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Abstract

Cellular metabolism continuously processes an enormous range of external compounds into endogenous metabolites and
is as such a key element in human physiology. The multifaceted physiological role of the metabolic network fulfilling the
catalytic conversions can only be fully understood from a whole-body perspective where the causal interplay of the
metabolic states of individual cells, the surrounding tissue and the whole organism are simultaneously considered. We here
present an approach relying on dynamic flux balance analysis that allows the integration of metabolic networks at the
cellular scale into standardized physiologically-based pharmacokinetic models at the whole-body level. To evaluate our
approach we integrated a genome-scale network reconstruction of a human hepatocyte into the liver tissue of a
physiologically-based pharmacokinetic model of a human adult. The resulting multiscale model was used to investigate
hyperuricemia therapy, ammonia detoxification and paracetamol-induced toxication at a systems level. The specific models
simultaneously integrate multiple layers of biological organization and offer mechanistic insights into pathology and
medication. The approach presented may in future support a mechanistic understanding in diagnostics and drug
development.
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Introduction

Human metabolism is an integral component of whole-body

physiology and its dysfunction plays a key role in many systemic

diseases. Frequent symptoms of metabolic diseases are changes in

exometabolism [1,2] which usually follow upstream alterations in

intracellular flux distributions [3]. In order to associate diagnostic

observations at the organism level accompanying specific diseases

with structural impairment at the cellular level, a mechanistic

understanding of genotype-phenotype correlations is essential

[3,4]. Adequate analytical methods for a systemic consideration of

the underlying processes are still missing. However, such multi-

scale approaches are necessary to understand the highly complex

and intertwined structure of biological networks and the interplay

with the surrounding organism [3,5,6].

In recent years, modeling approaches have been developed

describing biological processes at different levels of physiological

organization based on multiple, divergent mathematical formal-

isms [5,7,8,9]. At the whole-body level, physiologically-based

pharmacokinetic (PBPK) modeling quantitatively describes the

absorption, distribution, metabolization and excretion (ADME) of

endogenous and exogenous compounds within mammalian

organisms [10,11,12,13]. In contrast to classical pharmacokinetic

(PK)/pharmacodynamic (PD) modeling [14], PBPK models aim

for a mechanistic representation of ADME-related processes.

Structurally, PBPK models consist of compartmental representa-

tions of all relevant tissues and the vascular system. Most notably,

PBPK models are based on large amounts of prior anatomical and

physiological information as well as generic distribution models,

such that most model parameters can be either obtained from

database collections integrated in the modeling software or they

can be deduced from the physicochemistry of the compound

[15,16,17,18,19]. Hence, even though PBPK models contain more

than hundred ordinary differential equations and several hundred

variables, the number of independent parameters which need to

be adjusted during model development is small (usually less than

10, see also Materials and Methods). ADME-related processes can

automatically be quantified based on compound-deduced param-

eters allowing a detailed representation of mass transfer across

various tissue compartments. PBPK models have previously been

used for mechanistic analyses of drug pharmacokinetics [20],

pharmacogenomics [21], species extrapolation [22] or analysis of

rare adverse events [23].

For analyses at the cellular level, metabolic network recon-

structions are an important tool of bottom-up systems biology.

Cellular metabolism gathers a multitude of upstream regulatory

events onto the various layers of cellular organization such as the

transcriptome and metabolome representing an important angle

point in the physiology of an organism. Metabolic networks are

typically described by stoichiometric matrices and intracellular

flux distributions are inherent variables in such models. First

stoichiometric models on human metabolism at genome-scale
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encompassed generic collections of metabolic biochemistry in

human cells [24,25]. Recent models explicitly account for network

structure in specific tissues thereby enabling, for the first time, the

consideration of metabolic models within a specific context of

human physiology [4,26].

While metabolic network models are applicable to the

investigation of in vitro experiments with more or less well-defined

media conditions, they do not suffice for considerations of in vivo

metabolism, where the cell is embedded in the ever-changing

environment of the surrounding tissue and organism. Therefore,

human metabolism can only be fully understood by an integrative

analysis which simultaneously considers the whole-body context.

This allows in particular the quantification of cellular boundary

conditions and the interference with intracellular states and

processes. Several approaches for combining models covering

different levels of biological organization have been described

before [8,27,28]. With regard to metabolic networks, dynamic flux

balance analysis (dFBA) has been used to couple stoichiometric

models of metabolism with dynamic models of microbial batch

cultures and integrated omics networks [29,30,31].

We here apply dFBA to describe human metabolic networks

within the context of whole-body PBPK models (Figure S1 in Text

S1). The approach allows the representation of human metabolism

under simultaneous consideration of quantitative availability of

substances at the organism level (Figure 1 A). We exemplarily use

HepatoNet1 [26], a genome-scale model of human hepatic

metabolism to analyze specific responses of the network in the

face of time-dependent concentration profiles in liver tissue.

Following this approach we investigate three application examples

(Figure 1 B). First, we use a multiscale PK/PD model to analyze

the distribution and therapeutic effect of allopurinol in the

treatment of hyperuricemia. In a second example, we consider

the effect of impaired ammonia metabolism on blood plasma levels

to demonstrate the methods’ capability to identify biomarkers

specific for pathologic changes in the metabolic state [25,32,33].

Finally, we apply our approach to the analysis of paracetamol-

induced toxication on liver function.

Results

Model coupling
PBPK models describe the processes underlying the distribu-

tion of a compound within the body based on prior physiological

information and generic distribution models. Organs in PBPK

models are usually subdivided in further compartments such as

the vascular, interstitial and intracellular space [12,34]. The

basic differential equations within these compartments describe

uptake, secretion, formation and consumption of a particular

compound, representing overall mass balance equations [10]. In

contrast, stoichiometric models describe mechanisms within the

cell at a much finer spatial scale, providing a more detailed

insight in intracellular processes with a particular focus on

cellular biochemistry. Thus, the intuitive point of contact

between both model formalisms is the intracellular space, where

PBPK models quantitatively describe time-concentration profiles

of endogenous or exogenous compounds, which in turn

represent substrates or products of metabolic networks at the

molecular level.

