa (Fig. S1b CG6981), further

confounding the problem of appropriate target gene assignment.

This demonstrates the need to move to a more integrative model

that includes information on promoter activity (H3K4me3

enrichment) and insulator occupancy within a gene locus. As

insulator binding proteins mediate long-range regulatory interac-

tions between enhancers and their target genes [3,38], we

reasoned that insulator occupancy could improve the ability to

recognize ‘bystander genes’, while the presence of H3K4me3 at

promoters will identify active genes within the vicinity of active

CRMs.

To deal with this complexity, we applied a Bayesian model to

probabilistically integrate diverse types of data in an iterative

manner, which has the advantage of being able to cope with

uncertainty and incompleteness within each dataset using condi-

tional probabilities. The model consists of three components

(Fig. 1b): (i) a Bayesian Network (BN) that describes the probability

of a CRM being active in a tissue or time-point as a function of its

occupancy by different TFs, (ii) a custom probabilistic model that

describes the probability of a gene being expressed at a given stage

and tissue depending on the activity of surrounding CRMs, the

location of CRMs and insulators relative to the promoter, and the

activity state of the promoter (Fig. 1), and (iii) an expectation

maximization (EM) procedure [39] that functions to find an

optimal set of parameters within the overall Bayesian model,

iterating between the BN and custom model until convergence. To

accurately predict gene expression, the model must be able to cope

with dynamic changes in the regulatory context of genes, which

determines their activity state at different stages of development

and in different tissues. To account for this, we trained the model

using spatio-temporal expression information of 5,082 non-

ubiquitous genes generated from large-scale in-situ hybridization

experiments [40], describing when and where genes are expressed

during embryogenesis. As a proof-of-principle we focused on five

temporal windows of development and five tissue classes (10

prediction classes; Supplementary text S1.).

In more detail, the first component, modeling CRM activity as a

function of TF binding events, was achieved using a BN, allowing

for accurate representation of conditional probability (Fig. 2a,

described in detail in Supplementary text S1 – in ‘‘Layer 1-TF

binding’’ and ‘‘Layer 2-CRM activity’’). The model uses measured

TF binding events on CRMs as input (from ChIP-chip data) and

spatio-temporal CRM activity data as output (from in vivo

transgenic-reporter assays) (depicted in Fig. 1a). The nodes within

the BN are of two types: specific TF binding events (factor-F at

time-point-T, representing 15 variables) and activity classes (tissue

or time-point, representing 10 variables). Each edge between

nodes represents the probability of a CRM being active in a given

activity class as a function of a particular binding event (e.g. CRM

activity in tissue-A depends on the binding of factor-F at time-

point-T). The correct topology of connections was reconstructed

using the Bayesian Dirichlet equivalence score as implemented in

the BNfinder software [41]. Once the most likely topology was

known, the conditional probabilities of CRM activity in different

classes (temporal and spatial) were calculated from the training

data using the maximum likelihood principle. The trained BN and

the conditional probability distributions were then used to provide

probability estimates for the spatio-temporal activity of all 8008

CRMs, not only the 147 used in the training dataset. Based on

these probability estimates, we compared the BN model with the

previously published SVM approach [5]. Overall, our model gives

slightly better predictions of previously unseen CRM activity (Fig.

S3b), even though it was not explicitly optimizing the accuracy at

the CRM level. In addition, unlike ‘black box’ type models such as

SVMs, the learned BN network topology provides interpretable

insights into the most important TF binding events for each spatio-

temporal activity. For example, the BN revealed that Biniou (a

FoxF TF) enhancer occupancy is the key predictive signal for

visceral muscle activity (Fig. 2a), which matches the known

essential role of this TFs for visceral muscle development from

genetic studies [2].

The second component of the Bayesian model addresses how

genes integrate probabilistic signals from one or many CRMs by

relating this information to known gene expression patterns within

the training set (described in detail in Supplementary text S1 –

‘‘Layer 3-gene activity’’). For each gene, we consider the location

of its transcriptional start site (TSS) and the CRMs present in its

broad environment (+/2100 kbp, where there is one gene per

,8 kb in the Drosophila genome). As the majority of known

Drosophila enhancers are located within +/220 kb of their target

gene’s promoter, the probability of activation decreases linearly

with respect to the distance from the TSS. The only parameter

that the model fits is the maximal distance between a CRM and

the TSS within a +/2100 kbp window. To facilitate linking

CRMs to their appropriate target gene, the model integrates

information on the occupancy of six insulator binding proteins

[42] relative to the location of CRMs and surrounding genes

(Fig. 1a). As insulator proteins can block enhancers from

inappropriately activating nearby promoters [43], CRM-promoter

interactions are considered blocked if they operate across an

insulator boundary (see Methods). To obtain a probability for a

promoter being in an active or inactive state, we used the presence

of H3K4-trimethylation ChIP-seq signal at promoters as an

indicator of promoter activity [44] (Fig. 1a, Fig. S1, methods). The

model requires both an active promoter and at least one active

CRM to activate a gene in a given spatio-temporal context. The

classifier accuracy was determined using the area under a receiver-

operator curve (AUC) for varying posterior probabilities of gene

activation. To train the model for tissue specific or developmental

stage specific chromatin context, we used in-situ hybridization data

of 5082 genes [40] to identify genes in specific spatio-temporal

classes. For simplicity, expression patterns were divided into a

number of binary classes: focusing on 5 tissue classes (mesoderm,

somatic muscle, visceral muscle, mesoderm+somatic muscle and

visceral+somatic muscle) and 5 time-windows (stages 4–6, 7–8, 9–

10, 11–12, 13–16, spanning ,85% of embryonic development).

