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Abstract

We describe a statistical framework for QTL mapping using bulk segregant analysis (BSA) based on high throughput, short-
read sequencing. Our proposed approach is based on a smoothed version of the standard G statistic, and takes into account
variation in allele frequency estimates due to sampling of segregants to form bulks as well as variation introduced during
the sequencing of bulks. Using simulation, we explore the impact of key experimental variables such as bulk size and
sequencing coverage on the ability to detect QTLs. Counterintuitively, we find that relatively large bulks maximize the
power to detect QTLs even though this implies weaker selection and less extreme allele frequency differences. Our
simulation studies suggest that with large bulks and sufficient sequencing depth, the methods we propose can be used to
detect even weak effect QTLs and we demonstrate the utility of this framework by application to a BSA experiment in the
budding yeast Saccharomyces cerevisiae.
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Introduction

Bulk segregant analysis (BSA; [1]) is a QTL mapping technique

for identifying genomic regions containing genetic loci affecting a

trait of interest. Starting with a segregating population from a

genetic cross, individuals are assayed for the focal trait and two

pools (bulks) of segregants are created by selecting individuals from

the tails of the phenotypic distribution (other sampling designs can

also be used as discussed below). Genotype frequencies are

estimated for the two bulks, either via genotyping of individuals or

via the creation of pooled DNA samples from which allele

frequencies are estimated. Allele frequencies should be approxi-

mately equal between the two bulks in genomic regions without

loci affecting the trait. Regions of the genome containing causal

loci should exhibit allele frequency differences between bulks. BSA

is most effective with high marker density and accurate allele

frequency estimation within bulks [2]. The former was effectively

addressed with the application of microarray based genotyping to

BSA [3–8]. More recently, investigators have begun to use

massively parallel sequencing methods to estimate allele frequen-

cies for BSA studies [9–11], which has a number of advantages.

For organisms with moderately sized genomes, next generation

sequencing can provide essentially single base-pair resolution. In

such cases rather than simply observing markers in linkage with

causal loci the BSA-sequencing approach should allow one to

observe allelic biases at the causal loci themselves. For larger

genomes where high coverage of the entire genome is less

practical, BSA-sequencing still has many potential advantages. For

example, it does not require the design of new genotyping arrays

for new crosses and may provide greater resolution than array

based genotyping. Furthermore, sequencing data yields counts of

alleles at polymorphic loci and thus provides a simple and intuitive

way of estimating allele frequencies.

In bulk segregant studies based on high-throughput sequencing

there are two sources of variation that affect allele frequency

estimates. The first is variation due to the sampling of segregants

that constitute the bulks themselves. This source of variation can

be minimized by increasing both the size of the segregant

population and the size of the bulk samples. The second source of

variation is a consequence of the measurement technique used to

estimate allele frequencies in the bulks. In the case of sequencing of

pooled DNA samples, the sources of variation of this second type

include, but are not limited to, library preparation, sequencing

chemistry, sequencing coverage, post-sequencing alignment of

reads, and base/allele calling algorithms. Here again, some of

these sources of variation can be minimized by standardization

of experimental protocols and analysis pipelines. However some of

these sources of variation, particularly stochasticity in sequencing

coverage, are an inherent property of short-read sequencing

methods.

In this paper, we develop explicit statistical models to describe

the sources of variation that should be considered in the analysis of

BSA-sequencing data. We first develop test statistics based on the

classic G -statistic accounting for the two phase sampling inherent

to BSA. We then propose an analysis pipeline for whole-genome

studies and present a proof-of-concept example with data from

yeast. A combination of simulation and empirical application

demonstrate the utility of this analytical framework.
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Results

Theory and Analytical Framework
Expected distribution of G for BSA-sequencing

data. Consider the experimental design with an F2 population

consisting of N individuals, each of which is measured for a

phenotype of interest. A set of ns individuals from each of the tails

of the distribution (low and high) are collected. DNA bulks are

prepared by combining equal amounts of tissue/cells from

individuals within each bulk followed by DNA extraction, or by

extracting DNA from each individual and combining equal

amounts. Following preparation of DNA bulks, genomic libraries

are prepared and sequenced at average coverage C per SNP. Thus

for each SNP the data is four allele counts that can be summarized

in a 2|2 table, where A1 is the allele from the high parent

(Table 1). The ni-values in the table are counts of alleles not

individuals. The observed allele frequency of A1 in the low bulk is

p1~n3=(n1zn3); that in the high bulk is p2~n4=(n2zn4). If the

SNP is close to a QTL with effects in the expected direction (i.e.

the ‘high allele’ increases trait values), then we expect p2&p1.

