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Abstract

Cellular signaling networks have evolved an astonishing ability to function reliably and with high fidelity in uncertain
environments. A crucial prerequisite for the high precision exhibited by many signaling circuits is their ability to keep the
concentrations of active signaling compounds within tightly defined bounds, despite strong stochastic fluctuations in copy
numbers and other detrimental influences. Based on a simple mathematical formalism, we identify topological organizing
principles that facilitate such robust control of intracellular concentrations in the face of multifarious perturbations. Our
framework allows us to judge whether a multiple-input-multiple-output reaction network is robust against large
perturbations of network parameters and enables the predictive design of perfectly robust synthetic network architectures.
Utilizing the Escherichia coli chemotaxis pathway as a hallmark example, we provide experimental evidence that our
framework indeed allows us to unravel the topological organization of robust signaling. We demonstrate that the specific
organization of the pathway allows the system to maintain global concentration robustness of the diffusible response
regulator CheY with respect to several dominant perturbations. Our framework provides a counterpoint to the hypothesis
that cellular function relies on an extensive machinery to fine-tune or control intracellular parameters. Rather, we suggest
that for a large class of perturbations, there exists an appropriate topology that renders the network output invariant to the
respective perturbations.
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Introduction

All living cells rely on the capacity to respond to intra- or

extracellular signals and have evolved a dedicated biochemical

machinery to continuously sense, transmit, and process a variety of

internal and environmental cues. A key requisite for reliable signal

processing is the capability of living cells to keep the stationary

intracellular concentrations of certain molecules, such as active

signaling compounds, within tightly defined bounds – despite

conditions of uncertainty and in the face of multiple perturbations.

While the apparent insensitivity of key intracellular concentra-

tions, and hence of cellular function, to detrimental influences is

widely recognized as a salient property of cellular signaling,

knowledge of the precise mechanisms underlying these instances of

pathway robustness is still fragmentary [1–6].

Here, we report a simple, yet highly efficient, novel formalism

that pinpoints the necessary architecture for concentration

robustness in living cells. We assert and substantiate by mathemat-

ical proof and experimental evidence that certain classes of network

architectures render the functional output of the network, as

represented by a set of steady state protein concentrations, invariant

to a large class of perturbations. Our approach emphasizes

robustness as a structural property of a network as a whole, rather

than as a consequence of parameter-tuning or individual positive or

negative interaction loops [3,7], and offers a novel paradigm to

understand the topological organization of cellular signaling

networks. Differing from earlier approaches, our framework

accounts for perturbations of large magnitude and is not restricted

to a particular class of network kinetics, such as mass-action systems

[5]. Applications include the robustness of input-output relation-

ships with respect to variations in total component concentrations,

reaction parameters, abundances of common resources like ATP,

RNA polymerases, and ribosomes, as well as detrimental effects of

pathway crosstalk, and variations in temperature. Our focus is on

perturbations whose time scales are slow compared to the intrinsic

dynamics of the pathway.

Results/Discussion

Local Concentration Robustness
To establish the mechanisms of robust signaling, we consider a

multi input-multi output signaling network, whose temporal

behavior is described by a set of ordinary differential equations

for the state variables, x(t), e.g., _xxi~vj{vk, where the indices

indicate different variables xi or reaction fluxes vk. The equations

can be organized into the more compact form,

_xx(t)~N :v, ð1Þ

where N denotes the stoichiometric matrix. The reaction fluxes

are specified by functions v~v(x,p) that depend on the variables x
and a set of parameters p. We require the existence of a – not
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necessarily unique – stationary state xs that obeys the steady state

condition N :vs~0 with vs :~v(xs,p). In the following, we assume

that the functionality of the network is encoded in the steady state

of a subset of output variables, defined as xA, whose concentration

values depend on a set of intra- or extracellular signals. The

remaining intermediate variables are defined by xM . The system is

said to exhibit local concentration robustness with respect to a particular

parameter p if a sufficiently small perturbation Dp in this

parameter does not affect the stationary concentrations of the

output variables, DxA~0. Mathematically, the perturbation is

characterized by the vector of logarithmic partial derivatives P
with elements Pi :~Llnvi=Llnp, evaluated at the stationary state.