Separate variables were incorporated for a gene or CRM activity

The model consists of two major components joined through iteration of the EM algorithm: A Bayesian network that uses TF occupancy data (ChIP)
and TF activity data (from transgenic reporter assays) to model CRM activity (an exemplary network topology that was a result of an optimization run
is shown in a separate panel); a probabilistic model that uses insulator occupancy, promoter activity, CRM occupancy and estimates of CRM activity to
model spatio-temporal gene expression. Separate panel includes all data used for an exemplary locus containing Tinman and Bagpipe genes. It is an
interesting case as both genes are expressed in different times and sub-tissues originating from the mesoderm. In essence, the model estimates the
probability of a gene’s activity as a function of all data between the two insulator elements (green Chip signal in the inlay panel). An expectation
maximization step (EM) is used to iteratively improve both the BN topology, CRM activity predictions, maximum CRM-gene distance (dmax), and the
gene expression predictions until a local maximum of the likelihood is reached.
doi:10.1371/journal.pcbi.1002798.g001

Predicting Spatio-Temporal Gene Expression
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in each class, allowing each class to be evaluated individually using

the probability of a gene to be expressed in a particular spatial or

temporal domain.

The coupling between the two mentioned components of the

model is through the intermediate layer representing the activity of

the CRMs (Supplementary text S1 ‘‘Integrating the different layers

of the model using iterative optimization’’). Since the activity of the

vast majority of the ChIP-defined CRMs is unknown, the variables

in the intermediate layer are latent. Under this setting, an iterative

Expectation maximization (EM) [39] procedure was used to

facilitate using data of varying degrees of completeness at different

levels of the model. The TF binding data is very extensive for all

8008 CRMs (at least within the scope of the five TFs), as is the

insulator occupancy and promoter activity data, although the later

two represent merged signals from mixed tissue types and have

very low temporal resolution. Spatio-temporal expression data is

available for a substantial number of genes (,33% of predicted

Drosophila genes), which contrasts with the scarcity of knowledge on

CRM activity, which is available for only ,4% of CRMs. This

level of CRM activity data is sufficient to train a predictive model

of CRM activity, using a BN (Fig. 2a) or SVM [5] approach.

However, there is not a single gene in the Drosophila genome where

the activity of all ChIP-defined CRMs in its vicinity are known. As

such, there are no complete examples that could be used to fit a

model representing convergence of multiple CRM activities to a

single gene’s expression. To address this, the activity of CRMs was

consistently treated as a hidden variable in the model, and the

CRM activity information was only used for model initialization.

EM was used to iteratively improve both the CRM activity

predictions and gene expression predictions (see methods and

Fig. 1b), resulting in an effective model with local maximal

likelihood.

By performing the EM procedure in a 10-fold cross-validation

framework, we assessed the ability of the model to predict gene

expression for genes not used for training. The average AUC value

for all 10 prediction classes exceeds 0.8 (Fig. S4), a significant

improvement over the simple additive SVM method (p-val-

ue,1027; Fig. S3a). Importantly, the cross-validation estimated

performance is comparable to that of the model trained on the full

dataset (Fig. S5), indicating that the model is not over-fitted. The

difference in AUC slightly underestimates the improvement of the

model as it is based on predictions made for all genes, while only a

minority of Drosophila genes are expected to be specifically

expressed in each activity class and the majority of genes are

correctly predicted not to be regulated by mesodermal CRMs. For

example, from all 5082 Drosophila genes with characterized non-

ubiquitous expression, only 137 have annotated expression in the

activity class somatic muscle, 135 in mesoderm and 60 in VM

[40]. Extrapolating these numbers to the entire genome estimates

that the percentage of genes expressed in each activity class is in

the range of 1–2%, excluding ubiquitously expressed genes. With

this in mind, we examined the top 2% of predictions from the

trained Bayesian model, which identified on average a 15-fold

enrichment in gene expression in the predicted tissue compared to

a random classifier, for all activity classes, with the best class

having a 45-fold enrichments (Fig. 2b).