The counts in Table 1 are determined by two levels of

hierarchical of sampling. The first sample is the 2ns chromosomes

that constitute each bulk (assuming diploid inheritance). Second,

there is random variation in the number of reads per allele within

each bulk due to the stochastic nature of next-generation

sequencing. Let r1 and r2 be the expected (‘true’) frequency of

the high allele in each bulk. The realized frequencies (p�1, p�2) differ

from r1 and r2 in each bulk due to binomial sampling:

2nsp
�
1*Binomial(2ns,r1) ð1Þ

2nsp
�
2*Binomial(2ns,r2): ð2Þ

If we assume that sequencing coverage is approximately Poisson,

then the conditional distributions of the observed allele counts are:

n1jp�1*Poisson(C½1{p�1�) ð3Þ

n2jp�2*Poisson(C½1{p�2�) ð4Þ

n3jp�1*Poisson(Cp�1) ð5Þ

n4jp�2*Poisson(Cp�2) ð6Þ

A natural statistic to characterize the data at each SNP is the

standard G -statistic:

G~2
X4

i~1

ni ln
ni

n̂ni

� �
ð7Þ

where n̂ni is the ‘expected value’ for count ni. The null hypothesis is

that there is no QTL close to the focal SNP. This implies the

standard expected counts for a 2|2 contingency table, e.g.

n̂n1~(n1zn2)(n1zn3)=(n1zn2zn3zn4). If the null hypothesis is

correct, E½n1�~E½n2� and E½n3�~E½n4�. If we further assume no

segregation distortion and equal (average) sequencing coverage of

each bulk, then E½n1�~E½n2�~E½n3�~E½n4�~C=2. See the

supplementary materials (Text S1) for a generalization that

includes segregation distortion.

However, due to the hierarchical sampling scheme, the usual

expectation that G follows a x2
1 distribution (chi-square with 1 d.f.;

[12]) does not hold in the present situation. The mean and

variance of G are inflated relative the x2
1 even when the null

hypothesis is true (i.e. there is no QTL). Based on the arguments in

Text S1 we approximate the mean and variance of G as:

E½G�&1z
C

2ns

ð8Þ

Var½G�&2z
1

2C
z

1z2C

ns

z
C2(4ns{1)

8ns
3

ð9Þ

These equations predict convergence on x2
1 under certain

parameter sets. In particular, if ns&C&1, then E½G�?1 and

Var½G�?2, as expected from x2
1.

A simulation model was used to test the accuracy of

approximate equations (8) and (9). We simulated genetic data for

a chromosomal region of 10 cM in recombinational length.

Informative markers were uniformly distributed along this

chromosome with d SNPs per cM. The causal locus (QTL) was

located at the center of the chromosome and was thus flanked by

5d SNPs on each side. Alternative homozygotes at the QTL differ

by 2a phenotypic units on average (additive gene action) and

simulations of the null hypothesis (no QTL) were done with a~0.

In each simulation run, we first established the genotypes and

phenotypes of the N distinct F2 segregants. Each individual was

Table 1. The summary of data from a single variable site.

Low bulk High bulk Total

A0 n1 n2 n1zn2

A1 n3 n4 n3zn4

Total n1zn3 n2zn4

The ni represent counts of alleles A0 and A1 generated from sequencing of the
segregant bulks.
doi:10.1371/journal.pcbi.1002255.t001

Author Summary

Quantitative or complex phenotypes are traits that are
under the control of multiple genes and environmental
factors. Identifying the parts of the genome that contrib-
ute to variation in complex traits (Quantitative Trait Loci or
QTLs), and ultimately the genes and alleles that are
mechanistically responsible for trait variation, is a primary
challenge in animal and plant breeding, population studies
of human health and disease, and evolutionary genetics. In
this study we describe an analytical framework that allows
investigators to marry a QTL mapping approach called
‘‘bulk segregant analysis’’ (BSA) with high-throughput
genome sequencing methodologies in order to map traits
quickly, efficiently, and in a relatively inexpensive manner.
This framework provides a statistical basis for analyzing
BSA experiments that use next-generation sequencing and
will help to accelerate the identification of QTLs in both
model and non-model organisms.

Next-Generation BSA
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assigned a QTL genotype according to Mendelian probabilities

(0.25, 0.5, 0.25) and the phenotype was assigned as the genotypic

value plus a normal deviate. Individuals were then ranked by

phenotype and ns were selected from each tail. The full haplotype

of these individuals was then established by working out from each

allele at the QTL and allowing recombination to occur

probabilistically according to the linkage map. Given the

haplotypes in each bulk, we simulated an independent Poisson

number for each count of Table 1 for each SNP. These data were

used to calculate G at each SNP, and also G
0

as described below,

within windows around each SNP. For the latter we needed to

specify a window size in centimorgans. For each parameter set,

this entire procedure was repeated 10,000 times. Table 1 in Text

S1 reports simulation results for the null hypothesis (a~0) for a

range of reasonable combinations of C and ns. There is a close

correspondence of observed means and variances of G with the

values predicted by equations (8) and (9). As expected, in these

simulations the distribution of G is right skewed with a mean and

variance exceeding the x2
1 expectations.