In order to relate the distribution of endogenous and exogenous

compounds at the organism level to metabolic network structures

and thus to a specific enzymatic process at the cellular level, the

stoichiometric network was embedded in the dynamic whole-body

model by step-wise model discretization. To this end, functional

adaptation of metabolism, ultimately quantified by intracellular

flux distributions and extracellular exchange rates, can be assumed

to be fast in relation to the surrounding distribution processes at

the whole body scale. Consequently, flux distributions are kept

constant over each time interval [29,30,31]. In our case, the

chosen time interval was 1 step/min. Hence, for a specific

distribution of extracellular concentrations at a given point in time,

intracellular steady state (i.e. equilibrium) can be assumed, and

flux balance analysis (FBA) can be applied for the estimation of

flux distributions [31].

Following the rational of network validation as used in

HepatoNet1 [26] we here applied case-specific objectives such

as maximization of ammonia production or maximization of uric

acid production to quantify extracellular exchange rates with

regard to a specific set of boundary conditions. Notably,

intracellular flux distributions of biological relevance can hardly

be identified using these functional objectives since they rather

evaluate the macroscopic behavior of the cell. In contrast, the

underlying flux space is assessed qualitatively. In our approach, a

compound in the PBPK model can act either as a regulatory

modifier or as a substrate of an enzymatic reaction in the

metabolic network. We therefore considered two distinct ways of

coupling PBPK models and stoichiometric network models: (1)

indirect coupling, where concentrations of a compound in the

PBPK model impose a regulatory effect on enzyme activity which

is quantified at the cellular level (‘feed-forward’), thereby

restricting fluxes through this specific reaction and (2) direct

coupling, where perturbed metabolic processes (for instance

inhibited enzymes) iteratively affect availability of a substance in

the PBPK model by directly interfering the corresponding mass

balance (‘feed-back’). In both cases, the intracellular concentra-

tion of a compound constrains a metabolic state in the underlying

network structure [35]. This also influences further downstream

events, since the catabolic or anabolic products formed within the

intracellular metabolic network are again distributed at the whole

organism level. This centralized consideration of metabolism as a

core component in human physiology can be seen as an hourglass

or bow-tie scheme (Figure 1 A) [36,37]. In particular, enzymatic

blockage results in accumulation of the upstream substrate,

Author Summary

Cellular metabolism is a key element in human physiology.
Ideally the metabolic network needs to be considered
within the context of the surrounding tissue and organism
since the various levels of biological organization are
mutually influencing each other. To mechanistically
describe the interplay between intracellular space and
extracellular environment, we here integrate the genome-
scale metabolic network model HepatoNet1 at the cellular
scale into physiologically-based pharmacokinetic models
at the whole-body level. The resulting multiscale model
allows the quantitative description of metabolic behavior
in the context of time-resolved metabolite concentration
profiles in the body and the surrounding liver tissue. The
model has been applied to three case studies covering
fundamental aspects of medicine and pharmacology: drug
administration, biomarker identification and drug-induced
toxication. Most notably, our multiscale approach fosters
an improved quantitative understanding of drug action
and the impact of metabolic disorders at an organism
level, based on a genome-scale representation of cellular
metabolism. Computational models such as the one
presented include various aspects of human physiology
and may therefore significantly support rational approach-
es in medical diagnostics and pharmaceutical drug
development in the future.
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depletion of the downstream product and potential activation of

alternative pathways. Details for indirect and direct coupling will

be explained in the following.

Indirect coupling. Indirect coupling is used for the simula-

tion of regulatory modifications such as drug-induced inhibition of

metabolic enzymes (Equation 1, 2). In this case the inhibition of

the affected enzyme has no effect on the concentrations of the

acting drug. Thereby it is possible to describe the relative change

of enzymatic activity and thus the change in an intracellular flux in

the metabolic network as a consequence of time-resolved

intracellular drug concentrations in a specific kind of tissue.

Inhibitory rate laws as used for Michaelis-Menten kinetics are used

for constraining a specific intracellular flux:

v(t)~
Vmax

:S

SzKm
:(1z

I(t)

Ki

)

, ð1Þ

relE(t)~
v(t)

v0
: ð2Þ

Here, the concentration of the drug at a specific time point in the

PBPK model corresponds to the inhibitor concentration I(t). The

relative enzyme activity (relE(t)) is the time-resolved ratio of the

inhibited reaction rate v(t) and the uninfluenced reaction rate v0

(I = 0 mM). Next, relE(t) is used to quantify the effect of enzyme

inhibition in the metabolic network. The additional constraint for

the FBA step imposed on the specific flux in the metabolic network

is defined as:

vE(t)~vE(0):relE(t): ð3Þ

In equation 3, vE(t) corresponds to the flux through the affected

enzyme at each time step which is defined as the product of the

unperturbed flux vE(0) which is calculated by FBA and the relative

enzyme activity relE(t). Therefore, the set of constraints changes

over time such that the extracellular exchange rates identified with

FBA also evolve dynamically. This allows on the one hand

quantifying the effect of compound-induced extracellular pertur-

bations on metabolic states. On the other hand, time-resolved

exchange fluxes determined with FBA may interfere with the mass

balance of the PBPK model such that direct coupling needs to be

considered (see section below).