To investigate the most important aspects of the model’s

predictions, we compared the results to simpler approaches that

do not use either chromatin state (insulator binding data or

H3K4me3) or an EM procedure, all of which obtained inferior

results (Fig. 2b, Fig. S6). Adding H3K4me3 promoter activity

signal to TF binding, for example, reduces the number of false-

positive predictions by 1.5 fold, thereby increasing the enrich-

ment of correct predictions (Fig. 2b). The method also

Figure 2. An iterative Bayesian model can accurately predict gene expression. (a) The learned Bayesian network topology reveals
regulatory relationships between transcription factors (TFs) and specific tissues. Each node in the network represents TF occupancy data (TF-f and
time-T) or a specific activity class (tissue or time-period). The edges represent the probability of a CRM being active as a function of a particular
binding event, with darker blue lines having the highest probability. Predicted activity in Meso class is dependent on Twist (Twi) binding to a CRM at
2–4 hr, while VM activity depends on Biniou (Bin) occupancy at two time-points. Meso = unspecified mesoderm, VM = visceral muscle, SM = somatic
muscle. (b) Histogram showing average enrichment of correct predictions within the top 2% of genes with highest posterior probability from all 10
activity classes, where a 15-fold enrichment is obtained using the iterative trained model including all datasets. This enrichment steadily decreases as
one or more datasets are removed, going form a 9-fold enrichment when omitting insulator binding and H3K4me3 activity data (TF+EM), ,6-fold
enrichment when TF binding is used with either insulator or H3K4me3 data without the iterative EM procedure, to an ,3-fold enrichment when TF
binding data or histone marks alone are used. (c) Validation of the cross-validated model using in-situ hybridzation data for 600 genes not included in
the training set. The average area under the curve (AUC) for all 10 classes ranges from 0.82 (training) to 0.78 (new data).
doi:10.1371/journal.pcbi.1002798.g002

Predicting Spatio-Temporal Gene Expression

PLOS Computational Biology | www.ploscompbiol.org 5 December 2012 | Volume 8 | Issue 12 | e1002798



demonstrates improved performance over a simpler two-layer

model predicting gene expression directly from ChIP peaks,

skipping the intermediate CRM layer [45] (Fig. S7, Methods).

Although this 2-layer model is not accurate enough to make

reliable predictions, the approach can be very valuable for

initiation of the EM algorithm in cases where there is no CRM

activity database available. In many organisms obtaining

information on CRM activity for a large number of regulator

elements is difficult. We therefore tested whether our approach

could provide comparable results without providing the measured

activity of selected CRMs. To avoid random fluctuations we have

used the gene expression data for genes with very closely

(,500 bp) associated CRMs as a proxy for enhancer activity.

While this is certainly introducing some erroneous information by

both erroneous target assignment and by assigning total gene

activity to only one selected enhancer, it seems to give only

slightly worse results for classes with multiple genes associated to

it (VM, SM, MESO, see Fig. S10).

To validate the true performance of the model we took

advantage of spatio-temporal expression data for more than 600

genes not included in our training set that was part of the third

release of the Berkeley Drosophila Genome Project (BDGP) in-situ

database [40]. We used models trained on the whole training

dataset and assessed their performance on the genes present only

in the new dataset by calculating the AUC for each activity class

(Fig. S8). The performance was comparable to the cross-validated-

based estimates, with the average AUC of 0.78 (compared to 0.82;

Fig. 2c). To further validate the quality of the trained model, we

chose a tissue with a relatively restricted spatial expression, the

visceral muscle (Fig. 3a, AUC 0.87), and manually curated the top

100 genes predicted to be expressed in this tissue (VM). Examining

the literature and BDGP, we identified spatio-temporal expression

for 46 of the 100 genes, 67% of which are expressed in visceral

muscle, while the expression of the remaining 33% did not fit with

our prediction (Dataset S8). We randomly selected 22 genes for

which there was either no expression data available, or were

apparent prediction errors from the model (within the 33%).

Double fluorescent in-situ hybridization using a visceral muscle

specific marker revealed that the timing of expression of 21 out of

22 genes match their temporal prediction (95%), while the

expression of 50% match their spatial prediction (Fig. 3c, Fig.

S9), representing a 42-fold enrichment in gene expression in

visceral muscle compared to the 1.2% of genes annotated in the

BDGP database (Fig. 3b). The high success rate of the model,

despite the presence of inaccurate expression annotations within

the training dataset, demonstrates the general robustness of this

iterative approach.

Discussion

This study represents a first attempt to build an integrative

probabilistic genome-wide model that predicts both the spatial and

temporal aspects of gene expression, within the context of a

multicellular embryo. The Bayesian model integrates diverse types

of genomics data, including transcription factor occupancy,

chromatin modification and insulator binding information, using

in vivo CRM activity information and gene expression data to train

the model. In addition to predicting gene expression, introspection

of the model’s parameters reveals a number of additional insights.

First, the iterative trained Bayesian network improved the

accuracy of the previously published SVM approach for CRM

and gene activity prediction [5] (Fig. S3), and recovered, without

any prior information, the known dependencies between specific

TFs and respective tissues. Second, through expectation-maximi-

zation, the model learns the optimal distance of a CRM to its

target gene. This revealed extensive long-range enhancer activity,

which may be much more widespread in Drosophila than previously

anticipated. Although there are a handful of known enhancers

acting .30 kb from their target gene [19,20], the majority of

CRMs identified to date are ,+/220 Kb of their target gene.

This apparent close proximity, however, most likely reflects the

current biases in how CRMs are identified in single gene studies,

starting from the gene moving out, or in global studies where

CRMs are typically linked to the closest proximal gene. The

iterative Bayesian model revealed that CRMs as far as 50 kbp

from the transcriptional start site have important contributions to

accurately predict a gene’s activity. Third, the model suggests that

enhancer sharing between genes may be an inherent property of

developmental enhancers where a CRM contributes to the

predictions of 3 genes on-average. This observation, which came

directly from the trained model, has recently been observed using

an experimental technique to link CRMs to genes (chromatin

conformation capture) [12], and has exciting implications for how

transcriptional networks are regulated during development.