The full distribution of G values is depicted for one parameter

set (ns~150, C~50) in Figure 1a. The gray histogram shows the

distribution of G under the null hypothesis (a~0) while the

overlapping red histogram shows the corresponding distribution in

the case of a weak QTL (a~0:02). Focusing first on the null

distribution, because the distribution is right skewed (mean = 1.19,

variance = 2.93), if we compare this distribution to critical values

of x2
1 the observed false positive rate is somewhat elevated (6.98%

at p~0:05; 1.98% at p~0:01). However when C approaches ns

the mean and variance of G far exceed the x2
1 expectation and type

I error rates increase dramatically. Perhaps even more problematic

is the inability of G to detect a QTL based on the naı̈ve x2
1

expectation. For the weak QTL case, where the QTL explains 2%

of the phenotypic variance, the causal SNP is significant at a

p~0:05 in only 34.9% of the simulations, and in only 16.8% of

simulations at p~0:01. The application of the naı̈ve x2
1 thus suffers

from a lack of power.

G
0
, A Smoothed Version of G. A substantial source of

variation in G is the random margin in Table 1,

n1zn3,n2zn4*Poisson(C). To deal with this variation we

propose the use of a weighted average of G across neighboring

SNPs. Averaging G values across SNPs is sensible because the real

signal of divergence in allele frequency between bulks is conserved

between closely linked sites but random noise due to variable

sequencing read coverage is not. We suggest the following average

test statistic for each SNP:

G
0
~
X

j in W

kjGj ð10Þ

where the sum includes all SNPs within the window W bracketing

the SNP. This type of weighted moving average, where the weights

are given by a kernel function, k, is also known as Nadaraya-

Watson kernel regression [13,14]. Nadaraya-Watson kernel

regression acts as a smoothing function, with the amount of

smoothing increasing with larger window size W [15]. The

simplest scheme for kj would be to give equal weight to all SNPs

within W (a rectangular kernel). We opt instead to apply the tri-

cube kernel fuction:

kj~
(1{D3

j )3

SW

ð11Þ

where Dj is standardized distance, with value 0 at the focal

position and value 1 at the edge of the window. SW is the sum of

(1{D3
j )3 for all SNPs in W . The tri-cube kernel is commonly used

in local polynomial regression methods like LOESS [16] and gives

greater weight to observations that are close to the focal SNP. Any

other weighting kernel that decreases smoothly to 0 as Dj goes to 1

could be used as well. We discuss the choice of the kernel window

size, W , below.

Figure 1. The distribution of G (A) and G
0

values (B) from 10,000 simulations. The gray histograms depict the observed distributions of G
and G

0
for the null case (no QTL), while the red distributions depict the distributions in the case of a weak QTL that explains 2% of the phenotypic

variance.
doi:10.1371/journal.pcbi.1002255.g001

Next-Generation BSA
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A methodological issue arises when kernel smoothing is used –

at the beginning or end of a data series it can produce a biased

estimate because the data included in the kernel bandwidth is

asymmetric. The simplest way to deal with this is to append a

reflected version of the values that fall within the right half-

bandwith (at the beginning of the series) and left half-bandwidth

(at the end of the series), run the kernel smoother as normal, and

then trim the appended values from the output.
Expected distribution of G

0
for BSA-sequencing data.

The null expectation of G
0

is given by equation (8). The variance

of G
0

depends on the variance of individual G values (equation 9)

and the covariance between SNPs within a window. In Text S1 we

show that Var½G0 � can be approximated as:

Var½G0 �~ 2z
1

2C
z

1z2C

ns

z
C2(4ns{1)

8n3
s

� � X
j in W

k2
j z

X
j in W

X
i=j

C2(4ns{1)

8n3
s

(1{2rij)
2kikj

ð12Þ

where i indexes all SNPs other than j contained within the

window.

Figure 1b illustrates the distribution of G
0
for the same parameters

as Figure 1a (plus window size W~20 cM and SNP density d~10
per cM). The difference between the null distributions in Figure 1a

and 1b is due to the normalizing effect of averaging. The predicted

mean and variance of G
0
(1.17 and 0.066) are reasonably close to the

observed moments (1.18 and 0.056). The distribution of G
0

is still

right skewed but the right tail can reasonably predicted from log-

normal densities with parameters derived from E½G0 � and Var½G0 �
(Figure S1 and Text S2). The observed false-positive rates (using a

log-normal density estimation) are: 5.14% at p~0:05 and 1.86% at

p~0:01). Unlike the use of the naive G -test based on x2
1, the type I

error does not increase dramatically as C approaches ns.