Direct coupling. Metabolic clearance and formation pro-

cesses are simulated by direct coupling since they directly interfere

with the mass balance of the PBPK model. Direct coupling

therefore describes the influence of active processes at the cellular

level on the distribution of compounds at the whole-body scale. To

this end, a feedback update loop is considered which consists of the

following steps (Figure 2): (1) The clearance and production rates

are first calculated by kinetic rate laws of the PBPK model. (2) The

rates are subsequently used as upper bounds for FBA to (3) identify

an intracellular flux distribution quantifying cellular exchange

rates. (4) These exchange rates are then used as clearance and

production rates in the PBPK model in order to integrate the next

time step. (5) This results in new concentration levels at the end of

the time-step, which are then again used to calculate the clearance

and production rates for the next iteration (1).

Figure 1. A bow-tie scheme illustrating the consideration of metabolic networks within a whole-body context. (A) Schematic
representation of the multiscale approach. PBPK models are used to quantitatively describe the tissue specific availability of exogenous and
endogenous compounds at the organism level. The PBPK models are coupled with stoichiometric networks by means of exchange rates calculated
with dFBA. Both consumption and formation of metabolites as well as regulatory effects can be simulated. (B) Possible fields of application,
illustrating the broad applicability of the approach, are (i) multiscale PK/PD modeling, (ii) quantitative identification of disease specific or
individualized biomarkers and (iii) analyses of drug-induced toxication.
doi:10.1371/journal.pcbi.1002750.g001
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While the exchange rates in the PBPK model and metabolic

network are identical for the metabolic reference state, these rates

will differ if internal and external network perturbations are

imposed. Without any impairment of enzyme reactions in the

metabolic network, the clearance or production rates calculated by

FBA will reach the upper bound (step 2). In this case, the rates of

the coupled model are identical to those of the PBPK model alone.

In contrast, the rates calculated by FBA will decrease if for

instance enzyme activities are impaired due to restricted

functionality or structural network errors (Equation 3). Conse-

quently the rates of the coupled model are decreased and this

subsequently affects the concentrations at the whole-body scale

(step 4).

Allopurinol treatment
As a first example we analyzed drug action of allopurinol in the

treatment of hyperuricemia with a multiscale PK/PD model.

Purine metabolism provides a large number of drug targets [38,39]

with uric acid being the final downstream degradation product in

the human body. Quantitatively modeling the effect of drugs

affecting this crucial metabolic pathway therefore provides

valuable insights for drug development.

In clinical practice, high plasma levels of uric acid (above

470 mM) are referred to as hyperuricemia which may result from

inborn errors of purine metabolism and even more often from

impaired renal excretion of uric acid, which is considered in the

following. Hyperuricemia can lead to diseases like gout where uric

acid is deposited into tissues, especially in the joints [40]. A

currently used drug against hyperuricemia is the purine analog

allopurinol [41], which reduces production of uric acid by

inhibition of xanthine oxidase. This enzyme oxidizes hypoxan-

thine to xanthine and subsequently xanthine to uric acid [42].

Allopurinol itself is oxidized by xanthine oxidase to oxypurinol,

which also inhibits xanthine oxidase as an active metabolite

(Figure S2 in Text S1). Since metabolization of allopurinol to

oxypurinol is very fast, but excretion of oxypurinol is very slow,

oxypurinol plays a significant role in the inhibition of xanthine

oxidase [41].

To estimate the inhibitory concentration of allopurinol and its

active metabolite oxypurinol, a coupled PBPK model was

developed (see Materials and Methods). Experimentally measured

plasma concentrations following oral administration of 200 mg

allopurinol [43] were considered for identification and fine-tuning

of four physiological parameters describing the absorption and

clearance of both compounds as well as four physicochemical

parameters of allopurinol and oxypurinol (Section parameter

identification in Text S1, Table S1 in Text S1). Notably, these

parameters are distributed in the two independent PBPK models

which are coupled by the clearance reaction. Exemplarily, a

sensitivity analysis was performed to estimate the influence of each

parameter to the model (Figure S3 in Text S1). The resulting

coupled model simultaneously described the PK of allopurinol and

oxypurinol with excellent accuracy (Figure 3 A). Having estab-

lished a working model for single dosing of allopurinol, the PK of

multiple administrations was predicted in the next step (Figure 3

B). When simulating concentration profiles of allopurinol and

oxypurinol over a time range of 35 days it became obvious that

allopurinol is not accumulating in the human body but is always

completely degraded before the next application is given. In

contrast, oxypurinol can no longer be completely removed from

the body leading to mean oxypurinol concentrations of about

45 mM.

In the next step, a PBPK model for uric acid was created, which

allowed describing changes in uric acid concentration as a

mechanistic consequence of allopurinol inhibition in hepatic

purine metabolism (Table S2 in Text S1). The plasma concen-

Figure 2. Schematic representation of the feed-back loop used for direct coupling. Flux distributions calculated by FBA are used to adjust
clearance and production rates in the PBPK model. After simulating one time step in the PBPK model, new clearance rates constrain the next FBA
step.
doi:10.1371/journal.pcbi.1002750.g002
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tration of uric acid in healthy male individuals is around 302 mM

(male: 302660 mM, female: 234652 mM), while patients with

gout show much higher concentrations of approximately 480 mM

[44]. This physiological information was used to identify three

parameters for the steady state clearance and production rate of

uric acid in a whole-body model of a healthy as well as a gouty

Figure 3. Reduction of uric acid production following multiple allopurinol administrations. (A) Simulated venous plasma and
intrahepatic concentration profiles of allopurinol and oxypurinol are in agreement with experimental PK data [43]. (B) Prediction of venous plasma
and intrahepatic concentration profiles of allopurinol and oxypurinol after multiple dosing based on the single application model. (C) Relative
enzyme activity of xanthine oxidase (XO) following inhibition by a single dose of allopurinol. (D) Relative enzyme activity of XO following inhibition
by multiple administration of allopurinol. (E) Simulated venous plasma and intrahepatic concentration profiles of uric acid following a single dose of
allopurinol. (F) Simulated venous plasma and intrahepatic concentration profiles of uric acid following multiple dosing of allopurinol. Experimentally-
measured venous plasma concentrations quantifying the hyperuricemic state (*) and the healthy uricemic state (**) [48] after treatment with
allopurinol are indicated.
doi:10.1371/journal.pcbi.1002750.g003

Integration of Metabolism in a Whole-Body Context
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male individual (Table S2 in Text S1). An identical uric acid

production rate was assumed for both healthy and gouty

individuals, since impaired renal excretion is assumed to be the

physiological cause for hyperuricemia in the present case.