Taken together, this approach provides a method to move from

descriptive ‘omics’ type data to predictive models of gene

expression. Given the exponential increase in measurements of

chromatin state and TF occupancy in the coming years, we expect

this type of iterative analyses to become increasingly useful as a

complement to ongoing attempts to map global gene expression

patterns by experimental approaches and as a tool to uncover

novel properties of transcriptional regulation.

Methods

Data material
CRM occupancy data and CAD database were used as

published by Zinzen et al. [5]. Gene expression patterns were

obtained from the BDGP in-situ hybridization database [46] -

release 2 served as the training data, while release 3 (beta release

downloaded on May 27th 2010) was used as the testing dataset.

Only genes with tissue specific expression (excluding ubiquitous

and maternal expression) were analyzed. Anatomical terms from

BDGP were grouped into more general classes (mesoderm,

somatic muscle, visceral mesoderm), similarly to the procedure

used by Zinzen et al. [5]. Temporal classes were based on the

staged groups used by the BDGP in their annotations (st.4–6, 7–8,

9–10,11–12,13–16). Whole embryo ChIP-seq data of histone

H3K4 tri-methylation was from ModEncode [47] for three time-

points: 4–8 h, 8–12 h and 12–16 h (ModEncode sample IDs:790,

791, 792). Averaged processed signal was calculated for a region

surrounding all transcriptional start sites (2100,+400 bp from

TSS) and then discretized into low and high values (threshold 0.3)

for training the Bayesian network. Whole embryo ChIP-chip data

for the six insulator proteins was obtained from Negre et al. [42]

(using a 1% FDR).

The model structure
The Bayesian model is composed of three main layers of

different nature. The first layer represents variables corresponding

to Transcription Factor binding to CRMs; second represents the

CRMs activity under different conditions and the third is

concerned with gene activity under the same set of conditions.

We made the assumption that the only True causal connections

are either coming from the first to second layer (TF binding

causing CRM activity) or from the second to third layer (CRM to

gene activity). No direct dependencies from first to third layer are

allowed. A Bayesian Network was used to model the dependency
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between binding and CRM activity, while gene expression was

assumed to be independently initiated by any active CRM within

an acceptable range.

Predicting CRM activity using a Bayesian Network
Bipartite Bayesian network was used to describe dependencies

between TF binding and CRM activity. For each CRM, a

quantitative binding score was computed for each of 15 TF/stage

combinations (as previously described [48]) representing quanti-

tative measurements for actual binary events of TF binding

(Dataset S1). Each expression class (temporal or spatial) was

represented by a separate binary variable. There were 5 temporal

classes, representing stages 4–6, 7–8, 9–10, 11–12 and 13–16,

following the BDGP nomenclature and 5 tissue-specific classes

mesoderm (MESO), somatic muscle (SM), visceral muscle (VM),

mesoderm and SM (MESO+SM), somatic and visceral muscle

(SM+VM). Edges in the network represent dependencies of the

conditional probability function of the variable corresponding to

the CRM being active in a given condition on any variables

representing TF binding events. Measured binding and activity for

each CRM were considered to be a single observation from the

same underlying joint distribution and they were used to find an

optimal network. The network structure was constrained to only

contain edges of this kind and probability distributions were

optimized using BNfinder [24] software using Bayesian Dirichlet

equivalence (BDe) score. No constraints on the resulting cpd

function were set, however the binding signal was converted by the

BNfinder software to probabilistic readouts of binary variable

using a Gaussian mixture model. For detailed parameters used see

Supplementary Text S1.

Integrating CRM activity and chromatin data
All distances between a CRM and a transcriptional start site of a

gene that were lower than 100 kb were tabulated based on FlyBase

genome annotations, version 5.17 [49] (Dataset S2). For each

CRM-promoter pair, the total number of insulator peaks was

calculated in between them. Each gene is assumed to be able to

respond to the activation signal from any of the paired CRMs,

depending on the distance and the number of insulator peaks

between them. It is assumed that the probability of activation by a

CRM over a given distance d is linearly decreasing with d until it

reaches 0 at the distance dmax or when the predefined limit of

insulator peaks have been exceeded. Each promoter is assigned a

probability of being activated in development based on the histone

modification (H3K4me3) level measured within the 500 bp

around the TSS, using non tissue-specific data (Dataset S4). For

details see Supplementary text S1.

Integrating different layers of the model using
Expectation Maximization algorithm

The majority of CRMs (.95%) have unknown activity, so we

treat all variables corresponding to CRM activity as latent and use

a maximum likelihood principle to estimate them.