Furthermore, G
0

has good power to detect QTLs. For the example

illustrated in Figure 1b the causal SNP is significant in 94.3% of the

simulations at p~0:05, and in 88.0% and 77.2% of simulations at

p~0:01 and p~0:001 respectively.
Non-parametric estimation of the null distribution of

G
0
. In addition to the theoretical expectations discussed above, an

empirical estimate of the null distribution of G
0

can be derived from

the observed data itself. We assume that the observed data, XG
0 , is a

mixture of the null distribution (non-QTL regions) and several

contaminating distributions (QTLs). As discussed above, the null

distribution of G
0

(hG
0 ) is right-skewed with a tail density reasonably

predicted from a log-normal distribution, hG
0*lnN (m,s2). We also

assume the contaminating distributions have higher means than the

null distribution. Our goal is to estimate m and s2 in a manner that is

not unduly influenced by the contaminating distributions.

Recall that for a log-normal distribution: Median~em and

Mode~em{s2

[17]. Thus if we can estimate the median and mode

of hG
0 can use those to estimate m and s2. To do so we propose the

folowing steps:

1. Let WG
0~ln½XG

0 �
2. Let sW ~MADl(WG

0 ), the left median absolute deviation

(MAD) of WG where MADl is defined as

MADl(Y )~Median(jyi{Median(Y )j)

for all yiƒMedian(Y )

3. Use Hampel’s rule [18] to identify outliers, OW , as all wi in

WG
0 that satisfy:

wi{Median(W
G
0 )wg(N,aN )MADl(WG

0 )

where g(N,aN ) defines the limits of the outlier regions [18] and

is usually taken to be 5.2 for normally distributed data.

4. Construct a trimmed data set XT~fxig for all i such that

wi=[OW

5. Let m̂mh~ln½Median(XT )� and ŝs2
h~m̂mh{ln½Moder(XT )� where

Moder(XT ) is a robust estimator of the mode for continuous

variables (see [19] for several such estimators)

The logic of this procedure is as follows. The median and

MAD are robust estimators of location and spread respectively

[20]. In the absence of contaminating distributions WG
0 should

be approximately normally distributed, and hence the median

and MAD of WG
0 can be used as robust estimates of the mean

and spread of hG
0 (MADl&MAD for a symmetric distribution).

Hampel’s rule is a commonly used procedure to identify likely

outliers in a set of data based on the median and MAD; if the

underlying distribution is normally distributed and g(N,aN )~5:2
this is approximately equivalent to identifying outliers as those

observations with p-values v0:001 (we use a one-sided test in the

procedure above). When contaminating distributions (QTLs) are

present, Median(WG
0 ) lies to the right of the true mean of the

null distribution. Thus, Median(WG
0 ) and MADl(WG

0 ) are

conservative estimators of Median(hG
0 ) and MAD(hG

0 ). We then

use Hampel’s procedure to identify observations likely to be

drawn from the contaminating distributions and create a

trimmed data set, XT , with those outlying observations removed.

From the trimmed data set we estimate Median(hG
0 ) and

Mode(hG
0 ).

For the null simulations in Figure 1b the observed false-positive

rate estimated using this non-parametric approach are 3.18% at

p~0:05 and 0.76% at p~0:01. In general, the non-parameteric

procedure tends to be slightly more conservative than our

proposed parametric estimators but not greatly so. Because this

non-parametric approach makes few distributional assumptions

(other than approximate log-normality of the null distribution) it

might be preferred in cases where one suspects the sampling

(either of segregants or alleles) grossly violates the hierarchical

model described above.

Choosing W . A weighted moving average is a type of low-

pass filter; the larger the window size the lower the frequncy of

signals that are rejected by the filter. The choice of smoothing

width, W , is therefore a tradeoff between filtering out high-

frequency deviations in G due to variable sequence coverage and

SNP density and attenuating the signal of real QTLs. We want to

pick a W that minimizes noise while maximizing the underlying

signal. The matched filter theorem [21] suggests that the filter that

maximizes the signal-to-noise ratio of a symmetric signal is one

which matches the shape of the signal. A simple measure of the

shape of a symmetric signal is the full-width at half maximum

(FWHM). The ratio of the width of the kernel to the peak FHWM

(‘smoothing ratio’) is a useful metric for quantifying the effects of

smoothing [22]. As a rule of thumb, using a smoothing kernel with

a smoothing ratio of approximately two provides a good signal-to-

noise ratio [22]. However, the matched filter may fail to

distinguish multiple peaks when there are two or more signals in

the input [23] as we would expect in cases of multiple QTLs with

overlapping regions of elevated G. Specifically, peaks separated by

less than twice the FWHM of the filter will be merged [24].