To finally couple the upstream distribution of allopurinol and

oxypurinol at the whole-body scale with the subsequent inhibitory

effect on xanthine oxidase in the hepatic metabolic network,

indirect coupling was used to simulate the PD effect of a single as

well as multiple allopurinol doses (Figure 3 C, D). Maximization of

uric acid production was considered as objective function, and the

resulting FBA problem was additionally constrained by drug-

induced enzymatic inhibition as well as the uric acid formation

rates estimated in the PBPK model. IC50 values of allopurinol

(13.4 mM [45]) and oxypurinol (15.6 mM [46]) were used to

estimate the Ki constants of the enzyme inhibition by using the

Cheng-Prusoff equation (Equations S1–S6 in Text S1) [47]. Taken

together, the overall multiscale model comprised the two coupled

whole-body PBPK models of allopurinol and oxypurinol, hepatic

metabolism and the downstream whole-body PBPK model of uric

acid.

After successful establishment of the multiscale model, the

development of the uric acid level in gouty patients monitoring the

therapeutic success of gout treatment after single and multiple

dosing of allopurinol was simulated (Figure 3 E,F). Before

allopurinol treatment, the mean gouty patient in hyperuricemic

steady state had a venous plasma concentration of 476 mM. After a

single application of allopurinol, uric acid concentrations began to

decrease. Therapy interruption or patient non-compliance,

however, led to a recovery of uric acid concentrations which are

typical for the hyperuricemic state (Figure 3 E). Only when

multiple dosings of allopurinol were routinely taken, a continuous

decrease in uric acid concentrations could be achieved with venous

blood concentrations of 146 mM. Most notably, the predicted uric

acid concentration after multiple dosings was close to the range of

uric acid observed in vivo (Figure 3 F) [48,49] although the PBPK

model was established based on a single dosing of allopurinol. This

correct prediction of our model clearly emphasizes the predictive

capabilities of the coupled model.

Ammonia detoxification
As a second example we analyzed pathogenesis of urea cycle

disorders at the cellular scale and the resulting effect on ammonia

plasma concentration at the organism level. In particular we

aimed for an evaluation of diagnostic markers for a specific health

state or disease progression. Hepatic metabolization of amino

acids and detoxification of ammonia play an important role in the

human body. Up to 95% of ammonia metabolized in hepatocytes

is degraded to urea, which is subsequently excreted, while about

5% are metabolized to glutamine and about 1% to alanine [26].

Impairment in ammonia metabolism leads to decreased ammonia

elimination and thereby induces hyperammonemia [50]. A

consequence of hyperammonemia is an increase of ammonia

concentration in the brain - so-called hepatic encephalopathy -

which can cause confusion, lethargy, disorientation and in severe

cases coma and death [51,52]. Liver dysfunction in ammonia

metabolism can be caused by liver diseases or inborn errors of

metabolism (IEMs), e.g. urea cycle disorders (UCDs), which may

have lethal consequences without adequate treatment and diet

[53]. Perturbations in ammonia detoxification capacity causes

direct downstream changes in blood metabolite concentrations

making ammonia detoxification a primary example for the

identification of disease specific biomarkers.

In humans, ammonia is produced by the breakdown of amino

acids in the liver or intense muscle exercise [54]. In addition to

endogenous ammonia, exogenous ammonia also enters the body

with nutritional intake. Altogether, about 17 g of ammonia are

produced by the body every day. The excretion through the

kidneys is about 13 g per day, while 4 g per day are metabolized

by the liver. Furthermore, during impaired ammonia detoxifica-

tion following UCDs, the rates of glutamine and alanine synthesis

are increased 4–6 fold [53,55].

As a first step to investigate impairment of ammonia detoxifi-

cation using the multiscale coupling approach, a PBPK model of

ammonia was established (Table S3 in Text S1). To determine

rates of ammonia formation and consumption, an equilibrium

concentration of 29 mM in venous plasma was considered within

the PBPK model, which is the normal level in healthy humans

[48]. Three model parameters describing ammonia production

and excretion were identified using above physiological informa-

tion: An overall ammonia production rate of 0.694 mmol/L/min

was estimated as well as macroscopic liver and kidney clearance

rates of 0.163 mmol/L/min and 0.530 mmol/L/min, respectively.

Next, the ammonia PBPK model and the metabolic network were

combined by using direct coupling. In particular, the PBPK model

was simulated for one time step to calculate the new concentra-

tions and the corresponding liver clearance rate, which could then

be used as a new upper bound in the next FBA step. Maximization

of ammonia production was used as objective function, which was

constrained by substrate availability, exchange rates calculated

with the PBPK model as well as enzymatic deficiencies accom-

panying UCD. At a steady state ammonia concentration of

29.02 mM in the venous blood, the liver cell showed an

intracellular ammonia concentration of 25.78 mM (Figure 4 A).

In the metabolic network of the hepatocyte, an ammonia uptake

flux of 0.163 mmol/L/min was calculated, while the production

rates of urea, glutamine and alanine were 0.070 mmol/L/min,

0.008 mmol/L/min and 0.002 mmol/L/min, respectively (Figure 4

B). The demands of glucose and oxygen are in agreement with

previous results [26].