We define the likelihood function L

L~ P
j[Pos

Gj
: P

j[Neg
(1{Gj)~ P

j[Pos
Rj
: 1{ P

i[sj

(1{AiWij)

 !
:

P
j[Neg

(1{Rj)zRj
: P

i[sj

(1{AiWij)

where G represents gene activity, i indexes CRMs, j indexes genes,

Ai represents activity of the i-th CRM, Wij represents the weight of

CRM-promoter interaction (depending on distance and insulators,

as described earlier) and Rj representing the probability of a given

promoter responding under specific conditions. Given this

likelihood function we aim to find the most likely parameters of

the model, i.e. the Bayesian Network and the optimal dmax. We

use the Expectation Maximization (EM) strategy, by iteratively

improving our current estimate of the parameters. Since the EM is

a local optimization strategy, the result is highly dependent on the

starting model. Normally this can be solved by starting from

multiple randomized models, however in our case properly

sampling a space of all Bayesian Networks would be difficult

and likely to produce non-biological models. Instead we begin by

initializing the BN parameters based on known CRM activity data

(CAD [5]) by making the first inference not on the full training

dataset but on the subset of the training set with experimentally

measured tissue-specific activity. The dmax parameter could also

have a strong impact in the initial stage of EM if it is set too low

and therefore excludes some CRM data from the whole learning

process. For this reason we initially set dmax to the maximum

possible value and allow it to change freely from then on. The EM

procedure is composed of alternating iteration of the expectation

(E-step) and maximization (M-step) steps until convergence

(improvement in the likelihood below 2%).

In the E-step, we calculate estimated probability of each CRM

being active in each condition based on our current model

parameters (BN and dmax). Since the model has three layers and

we are interested in the estimation of the hidden variables from the

middle one, we use an approach based on the forward-backward

algorithm frequently used to infer the probabilities of the hidden

variables in Hidden Markov Models [7]. In our case, the forward

probability is the probability of the CRM being active given the

TF binding data, and can be easily computed using the BN for all

CRMs. The backward probability is the probability of the CRM

being active given the gene expression data. We can ignore all

genes j such that wij = 0 as the change of the i-th CRM activity will

not affect the total likelihood. For each CRM we need to consider

all genes with wij.0 and the CRM can only be inactive if each of

the genes in its range is turned on by another CRM, which, by

assumption of independent action of CRMs, can be computed

using Bayes theorem and total probability. The overall activity of

each CRM is determined by a smoothing step as the product of

the respective forward and backward probabilities.

In the M-step, current estimates of CRM activity (the latent

variables) are used for finding the model parameters (BN and dmax)

Figure 3. Validating spatio-temporal expression predictions in the visceral muscle. (a) Receiver Operator Curves (ROC) for the activity class
visceral muscle (VM). The area under the curve (AUC) is 0.87 for the full iterative model using all data (TF+ALL), which becomes progressively lower for
simpler models that either do not include chromatin data (TF+EM), or do not include the EM step (TF+His, TF+Ins). (b) Enrichment of correct
predictions in the top (2%) of genes for different models and validation data. Blue bars present performance of different models using the training
data for the visceral muscle activity class (VM). Red bars show analagous enrichment for the in-situ validated examples as well as for the top 100
predictions of genes expressed in VM, which were manually annotated based on the literature. (c) Embryo images showing double fluorescent in-situ
hybridization against the gene with predicted expression (red) and a specific marker for VM (green, biniou), where overlapping gene expression in VM
is shown in the merge panel. The white arrow points to the VM. All embryos are orientation with anterior to the left and dorsal up. In-situ data for all
22 genes tested are shown in Fig. S9.
doi:10.1371/journal.pcbi.1002798.g003
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maximizing the likelihood function L. For the BN, we are using

the Bayesian Dirichlet equivalence optimization implemented in

the BNfinder [24] library. Due to the constrained structure of the

BN, it is possible to find a globally optimal network representing

observed combinations of binding and activity very efficiently. As

the likelihood function is not monotonous with respect to dmax we

employed an exhaustive strategy to find the optimal dmax giving

the maximum likelihood under assumed CRM activity and gene

expression. This can be done quite efficiently with a step size of

200 bp, equal to the minimal size of the CRM.

The process was repeated until convergence; in the tested cases

,10 iterations were required to reach improvement in one step

below 2%. For a more detailed description see Supplementary

text S1.

Measuring predictive performance
For each expression class (temporal or spatial) the posterior

probability calculated from the model was used as the ranking

criteria to calculate the area under the curve (AUC) for the

receiver operator characteristic (ROC) curve. The AUC value can

be interpreted as the probability of a random positive example to

have a higher posterior probability of expression than a random

negative example. To assess the significance of the achieved AUC

measures in comparison to random classifier or in comparison

between different models we used the procedure proposed by

Hanley and McNeil [50]. To avoid over-fitting, all models were

trained in a 10-fold cross-validation scheme based on BDGP gene

expression database release 2. Then the entire BDGP release 2

dataset was used for training the final models (Dataset S5), which

were then tested on the gene expression patterns from BDGP

release 3 (Dataset S6), excluding those from the training set. The

same models were used to select genes from the visceral muscle

activity class for validation by in-situ hybridization experiments. All

training sets are available in Dataset S7.