Next-Generation BSA
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Therefore, to distinguish overlapping signals requires filters with

smoothing ratios significantly smaller, perhaps as small as 0.7.

In Text S2 we derive the expected shape of G around a single

causal SNP. For the case in which the causal allele is fixed in one

bulk and has a frequency of 0.5 in the other bulk, the half-

bandwidth (h~W=2) at half-maximum corresponds to

*12.42 cM (r*0:11). More extreme allelic biases between the

bulks favor slightly smaller bandwidths, while less extreme

differences favor larger bandwidths. SNP density also affects the

optimal kernel bandwidth, with higher SNP density favoring

narrower bandwidths. In simulations and applied to real data we

have found that kernels with smoothing ratios in the range 1–1.5

produce smoothed estimators with good signal-to-noise ratios and

which are neither strongly over- or undersmoothed. In terms of

mapping distances this corresponds to kernels with W in the range

*24.8–37.25 cM.

Since recombination rates vary across genomes, a given genetic

distance will correspond to a range of physical distances. In terms

of the choice of smoothing width, higher recombination rates favor

smaller window sizes (in physical distance). If regional recombi-

nation rates are known this can be incorporated into the analysis;

however the use of average chromosomal or genomic recombina-

tion rates to choose a single physical size for the smoothing

window should not be problematic unless recombination rates

vary widely. In such cases, one can calculate G
0

using a range of

smoothing widths to explore whether peak estimates are strongly

affected by over- or undersmoothing.

Proposed Analytical Pipeline
Based on the arguments developed above, we propose the

following analytical pipeline for the analysis of BSA-sequencing

data sets. We assume that sequencing reads have been aligned to a

reference genome where physical distances between polymorphic

sites and (approximate) rates of recombination are known. We

assume that all sites are biallelic. Following alignment of reads to a

reference genome, per site counts of each allele are generated from

the reads. Our recommended analysis pipeline for estimating

QTLs is as follows:

1. For each variable site, calculate G based on the observed

number of reads for each allele in each of the two pools

2. At each site calculate G
0

using a smoothing kernel with

bandwidth W bases where W is chosen based on known or

estimated rates of recombination. Bandwidths should typically

correspond to genetic map distances in the range 25–40 cM.

3. Estimate parameters of the log-normal null-distribution (i.e. no

QTL) of G
0
, hG

0*lnN (mG
0 ,s2

G
0 ), based on either theoretical

expectations (equations (8) and (12 and Text S2) or using the

robust empirical estimator of the null distribution inferred from

the observed G
0
.

4. Using hG
0 estimate p-values directly using the log-normal CDF.

Alternately log-transform G
0

and calculate Z scores

G
0
Z,i~(ln(G

0
i){mG

0 )=sG
0 and corresponding p-values at each

site.

5. Use a false discovery rate approach (FDR; [25,26]) to account

for multiple comparisons and estimate an appropriate p-value

threshold (or the corresponding G
0
threshold) to determine sites

that deviate significantly from the background null distribution

6. Define candidate QTL regions as continuous runs of significant

sites

Power Analysis
We used simulations to conduct a simple power analysis of our

proposed methodology. In this analysis we used the mean G
0

Z at a

causal site as measure of power for given values of N, ns, C,

window size (W ), SNP density, and for different magnitudes of

QTL effect on phenotype. Figure 2 summarizes results for two

different values of N, corresponding to large (N~1,000) and very

large (N~10,000) F2 populations. We find that increasing

coverage, C, is advantageous until Cwns, but has minimal effect

beyond that. A somewhat counterintuitive result is that larger bulk

size, ns, is generally beneficial as long as sequencing coverage is

modest to high. This is despite the fact that larger bulks imply

weaker selection for a given N (and hence a smaller allele

frequency divergence among bulks). Based on these findings we

recommend bulks consisting of at least 10% and as perhaps as high

Figure 2. Power analysis. Average G
0

Z at a causal site as a function of sequencing coverage, C, and bulk size, ns, for two different F2 population
sizes (left, N~1,000; right, N~10,000). Note the difference in scales between the two figures.
doi:10.1371/journal.pcbi.1002255.g002

Next-Generation BSA
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as 20% of the F2 segregant population in order to maximize power

to detect QTLs.