With the combined multiscale model, we simulated pathogen-

esis of urea cycle disorder (UCD) resulting in a reduced ammonia

detoxification capacity. Pathogenesis of UCD was exemplarily

assumed as a linear decrease of the enzyme activity of ornithine

transcarbamylase (OTC), leading to complete impairment of the

enzyme (Figure 4 A) [56]. Simultaneously, the glutamine and

alanine production rates are increased fourfold above the nominal

glutamine and alanine production rates [57]. Hence, while the

enzyme activity of OTC is decreased, the maximum activity of

glutamine and alanine synthesizing enzymes is increased. Gluta-

mine and alanine production is supposed to increase at 6 h after

the onset of UCD, assuming a delay due to transcription and

translation initiation.

With the coupled model and the above described constraints,

simulation was performed within a time range of 21 days. After

24 h, UCD starts developing which led to a decreasing urea

production rate after 30 h. At the same time, the glutamine and

alanine fluxes began to rise and the rate of ammonia uptake began

to decrease. In the new steady state (after 6.5 days), ammonia

uptake rate was 0.072 mmol/L/min (Figure 4 B) and glutamine

and alanine production rates were 0.033 mmol/L/min and

0.007 mmol/L/min, respectively (Figure 4 C). The new venous

ammonia concentration was 33.99 mM, while the liver concen-

tration was 30.27 mM (Figure 4 A).

Above model is a representation for an average patient. Since

the model, however, structurally includes many potential causes

for inter-individual variability at a large level of mechanistic detail,

it may be used to analyze pathogenesis on a populations scale as

well. Such individual differences may include physiology [58],

Integration of Metabolism in a Whole-Body Context
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protein expression [20] or even nutrition [59]. In order to

exemplarily describe the effect of inter-individual variability, 100

individuals were simulated based on randomly perturbed produc-

tion and clearance rates, respectively (assuming 10% standard

normal distribution relative to the mean patient, Figure 5 A, Table

S4 in Text S1). The distribution of ammonia concentrations in

healthy and diseased individuals together with their cumulative

sums underlines the inter-individual variability during UCD

pathogenesis (Figure 5 B). Performing the Kolmogorov-Smirnov

test provided evidence that the distributions in healthy and

diseased state differs significantly (p,0.001), making ammonia

concentration a quantitative biomarker for OTC deficiency. By

performing the population simulation, the results demonstrate that

the mere consideration of single individuals may induce misleading

diagnoses when specific patient subgroups such as obese, elderly or

diseased individuals are to be investigated. Only by population

simulations of comprehensive mechanistic models it may become

possible to mechanistically discriminate the different, potentially

counter-current factors such as high ammonia production rates

and low clearance rates.

Paracetamol toxication
Our final example deals with drug-induced toxication by

addressing downstream effects of drug dosing on metabolic

functionality at the cellular level. We here chose overdosing of

paracetamol, one of the most common reasons for liver failure [60]

and poisoning [61]. Paracetamol is generally considered to be an

inhibitor of prostaglandin synthesis and is widely used for reducing

pain (analgesic) and fever (antipyretic) [62]. At higher doses,

paracetamol can cause severe hepatotoxic effects leading to acute

liver failure and liver necrosis [63]. Paracetamol is metabolized by

three main pathways: (i) glucuronidation, (ii) sulfation and (iii) N-

hydroxylation by cytochrome P450 2E1 (CYP2E1) [64]. The

corresponding metabolites of the three pathways are (i) paracet-

amol glucuronide (PG), (ii) paracetamol sulfate (PS) and (iii) N-

acetyl-p-benzoquinone imine (NAPQI). In particular, NAPQI, the

hydroxylation product, is relevant for consideration of paraceta-

mol toxication since it is highly reactive and toxic [63]. At

therapeutic doses, NAPQI is almost immediately detoxified by

glutathione (GSH) conjugation. After reacting with GSH, NAPQI

is further degraded in the gut and the kidneys and is excreted as

paracetamol cysteine (AC) and mercapturic acids [65]. Paracet-

amol is metabolized primary into PG and PS. At higher doses,

however, the pathways synthesizing PG and PS become saturated

causing more NAPQI to be produced [64]. In this case, GSH is

depleted almost completely (up to 80%) by the detoxification of

NAPQI such that the excess of NAPQI accumulates in the liver

and the body. The free NAPQI then binds covalently to proteins

Figure 4. Pathogenesis of a urea cycle disorder in ammonia
plasma concentrations and metabolic exchange rates. (A)
Simulated venous plasma and intrahepatic concentration profiles of
ammonia during development of a urea cycle disorder. The black
dashed line represents the overall reduction in ornithine transcarba-
mylase activity. (B, C): Resulting exchange fluxes calculated with FBA
during development of a urea cycle disorder. (B) Hepatic influx rates of
the three substrates ammonia, oxygen and glucose. (C) Hepatic efflux
rates of the three products urea, alanine and glutamine.
doi:10.1371/journal.pcbi.1002750.g004

Figure 5. Determining the influence of inter-individual vari-
ability during development of a urea cycle disorder. (A)
Simulated venous plasma concentration profiles of ammonia in 100
individuals during development of a urea cycle disorder (single profiles
and mean). (B) The distribution of ammonia concentrations as well as
the cumulative sums in healthy and diseased individuals are
significantly different (p,0.001).
doi:10.1371/journal.pcbi.1002750.g005
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forming protein adducts which are considered to be one cause for

hepatotoxicity of paracetamol [63]. Taken together, the metabolic

impact of paracetamol overdose is described by the reduced

activity of three enzymes N-10-tetrahydrofolate dehydrogenase

(THFDH, up to 25%), glutamate dehydrogenase (GDH, up to

25%) and mitochondrial ATP-Synthetase (ATPS, up to 60%),

respectively, and the depletion of GSH by up to 80% [66].