Software availability
The EM algorithm was implemented in Python using the

BNfinder [24] library for estimating Bayesian networks, ROC

curves were plotted with ROCR [51] package for R. All the

scripts are available at https://code.launchpad.net/bnfinder/

GEpredict

In-situ hybridizations in Drosophila embryos were carried out

using standard protocols as described previously [52]. The

following ESTs from the Drosophila Gene Collection (DGC) were

used to generate Digoxigenin-labeled probes: GM02640 (Eip75B),

LD09907 (Hex-A), RE05370 (CG9194), GM10074 (bt), AT24194

(Rya-r44f), LP05734 (Hsp22), GH06348 (CG1516), RH17388

(CG10654), GH24653 (A3-3), SD01953 (by), LP03829 (CG6981),

GH27027 (Ncc69), SD11716 (CG14709), HL01392 (fau), LP06027

(Cpr78E), GH06222 (CG13124), LD02379 (nrv1), RE70568 (Lim3),

LD44720 (CG7530), GH23506 (CG14655), LP04481 (CG6770),

GH19382 (CG4945). biniou cDNAs (from M. Frasch) was used to

generate Biotin-labeled probe. Double in-situs hybridizations were

performed by using anti-Digoxigenin-POD and anti-Biotin-POD

antibodies (Roche) and detected sequentially with FITC and Cy3

(Perkin-Elmer TSA kit). A Zeiss LSM 510 confocal microscope

was used for imaging.

Supporting Information

Dataset S1 Quantitative TF occupancy for 8008 CRMs
and 15 different ChIP experiments.

(XLS)

Dataset S2 Distances (,100 000) between transcription-
al start sites of 14689 genes and all 8008 CRMs including
count of insulator peaks in-between them.

(XLS)

Dataset S3 CRM activity from CAD database in spatial
(a) and temporal (b) classes.

(XLS)

Dataset S4 Promoter activity estimates based on his-
tone H3K4 tri-methylation from mod-encode for spatial
(a) and temporal (b) expression classes.

(XLS)

Dataset S5 Gene activity, based on in-situ annotations,
for spatial (a) and temporal (b) classes – training data.

(XLS)

Dataset S6 New annotations of gene activity based on
BDGP release 3 (2010). In spatial (a) and temporal (b)
classes.

(XLS)

Dataset S7 Predictions for all genes and all classes
made by the full model trained with the EM procedure.

(XLS)

Dataset S8 Manually curated annotations for top 100
VM predictions.

(XLS)

Figure S1 Examples showing the general complexity of
gene loci and the difficulty in linking CRMs to their
appropriate target gene. Genomic regions for tinman+bag-

pipe (a), CG6981 (b) and Fas3 (c). Depicted tracks represent, from

top to bottom: Transcription factor binding (ChIP signal shown

for one of 15 developmental conditions in blue), CP190 insulator

binding (ChIP signal shown for one of 6 factors in red), Histone

H3 K4 tri-methylation for a selected time-point (orange). ChIP

defined mesodermal CRM locations are indicated by blue

rectangles and gene models from refseq are indicated in black.

All loci contain inactive genes (no histone mark) very close to

bound CRMs. These ‘bystander’ genes are often surrounded by

CRMs from neighboring genes (a), can contain an active

gene within their own intron (b) or are in an intron of an active

gene (c).

(TIFF)

Figure S2 Predicting gene expression based on a simple
additive model summing multiple CRM activities in the
vicinity of the closest gene. Predicting gene expression based

on an SVM model optimized for CRM activity (Zinzen et al.

(2009)). The SVM provides numerical classification for all CRMs

in 5 classes. Each CRM was assigned to the closest gene. For each

gene, the sum of prediction values of all assigned CRMs represents

the prediction value for the gene for each activity class. The results

are presented as Receiver operator curves (ROC) for all 5

expression classes published by Zinzen et al. The area under the

curve (AUC) is given for each class. Meso_only = genes with

expression in unspecified mesoderm, but not in derived muscle

tissue; SM_only = genes with expression in the somatic muscle, but

not in the mesoderm or other muscle tissues; VM_only = genes

with expression in visceral muscle and not in the mesoderm or

other muscle tissues; VM_SM = genes with expression in both the

visceral muscle and somatic muscle, and not in the early

mesoderm; meso_SM = genes with expression in the early

mesoderm and somatic muscle, and not in visceral muscle.

(TIFF)
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Figure S3 Comparison of predictions by BNs and SVMs.
Performance comparison between SVM-based model and full

probabilistic model at the gene (a) and CRM (b) level. For all five

activity classes for which the SVM model was trained by Zinzen et

al, we provide a gene-based AUC value for SVM ((a), blue bars)

and the proposed model ((a), red bars). Panel (b) shows the

overlaid ROC curves for the SVM model (yellow-green-blue

curve) and the Bayesian network (red curve) resulting from the

iterative learning procedure. Even though the Bayesian model was

not explicitly optimizing performance of CRM predictions, it

provides comparable results (b). For gene activity predictions (a),

the BN model clearly outperforms the SVM.

(TIFF)

Figure S4 Performance of the gene expression predic-
tion using the full iterative probabilistic model. Perfor-

mance of the full model for each class is represented by a ROC

curve. Corresponding activity class and the area under the curve

(AUC) is presented in the title for each graph. Color coding (y-axis)

represents the posterior probabilities of activity estimated by the

model, ranging from red (most probable) to blue (least probable).