An Application to Yeast
To demonstrate the correspondence between theory and data

we here draw on a BSA-sequencing data set generated to identify

loci that contribute to variation in colony morphology in the

budding yeast Saccharomyces cerevisiae [27]. A full description and

analysis of these data will appear elsewhere (Granek et al., in prep).

Here, these data serve to illustrate the utility of both our

theoretical framework and the associated robust estimators for

data analysis.

The yeast data consist of a low and high bulk, each composed of

288 homozygous diploid segregants drawn from an F2 population

of size N~960 generated by sporulating a naturally heterozygous

diploid strain [28]. The low bulk consists of segregants with simple

colony morphology, while the high bulk consists of segregants with

complex colony morphology (see [27] for a description of

morphology scoring). Creation of DNA pools, sequencing, and

mapping of reads is described in the Methods section. Because

each segregant is homozygous, the effective number of alleles

sampled for each bulk is ns instead of 2 ns. In total 44,066

polymorphic sites were analyzed with a mean interval between

sites of approximately 280 bp. Below we refer to the two

sequencing runs for the low bulks as l1 and l2, and those for the

high bulks as h1 and h2. The coverage per SNP (C) for each

sequencing run was as follows: l1~48:5, l2~53:8, h1~55:5, and

h2~54:2. For each of the analyses below, we used a smoothing

window width of W~80 Kb (*30 cM), and took the average

coverage of each bulk being compared as the estimate of coverage,

C.

Because there are two sequencing runs per DNA pool, variation

in allele frequency estimates between sequencing runs from the

same segregant bulk should be exclusively due to stochastic aspects

of the sequencing reaction and primary bioinformatics analyses

(base calling, read alignment). The structure of this data set is thus

useful for dissecting the impact of sequencing variation on

estimates of G and G
0
, and the subsequent impact of this

variability on the inference of QTL regions and peaks. We use

these data to explore both the null model (no QTL; by analyzing

the low-vs-low and high-vs-high comparisons) as well as the case

where QTLs are expected (comparing low-vs-high bulks). In the

null case, the differences in allele frequencies are subject to only

one source of variation because the bulks are fixed but sequencing

is variable. The non-null analyses are individually affected by both

sources of variation (bulking and sequencing), but when compar-

ing the results from comparable analyses (e.g. comparing QTL

peak locations between the l1-vs-h1 and l2-vs-h2 analyses), the

differences are again simply a function of sequencing variation.

Null comparisons: Variation in G and G
0

due to
sequencing. The two low samples (l1 and l2) and the two

high samples (h1 and h2) represent independent sequencing runs of

the same low and high segregant bulks respectively. Using G and

G
0

from a comparison of l1 vs. l2 and h1 vs. h2 we can estimate the

impact of sequencing on the variation of these statistics. When the

two bulks differ only due to read number variation, there is only

one source of variation, and the statistics of G should should be

approximately x2
1 with E½G�?1 and Var½G�?2. By invoking a

weighted version of the central limit theorem [29], we find the

distribution of G
0

should be approximately normal with E½G0 �?1
and Var½G0 �?2=an where an~k2

1z � � �zk2
v , the sum of the v

squared kernel weights in the smoothing window (an converges to

v in the case of a square kernel). As illustrated in Table 2 the

observed data for the null-comparisons conform well to the

asymptotic expectations.

Between replicate comparisons of G and G
0

in the
presence of a QTL. In addition to tests of the null model,

the design of the yeast experiment facilitates a between replicate

comparison of G and G
0

in the presence of QTLs. There are four

possible low-vs-high comparisons; here we focus on two of those,

l1-vs-h1 and l2-vs-h2. Figure 3 illustrates the relationships for G
and G

0
at each SNP for l1-vs-h1 and l2-vs-h2. The between

replicate correlation for G is *0.677, while that between G
0

is

*0.996. This illustrates the ability of the smoothing kernel to act

as a low-pass filter on the G -statistic, filtering out the high-

frequency noise associated with variation in read counts, while

preserving the underlying signal of QTLs and increasing the

repeatability of the analysis.

Using the false discovery rate approach outline above, we

estimated cutoff values for G
0

using a FDR of 0.01 based on both

our theoretical results (equations 8 and 12) and the corresponding

non-parametric estimators. For the parametric estimate we used

the following parameter values: ns~144, C~52, v~200. The

estimated G
0
cutoff values are as follows: l1-vs-h1 : 2.59 [parametric],

3.51 [non-parameteric]; l2-vs-h2 : 2.58 [parametric], 3.91 [non-

parametric].