To quantify the metabolic impact of perturbations in the

enzyme activities on whole liver functionality, indirect coupling of

a paracetamol PBPK model and HepatoNet1 was used to

determine the effect of a paracetamol overdose on a large amount

of functional liver objectives. HepatoNet1 was previously validated

with 123 physiological functions which represent essential tasks for

liver metabolism [26]. In particular, 67 of the 123 presented

objectives have been tested with three specific sets of extracellular

metabolites, which were therefore used as a core set for network

validation [26]. To quantify the impact of paracetamol-induced

liver failure, we tested the extent by which the value of each of the

67 objective functions is decreased during a paracetamol overdose,

thus quantifying hepatic network robustness towards external

perturbations [67].

We started our analyses with the development of PBPK models of

the parent drug paracetamol the three metabolites (Table S5 in

Text S1). Oral administration of 1 g paracetamol was considered

first. Eight model parameters were identified for the paracetamol

model, three for each the PG and the PS model and four for the

NAPQI model by comparison of computational simulations with

the corresponding experimentally measured venous blood concen-

trations for all four compounds [65] (Section parameter identifica-

tion in Text S1, Table S5 in Text S1). Notably, the parameters

either characterize physicochemistry of the compounds or describe

the physiology of the individuals such that prior knowledge is

implicitly included (see Materials and Methods). Moreover the four

models are highly interlinked by the underlying mass-balances

thereby reducing the systemic degree of freedom significantly. Since

the metabolization of NAPQI into AC cannot be quantified due to

missing literature information, it was assumed that the AC

concentration is equivalent to the NAPQI concentration. After

parameter adjustment, the PBPK simulations of paracetamol, PG,

PS and NAPQI described the experimental data with excellent

agreement (Figure 6 A, Table S6 in Text S1). Subsequently, the PK

of the four compounds after a lethal dose of 15 g paracetamol was

predicted (Figure 6 B, Table S7 in Text S1).

In order to investigate changes in metabolic functionality

following a paracetamol overdose, FBA was first performed to

determine the optimal value of every objective function and to

quantify all fluxes in the healthy, untreated reference individual.

Subsequently, the inhibition of enzymes by paracetamol and its

active metabolites was implemented as additional constraints on

the flux values. For every inhibited enzyme the flux value was fixed

as the product of the value in the healthy state and the remaining

relative enzyme activity (Equation 6). The Ki values were

calculated by assuming that the maximum concentration of

NAPQI after a lethal dose of 15 g paracetamol induces the

maximum enzyme inhibition as described above. In order to

calculate Ki values for paracetamol and all three metabolites,

substrate concentrations were assumed to be equal to Km

(Equations S7–S12 in Text S1). Therefore, the time-resolved

relative enzyme activities (Figure 6 C, D) could be calculated by:

relE(t)~
1

1z
I(t)

2:Ki

ð6Þ

FBA was then performed for every objective function with these

additional constraints. Since NAPQI is not naturally produced in

the liver, the molecular interaction of exogenous NAPQI with

endogenous GSH cannot be implemented in HepatoNet1 without

structural network modifications. Hence, the production of

NAPQI as an exogenous compound is simulated in the PBPK

model as described above. The depletion of GSH was considered

rather phenomenological by indirect coupling, thereby inducing a

decrease in enzyme activity which is linked by indirect coupling to

the intracellular NAPQI concentration. Neither metabolite pool

size of GSH nor regulatory effects following depletion of GSH can

be mechanistically considered in stoichiometric models such as

HepatoNet1. Therefore, all reactions producing GSH (Table S8 in

Text S1) in HepatoNet1 were identified and inhibited as described

above, such that GSH consuming reactions are limited. The

change in liver functionality was calculated as the difference

between the maximum values of the objective functions in the

healthy state and in the case of a paracetamol overdose. Three

distinct time points were considered which included time of peak

concentrations of paracetamol (tmax,paracetamol) and NAPQI

(tmax,NAPQI), respectively as well as time of trough concentrations

at 24 h after drug administration (t24h) (Figure 6 E, F). Out of the

67 objective functions considered, 20 objective functions under-

went a change after the application of 1 g paracetamol with

respect to the untreated state, while 24 objective functions

underwent a change after the application of 15 g paracetamol.

Almost all optimal values were at reference values after 24 h for a

1 g dose of paracetamol, while all affected objectives remained

severely decreased after 24 h for a 15 g dose.

We next analyzed, whether the flux underlying the different

optimal values changed during the application of different doses of

paracetamol. This could explain why more objective functions are

affected after the toxic dose of paracetamol, which is to be

expected by network robustness [67]. As an example of an

objective function which is only affected after the toxic dose, the

production of oleate showed a greater robustness to the metabolic

effect of paracetamol, as many active fluxes underlying this

objective function remained unchanged after the application of 1 g

paracetamol (54.8%) (Figure 7 A). Likewise, the maximum value

of the objective was only slightly decreased after the application of

15 g paracetamol. In contrast, paracetamol administration showed

a greater effect to the maximum value of cysteine production, as

the maximum value was already decreased after an application of

1 g paracetamol compared to the untreated reference state.

Furthermore, only 11.1% of the fluxes underlying this objective

function remained unchanged after paracetamol administration

and many new fluxes became active, suggesting that flux rerouting

[68] was used to compensate the inhibition in the impaired

metabolic pathway (Figure 7 B).

Discussion

We here integrate genome-scale metabolic networks, compris-

ing thousands of biochemical reactions, into PBPK models to

analyze metabolism at the level of the human organism. The

approach is based on dFBA [31] which is used to simulate

stationary stoichiometric metabolic networks at the cellular level in

combination with ODE-based PBPK models. This semi-continu-

ous approach uses the metabolic exchange rates as input at the

organism level and vice versa the drug concentrations at the

whole-body scale to calculate upper bounds for the enzyme

activities in the metabolic network.