13 activity classes were examined. 8 spatial classes: meso, SM,

VM, meso_only, SM_only, VM_only, meso_SM, VM_SM and 5

temporal classes: developmental stages 4–6, stages 7–8, stages9–

10, stages 11–12, stages 13–16. Meso = mesoderm; SM = somatic

muscle; VM = visceral muscle; Meso_only = genes with expression

in unspecified mesoderm, but not in derived muscle tissue;

SM_only = genes with expression in the somatic muscle, but not

in the mesoderm or other muscle tissues; VM_only = genes with

expression in visceral muscle and not in the mesoderm or other

muscle tissues.

(TIFF)

Figure S5 Performance comparison between cross-
validated and full model. ROC curves corresponding to each

of 10 cross-validations (grey), their average (black) and the ROC

curve corresponding to non-cross-validated data (blue). The

performance of non-cross-validated model does not differ

significantly from the average of cross-validated models suggesting

that the non-cross-validated model is not overfitting.

(TIFF)

Figure S6 Performance comparison with simpler mod-
els. Average performance, as measured by average AUC for all

activity classes, is shown for the full model (TF+INS+HIST+EM)

in comparison with different simplified versions, SVM-based

additive model using the closest gene and a random classifier.

TF = transcription factor occupancy; INS = insulator binding;

HIST = histone modification (H3K4me3) marking active promot-

ers; EM = expectation maximization used for the iterative full

model.

(TIFF)

Figure S7 Gene expression prediction using a 2-layer
model. ROC curves describing performance of a 2-layer model

(black lines) computing the probability of gene activity based on a

Bayesian Network mapping TF binding data directly to gene

expression (without the intermediate CRM activity layer). Blue

and black plots correspond to the predictions made with the full

and 2-layer model, respectively.

(TIFF)

Figure S8 Validation using expression data for 600 new
genes. Comparison of AUC measures of predictions from the

model trained on BDGP 2007 as measured on the training set

(blue) and the new genes, annotated in BDGP 2010 that were not

present in the training set. Classes containing less than 5 genes in

the validation positive set were removed. The remaining classes

are meso = mesoderm; sm = somatic muscle; vm = visceral muscle;

meso_only = genes with expression in unspecified mesoderm, but

not in derived muscle tissue; developmental stages 7–8; stages 9–

10; stages 11–12 and stages 13–16.

(TIFF)

Figure S9 Validating spatio-temporal expression pre-
dictions in the visceral muscle. Embryo images showing

double fluorescent in-situ hybridization against the gene with

predicted visceral muscle (VM) expression (red) and a specific

marker for VM (green), where overlapping gene expression in VM

is shown in the merge panel. The 11 genes in panel (a) are expressed

in VM, indicated by the white arrows. While the genes in panel (b)

are not expressed in VM, they are expressed at the predicted stages

of development and are typically expressed in a VM related tissue

(e.g. the midgut in the case of CG6981 and CG6770). All embryos

are orientation with anterior to the left and dorsal up.

(TIFF)

Figure S10 Performance of the model without the
initially supplied CRM activity data. For each of the three

largest tissue-specific expression classes the model was initialized

with CRM activity based on the nearest gene expression data

supplied instead of the actual CRM activity. Grey lines represent

the ROC curves for all 10 folds in the cross-validation scheme, the

color line represents the performance of the model trained from all

data. Area under the curve is reported for the full model. For

comparison of these AUCs with the cross-validated three-layer

optimized model (Supple Fig. S4) is as follows: Optimized model-

Meso AUC = 0.819; optimized model-SM AUC = 0.797; opti-

mized model-VM AUC = 0.878.

(TIFF)

Figure S11 Number of CRMs per gene (A) and number
of genes per CRM (B) plotted as a function of maximum
distance of target gene assignment. The plots show the

average number of CRMs per gene (A) or genes per CRM (B)

plotted as a function of the maximum distance used in the gene-

CRM assignment function. Depending on whether insulator peaks

are used to limit the number of assignments, either a linear growth

of the number of assignments (no insulators) or a saturation at

distances above 50 kbp are obtained. It should be noted that when

using insulator data, there is no need to search further than

approximately 50 kbp as virtually all CRMs beyond this point are

already insulated from their potential targets, i.e. the weight of

their activity influence on the gene’s expression (wij) is equal 0.

(TIFF)

Table S1 List of all used datasets with references.
(XLS)

Text S1 Supplementary Methods. The Model: The text

describes a general overview of the layered structure of the model,

followed by a detailed description of the three layers (layer 1-TF

binding, layer 2-CRM activity, layer 3- gene activity. This is

followed by a description of how these three layers are integrated

using iterative optimization. A simplified model: The text describes

the implementation and performance of a two-layer model (without

known CRM activity data). The final section of the supplementary

methods describes the statistical analysis of Gene-CRM assignment.

(DOC)
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modification levels are predictive for gene expression. Proceedings of the
National Academy of Sciences 107: 2926.

15. Spitz F, Gonzalez F, Duboule D (2003) A global control region defines a

chromosomal regulatory landscape containing the HoxD cluster. Cell 113: 405–
417.