Using the theoretical G
0

cutoff of 2.59 we find 7,845 SNPs have

significant G
0

values for the l1-vs-h1 comparison, and 8,011

significant SNPs for the l2-vs-h2 comparison, representing

approximately 17% of the polymorphic sites. Nearly 38% of the

significant sites are on chromosome XIII which appears to have

multiple overlapping peaks leading to elevated G
0

values across

much of the chromosome. The number of significant sites shared

between the replicates is 7,330. We identified 12 significant regions

(QTLs) in the two replicates (Figure 4). The QTLs are nearly

identical between the replicates except for a marginal QTL on

chromosome 7, where one of the replicates is significant but the

other is just short of significance. To assess the variability in QTL

location we compared the distance between peaks (using the single

largest peak in cases of multiple peaks per chromosome). The

mean and median absolute distances between nine comparable

QTL peaks from the two comparisons are 5.08 Kb and 4.97 Kb

respectively. The root mean square deviation (RMSD) between

comparable QTL peaks is 6.7 Kb. Using the RMSD as a measure

of spread and applying the 3s rule of thumb, a conservative

confidence interval for QTL peak is +20 Kb (+7.4 cM) around

Table 2. Null comparisons for the yeast data set.

Comparison Theoretical E½G�, Var½G � Observed E½G �, Var½G � Theoretical E½G 0 �, Var½G 0 � Observed E½G 0 �, Var½G 0 �

l1-vs-l2 1.000, 2.000 1.018, 2.050 1.000, 0.0124 1.020, 0.0115

h1-vs-h2 1.000, 2.000 1.015, 2.077 1.000, 0.0124 1.014, 0.0117

Theoretical and observed means and variances of G and G
0

for the null comparisons in the yeast data set.
doi:10.1371/journal.pcbi.1002255.t002
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the observed peak. The size of this confidence interval is a function

of read depth and SNP density, and is a measure of variability in peak

estimation due to sequencing only. This confidence interval doesn’t

include variation that would arise from the bulking of segregants.

As will be described elsewhere, candidate genes corresponding

to several of the major peaks in this analysis have been functionally

validated to affect yeast colony morphology (J. Granek and P.

Magwene, unpublished data).

Discussion

The use of a test based on the G -statistic provides a

straightforward framework for analyzing BSA-sequencing data.

The G -statistic has several advantages over the use of allele

frequency differences as the basis for QTL estimation (e.g. [11]). For

example, as shown in the supporting information (Text S2), G is

expected to decrease much more rapidly around the causal site than

bias in allele frequencies, implying narrower intervals of support

around QTLs. Also in contrast to statistics based on the divergence

of allele frequencies, G takes into account the strength of evidence

related to sample size. This feature of the G -statistic can also

potentially complicate analyses, as variance in read depth contributes

to variance in G over relatively small spatial scales. However, as we

show above, weighted averaging of G effectively smooths out ‘high

frequency’ noise associated with sequencing variation.

Bulk Size and Sequencing Considerations
Our simulations suggest that for the experimental design

considered here using bulk sizes as large as 15–20% of the

phenotyped segregant population increases power to detect causal

QTLs despite the fact that this means relatively smaller allele

frequency differences between bulks. This is due to tradeoffs

between bulk-size, selection intensity, and the variance of allele

frequencies under the hierarchical sampling. Consider, for

example, a single locus with alleles A0 and A1, where the effect

of A1 is additive and the two homozygotes differ by 2a units on

average. Assuming no segregation distortion, and an F2 popula-

tion generated from inbred lines, the change in the allele frequency

of A1 in the high bulk after truncation selection is approximately

Dq~
1

8
i
2a

sp

[30,31] where i is the intensity of selection, and
2a

sp

is

the ‘standardized effect of the locus’ (these quantities can be

related to the selection coefficient, s, by s&i
2a

sp

). Given truncation

selection on a normal distribution, the intensity of selection is given

by i~z=p where p is the proportion of selected individuals and z is

the probability density function at the truncation point [31]. Since

the intensity of selection increases at a rate much less than 1=p (e.g.

see [31], Fig. 11.3), an n-fold decrease in p results in a much less

than n-fold change in the intensity of selection. For example, let
2a

sp

~0:2 and consider truncation on the upper 20%, 10%, and

1%, of the phenotypic distribution. The increase in the frequency

of A1 in the high bulk given these truncation points is

approximately 3.5%, 4.4%, and 6.7% respectively (translating to

allele frequency differences of 7%, 8.8%, and 13.4% in the two-

bulk case). On the other hand, the variance of the realized

frequencies of the alleles in each bulk is inversely proportional to

bulk size (Var½ p
�
1�~

r1(1{r1)

2ns

). Thus, a twenty-fold decrease in

bulk size translates to less than a two-fold increase in allele

Figure 3. Comparison of G and G
0

between technical replicates. The correspondence of raw G (black) and smoothed G
0

values (red) for
different sequencing runs of the same low-vs-high bulks from the yeast data set.
doi:10.1371/journal.pcbi.1002255.g003
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frequency divergence, but a twenty-fold increase in the variance of

allele frequencies. As long as average coverage, C, is moderate to

large, the benefit of increasing ns offsets the relatively smaller

penalty resulting from a decrease in selection intensity. However,

there is little benefit to increasing sequencing coverage beyond the

size of the bulks.