Our approach combines well-established computational mod-

eling approaches from different biological scales. At the organism
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Figure 6. Effect of a therapeutic dose and a toxic overdose of paracetamol on liver functionality. (A) Simulated venous plasma
concentration profiles of paracetamol and its three metabolites after an paracetamol dose of 1 g are in agreement with experimental PK data [65]. (B)
Prediction of venous plasma concentration profiles of paracetamol and its three metabolites after a paracetamol dose of 15 g based on the 1 g
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scale, standardized PBPK models which are routinely used in

pharmaceutical drug development provide a generalized descrip-

tion of the distribution of substances within the human body. At

the cellular scale, metabolic network reconstructions represent

core building blocks of bottom-up systems biology which describe

fundamental cellular biochemistry. Our coupling approach

therefore provides a generic framework for a wide range of

possible applications. Notably, all these applications can be

addressed without the need for further model curation or

modification.

To illustrate our approach, we exemplarily integrate Hepat-

oNet1 [26], a genome-scale metabolic model of a human

hepatocyte into the liver tissue of a standardized PBPK model

[11,69]. As in reality, metabolization processes at the organism

level therefore result from the biochemical reaction within the

hepatocyte. To illustrate the broad applicability of our approach,

three case studies are presented addressing prototypical medical

and pharmaceutical questions.

In a first application example we investigate a multiscale PK/

PD approach, where indirect coupling is used to mechanistically

describe the pharmacological effect of the purine analogue

allopurinol on the biosynthesis of uric acid. The PK of the

exogenous drug as well as its resulting downstream PD effect on

the formation of endogenous metabolites are quantified allowing a

comprehensive evaluation of drug safety and drug efficiency. For

multiple oral administrations of 200 mg allopurinol we predict a

69.3% decrease of uric acid concentration in the venous plasma

which is in quantitative agreement with clinical data [48]. Since

the corresponding PK/PD model has been established with data

from single dosings of allopurinol [43], this accurate prediction of

the long term therapeutic effect convincingly illustrates the

predictive power of our approach.

The identification of quantitative biomarkers for metabolic

disorders is the second application example. As a complement to

classical qualitative biomarker identification [70], our approach

provides quantitative information in terms of specific concentra-

tion profiles by simulating the distribution of the affected

compounds at the organism level. This enables a mechanistic

description of metabolic disorders such as IEMs in blood plasma

and further biofluids. As an exemplary case study for quantitative

biomarker identification, we investigate impaired ammonia

detoxification resulting in an increase of 17% of ammonia in

blood plasma. We next simulate virtual populations of healthy

individuals and patients by varying anatomical and physiological

parameters according to prior statistical information [58]. Despite

a considerable level of inter-individual variability in both

subgroups, we demonstrate that the difference in ammonia plasma

levels between both subgroups is statistically significant. Notably,

the structural complexity of PBPK models together with the prior

physiological and anatomical information included helps to

explain counter-intuitive behavior during disease progression in

individual patients, since many relevant co-factors are mechanis-

tically presented in the model structure itself. This is important in

clinical practice, since in addition to diagnostics of key metabolites

other contributing factors are structurally considered in the model

such that variability of the healthy reference state can be

mechanistically quantified.

Drug-induced toxication following paracetamol overdose is the

third application example. We demonstrate how paracetamol

impairs metabolic capacity by affecting a broad range of different

metabolic functions. The specific metabolic impact is illustrated for

a therapeutic (1 g) and a toxic (15 g) dose of paracetamol. The

results show a larger metabolic impact on single hepatic functions

following the toxic dose of paracetamol. Also, more metabolic

functions are affected after the higher dose (24 vs. 20 functions).

Since a considerable number of fluxes is affected, we conclude that

paracetamol toxication induces flux rerouting which is used by the

hepatocyte to compensate for network perturbations thereby

conferring cellular robustness. Notably, this effect which has been

shown before for microorganisms [68] is distributed over the

whole metabolic network and can only be investigated with

genome-scale models.

Describing the impact of a compound on the body and the cell is

the fundamental question in pharmacodynamics. Classical ap-

proaches describe this interference with rather phenomenological

models [14]. By replacing the cellular space with metabolic network

models at genome-scale, our approach describes cellular processes

at a much higher level of detail. To quantify specific metabolic states

we use objective functions which have been used before to verify

functional capacity of the liver [26]. It should be noted that such

functions do not allow to identify actual intracellular flux

distributions unlike shown before for microorganisms [71]. In

contrast, the flux space is evaluated qualitatively in the face of

external or internal perturbations. Additionally constraining FBA

optimization with kinetic rates simulated with the PBPK models,

however, provides an important transfer of physiological informa-

tion in-between both model scales. If it would be possible to quantify

intracellular flux distributions in mammalian cells as well, further

algorithms [72] could be used to further asses and characterize the

overall flux space. This may also involve the consideration of

additional experimental information such as omics data [73] or

inclusion of regulatory information [74].

Taken together, the presented approach integrating organ-

specific metabolic networks into PBPK models provides many

application model. (C, D) Relative enzyme activity of the three impaired enzymes THFDH, GDH, ATPS and the GSH depletion are also implemented as
enzyme inhibition after the application of 1 g (C) and 15 g (D) paracetamol, respectively. (E, F) Effect of the paracetamol doses of 1 g (E) and 15 g (F),
respectively, on liver functionality at three different time points. Bars represent the decrease of maximum values of every objective function which
undergoes a change in its maximum value.
doi:10.1371/journal.pcbi.1002750.g006

Figure 7. Comparison of two specific liver functions (produc-
tion of oleate and cysteine, respectively). Only fluxes which are
nonzero at least in one of the three cases are compared. The number of
fluxes which remain at their original values ( = ), become smaller or
higher (,, .) or are non-zero (new) after application of 1 g and 15 g of
paracetamol are indicated.. (A) Changes in fluxes after application of
1 g and 15 g paracetamol for production of oleate. (B) Changes in
fluxes after application of 1 g and 15 g paracetamol for production of
cysteine.
doi:10.1371/journal.pcbi.1002750.g007
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opportunities for scientific research, clinical applications and drug

development as outlined by the prototypical examples discussed

above. It is only by such multiscale models that a mechanistic

understanding of organ dysfunction and disease etiology at a

system level will be achieved. This will be greatly supported by the

reconstruction of further genome-scale metabolic networks which

will become available in the future [7]. Structurally, the metabolic

networks provide a template onto which the genetic predisposition

of a patient can be mapped. Together with specific physiological

information this may someday allow model-based optimizations of

risk-benefit profiles in personalized medicine.