16. Sagai T, Hosoya M, Mizushina Y, Tamura M, Shiroishi T (2005) Elimination of
a long-range cis-regulatory module causes complete loss of limb-specific Shh

expression and truncation of the mouse limb. Development 132: 797–803.
17. Wunderle VM, Critcher R, Hastie N, Goodfellow PN, Schedl A (1998) Deletion

of long-range regulatory elements upstream of SOX9 causes campomelic

dysplasia. Proc Natl Acad Sci U S A 95: 10649–10654.
18. Jack J, DeLotto Y (1995) Structure and regulation of a complex locus: the cut

gene of Drosophila. Genetics 139: 1689–1700.
19. Cleard F, Moshkin Y, Karch F, Maeda RK (2006) Probing long-distance

regulatory interactions in the Drosophila melanogaster bithorax complex using

Dam identification. Nat Genet 38: 931–935.
20. Kwon D, Mucci D, Langlais KK, Americo JL, DeVido SK, et al. (2009)

Enhancer-promoter communication at the Drosophila engrailed locus. Devel-
opment 136: 3067–3075.

21. Splinter E, de Laat W (2011) The complex transcription regulatory landscape of
our genome: control in three dimensions. EMBO J 30: 4345–4355.

22. Hong JW, Hendrix DA, Levine MS (2008) Shadow enhancers as a source of

evolutionary novelty. Science 321: 1314.
23. Barolo S (2011) Shadow enhancers: Frequently asked questions about distributed

cis-regulatory information and enhancer redundancy. BioEssays 34: 135–141.
24. Prazak L, Fujioka M, Gergen JP (2010) Non-additive interactions involving two

distinct elements mediate sloppy-paired regulation by pair-rule transcription

factors. Dev Biol 344: 1048–1059.
25. Janssens H, Hou S, Jaeger J, Kim A-R, Myasnikova E, et al. (2006) Quantitative

and predictive model of transcriptional control of the Drosophila melanogaster
even skipped gene. Nat Genet 38: 1159–1165.

26. Sandmann T, Girardot C, Brehme M, Tongprasit W, Stolc V, et al. (2007) A

core transcriptional network for early mesoderm development in Drosophila
melanogaster. Genes & Development 21: 436.

27. Jakobsen JS, Braun M, Astorga J, Gustafson EH, Sandmann T, et al. (2007)

Temporal ChIP-on-chip reveals Biniou as a universal regulator of the visceral

muscle transcriptional network. Genes & Development 21: 2448.

28. Li X-y, MacArthur S, Bourgon R, Nix D, Pollard DA, et al. (2008)

Transcription Factors Bind Thousands of Active and Inactive Regions in the

Drosophila Blastoderm. PLoS Biology 6: e27 EP.

29. MacArthur S, Li X-Y, Li J, Brown J, Chu HC, et al. (2009) Developmental roles

of 21 Drosophila transcription factors are determined by quantitative differences

in binding to an overlapping set of thousands of genomic regions. Genome

Biology 10: R80.

30. Sandmann T, Jensen LJ, Jakobsen JS, Karzynski MM, Eichenlaub MP, et al.

(2006) A Temporal Map of Transcription Factor Activity: Mef2 Directly

Regulates Target Genes at All Stages of Muscle Development. Developmental

Cell 10: 797–807.

31. Zinzen R, Furlong E (2008) Divergence in cis-regulatory networks: taking the

‘species’ out of cross-species analysis. Genome Biology 9: 240–240.

32. Liu Y-H, Jakobsen JS, Valentin G, Amarantos I, Gilmour DT, et al. (2009) A

Systematic Analysis of Tinman Function Reveals Eya and JAK-STAT Signaling

as Essential Regulators of Muscle Development. Developmental Cell 16: 280–

291.

33. Visel A, Blow MJ, Li Z, Zhang T, Akiyama JA, et al. (2009) ChIP-seq accurately

predicts tissue-specific activity of enhancers. Nature 457: 854–858.

34. Heintzman ND, Stuart RK, Hon G, Fu Y, Ching CW, et al. (2007) Distinct and

predictive chromatin signatures of transcriptional promoters and enhancers in

the human genome. Nat Genet 39: 311–318.

35. Visel A, Akiyama JA, Shoukry M, Afzal V, Rubin EM, et al. (2009) Functional

autonomy of distant-acting human enhancers. Genomics 93: 509–513.

36. He X, Sinha S (2010) ChIPs and regulatory bits. Nat Biotech 28: 142–143.

37. Engström PG, Sui SJH, Drivenes Ø, Becker TS, Lenhard B (2007) Genomic

regulatory blocks underlie extensive microsynteny conservation in insects.

Genome Research 17: 1898–1898.

38. Hoff M (2008) Loopy Chromatin Brings Distant DNA to Bear on Silencing

Promoter Genes. PLoS Biology 6: e313 EP -–e313 EP -.

39. McLachlan GJ, Krishnan T (2008) The EM Algorithm and Extensions. Wiley-

Interscience.

40. Tomancak P, Berman BP, Beaton A, Weiszmann R, Kwan E, et al. (2007)

Global analysis of patterns of gene expression during Drosophila embryogenesis.

Genome Biology 8: R145-R145-R145-R145.

41. Wilczynski B, Dojer N (2008) BNFinder: Exact and efficient method for learning

Bayesian networks. Bioinformatics: btn505-btn505.
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