Sequencing can introduce complications such as biases toward

particular nucleotide calls; however in general this should effect

both segregant bulks in the same direction. Due to the averaging

affect of G
0
, unless such biased sites are common over very large

map distances they are unlikely to have substantial affects on

results derived under our proposed framework. Similarly, a low

percentage of mismapped reads or miscalled SNP calling are

unlikely to be problematic for our framework, again because of the

averaging affect of G
0
. However caution should be exercised in

genomic regions that are particularly problematic in this regard,

such as repeat rich regions.

Other Experimental Designs
In this paper we have focused on QTL mapping with an F2

experimental design, but clearly our framework can be extended

to other designs. Common alternatives include mapping popula-

tions produced by imposing one or more generations of inbreeding

on an F2, such as Recombinant Inbred Lines (RILs). The

increased homozygosity of such populations should also be taken

into consideration, as it increases the expected change in allele

frequency due to selection but it also decreases the number of

independent chromosomes that are sampled for a given number of

selected individuals. Chromosomes in such RILs experience as

much as twice the number of crossovers as do F2 populations so

the physical size of the smoothing window W should be reduced to

take this reduced linkage disequilibrium into account. Even greater

reductions of linkage disequilibrium can be accomplished by an

alternative design that imposes additional generations of random

mating, rather than inbreeding, on an F2, resulting in more precise

localization of QTLs. Additional generations of outcrossing

(beyond the F2) will likely magnify deviations of the null allele

frequency from 0.5 owing to segregation distortion and/or

inadvertent selection. This can be accommodated by application

of formulas in Text S1 with q estimated from all sites within a

genomic window.

Other experimental designs, such as backcrosses, will not have

allele frequencies of 0.5. For these situations the null expected

distributions of G and G
0
can be approximated using the equations

presented in Text S1, although in this case it will be necessary to

know the parental origin of the SNP alleles. Similarly, since G can

be generalized to an arbitrary number of classes [12], one-tailed

scenarios (e.g. [9]) involving comparison to either a theoeretical

population or a random sampling of segregants can be addressed

in this framework.

Methods

Sequencing of Yeast Bulks
To create the bulked DNA pools each segregant was grown

overnight in liquid medium to saturation (*108 cells/ml) and

equal volumes of each culture were mixed to form cell bulks.

Genomic DNA was isolated from the cell bulks and single Illumina

DNA sequencing libraries were prepared from each bulk, using

standard protocols as described in [28]. Each bulk DNA pool was

sequenced twice using 50 bp reads on an Illumina GAII

sequencing instrument. Approximately 15 M reads were generat-

ed in each sequencing run. Reads were aligned to the yeast

reference genome (obtained from the Saccharomyces Genome

Database, January 2010) using the program BWA [32] and

polymorphic sites were called using SAMtools [33]. For each

Figure 4. Yeast QTL Peaks. Chromosomal distributions of G
0

for the l1-vs-h1 (dark blue) and l2-vs-h2 (light blue) data sets. The dashed red line
indicates the estimated G

0
threshold corresponding to a FDR of 0.01. Regions above the red line are QTL regions; the highest point in each QTL

region was called as the QTL peak.
doi:10.1371/journal.pcbi.1002255.g004
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sequencing run, SAMtools was used to create a pileup file giving

the alleles at each polymorphic site, from which allele counts were

derived using scripts written in Python.

Supporting Information

Figure S1 Simulations results for the null distribution
of G

0
based on 10,000 simulations with (ns~150, C~50,

a~0). The gray histogram represents the observed distribution of

G
0
, corresponding to Figure 1b. The dashed lines represent log-

normal distributions estimated from theoretical expectation (red

line) or via the non-parametric approach described in the text

(black line). Both the parametric and non-parametric approaches

provide good control of type I error (right tail of the distribution).

(PDF)

Text S1 Generalization of theoretical results to include
segregation distortion.

(PDF)

Text S2 Miscellaneous information. This file includes

information on: 1) estimation of the parameters of a log-normal

distribution from the expected mean and variance of a variable of

interest; 2) the expected shape of the G around at a QTL; and 3) A

summary table of expected and observed means and variances of

G
0

based on simulations of the null hypothesis (no QTL).

(PDF)
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