Materials and Methods

PBPK modeling
At the whole-body level, PBPK modeling quantitatively

describes all ADME-related processes of endogenous and exoge-

nous compounds within mammalian organisms [10,11,12,13]. In

contrast to the rather descriptive consideration of PK in classical

compartmental models, PBPK models include a detailed repre-

sentation of physiological processes within an organism which is

based on prior knowledge and information. The underlying model

structure, which connects the various tissues compartments and

the vascular system, is based on generic distribution models and

quantifies the mass transfer across the different sub-compartments.

Parameters of distribution models are automatically derived from

the physicochemistry of the compounds such as the molecular

weight or the lipophilicity [15,16,17,18,19]. Parameters describing

the physiology of an organism such as organ volumes, blood flow

rates or tissue composition are obtained from collections of

physiological data and are available in the internal PBPK software

database. Due to this large amount of prior structural and

physiological information, the number of independent parameters

which need to be identified during model development is small

(usually less than 10). Notably, there is a clear separation between

physiological parameters which refer to the organism in which a

compound is distributed and compound specific parameters which

specifically describe the properties of the substance itself. Thereby,

compound parameters only need to beadjusted in a narrow range

since literature information already is available. In contrast,

physiological parameters have to be identified individually.

Creating PBPK models with PK-Sim and MoBi
The PBPK models considered in this study were all built with the

software tools PK-Sim and MoBi for which academic licenses are

available free of charge (Section software information in Text S1) and

which have been explained in detail before [11,69]. PBPK models

were created for parent substances as well as for all metabolites.

Compound specific parameters were used in each case to parame-

terize the underlying structure of the PBPK model. In all models, we

considered mean individuals. The anthropometric information

regarding age, weight and height further specifies the selection of

physiological parameters as provided in the software. This allows a

specific parameterization of the PBPK model, since the model

contains only few independent parameters as described above.

Case-specific metabolization and clearance processes represent-

ed by Michaelis-Menten kinetics or first order reactions and

according to literature information are additionally defined. For

the corresponding kinetic parameters, parameter adjustment is

important since (1) usually less literature data is available and (2)

these parameters often have significant sensitivity although the

overall dynamic behavior of the PBPK models is robust (Figure S3

in Text S1).

For the examples of allopurinol treatment and paracetamol

toxication, PBPK models in PK-Sim are exported to MoBi where

they are further modified. PBPK models of the parent drug and its

metabolites are connected such that the distribution of all

compounds is described simultaneously. In this case, the rate of

the clearance reaction in the parent drug model is set as the input

into the metabolite model.

Stoichiometric network models
Stoichiometric models provide a mathematically formal way to

capture the basic biochemistry of cellular metabolism into an

analytical framework. Assuming steady state of the system, all

intracellular metabolites can be balanced in linear systems of

equations, which are usually underdetermined since they encom-

pass much more unknown reaction rates than linear independent

mass balance equations. Flux distributions can be identified with

stoichiometric models by using FBA [35,75,76]:

min=max f :v

s:t: S:v~0

A:vƒb

vminƒvƒvmax

ð4Þ

Here, f ? v (f[R1|n, v[Rn|1) corresponds to the objective function

which reflects a rationale of cellular function, S (S[Rm|n) denotes

the stoichiometric matrix of the metabolic network (including m

metabolites and n reactions) and v represents the intracellular flux

distribution. The overall solution space is confined by a set of

additional constraints (A?v#b) which represent for example

substrate availability.

HepatoNet1
To illustrate our approach, we here exemplarily use Hepat-

oNet1, a tissue-specific network reconstruction of hepatic metab-

olism [26]. HepatoNet1 consists of 777 metabolites and 2539

reactions and is divided into six intra- and two extracellular

compartments. Its general network structure was validated by

verifying the accomplishment of 123 biochemical objectives

representing metabolically feasible functional modes. Hence, the

network was constructed specifically to examine distinct metabolic

processes of the liver and provides a structural platform for

mechanistic studies of tissue-specific physiological functions [26].

Supporting Information

Text S1 Important additional texts, tables, equations and

figures.

(PDF)
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73. Shlomi T, Cabili MN, Herrgård MJ, Palsson BØ, Ruppin E (2008) Network-
based prediction of human tissue-specific metabolism. Nat Biotechnol 26: 1003–

1010.
74. Covert MW, Knight EM, Reed JL, Herrgard MJ, Palsson BO (2004) Integrating

high-throughput and computational data elucidates bacterial networks. Nature

429: 92–96.
75. Blank LM, Kuepfer L (2010) Metabolic flux distributions: genetic information,

computational predictions, and experimental validation. Appl Microbiol
Biotechnol 86: 1243–1255.

76. Price ND, Papin JA, Schilling CH, Palsson BO (2003) Genome-scale microbial

in silico models: the constraints-based approach. Trends Biotechnol 21: 162–
169.

Integration of Metabolism in a Whole-Body Context

PLOS Computational Biology | www.ploscompbiol.org 13 October 2012 | Volume 8 | Issue 10 | e1002750