As the main result of the work, we now seek to identify stringent

conditions on the network architecture – rather than on kinetic

parameters – such that the robustness property holds for

perturbations of large magnitude. To this end, we first recall the

conditions for local concentration robustness. Utilizing results

from linear control theory, local robustness can be ascribed to two

scenarios: Either the perturbation has no effect on any stationary

concentration within the network. In this case, the vector P is an

element of a vector space spanned by the columns of a matrix K –

with K being a basis of the right nullspace of the scaled

stoichiometric matrix, defined such that N :diag(vs):K~0. Or,

more generally, the perturbation propagates through the network

and affects the stationary concentration of some or all of the non-

robust intermediate variables xM , albeit without affecting the set of

output variables xA. In this case, it can be shown that the

perturbation vector P is an element of the joint vector space

spanned by the columns of K and the columns of a matrix M . The

latter matrix is given by the logarithmic partial derivatives of

reaction rates with respect to the intermediate variables xM , with

elements Mij :~Llnvi=LlnxM
j . We note that the elements of M

correspond to the kinetic orders or scaled elasticities of the reaction

fluxes and attain integer values for the case of reaction networks

that follow mass-action kinetics [8]. Taken together, a necessary

and sufficient condition for local concentration robustness is

therefore that the vector P is an element of the vector space

spanned by the columns of M and K , or equivalently, that the

rank condition,

rank (PjMjK)~rank (MjK), ð2Þ

is fulfilled. Here, the notation (MjK) denotes a concatenation of

the columns of both matrices. To ascertain local concentration

robustness the rank condition is evaluated at the particular

stationary state. See Materials and Methods and Text S1 for

details and proof.

From Local to Global Concentration Robustness
In general, local concentration robustness is not a sufficient

condition to allow for robust signal processing in living cells. The

fluctuations encountered by biological systems, such as variations

in component concentrations arising from stochasticity in gene

expression, are typically of large magnitude and cannot be

described by local perturbations at a particular stationary state.

Our aim is therefore to establish precise conditions for global

concentration robustness. Specifically, a system is said to exhibit global

concentration robustness with respect to a particular parameter p
if the stationary concentrations of the set of output variables xA is

invariant with respect to perturbations in p. Thereby, p may take

any value within a biophysically feasible perturbation set P and is

not restricted to small variations.

To obtain a viable criterion to judge global concentration

robustness, we therefore extract from the local vector space,

spanned by the columns of (M jK), the largest subspace that does

not depend on the choice of kinetic parameters, and hence, the

specific stationary state. This subspace, denoted as the invariant

perturbation space I , defines the largest vector space that guarantees

local robustness at any stationary state of the system. Consequently,

a perturbation of increasing magnitude that is confined to the

invariant perturbation space may gradually affect the intermediate

variables, but does not affect the designated output variables. The

condition for global concentration robustness is then given by

P[I , or, equivalently, as rank (PjI)~rank (I), where I denotes a

matrix whose columns span the vector space I .

We emphasize that the matrix I and its associated vector space

are independent of kinetic parameters and therefore represent a

genuine structural property of any signaling network. Proof and an

algorithm is relegated to Materials and Methods and the SI, here

we only outline its construction using a simple example.

A Simple Example
To illustrate the construction of the invariant perturbation

space, we consider the simple pathway shown in Figure 1. Here,

the output variable a of the pathway is subject to strong

fluctuations p in its synthesis rate vza(p). Rather than aiming to

suppress the detrimental perturbations, the pathway employs an

intermediate variable m that compensates perturbations and

ensures global concentration robustness of a. The pathway is

described by two differential equations for the time-dependent

behavior of the concentrations of a and m, respectively,

d

dt

a

m

� �
~

1 {1 0 0

0 0 1 {1

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

N

:

vza pð Þ
v{a a,mð Þ
vzm að Þ
v{m

0
BBB@

1
CCCA: ð3Þ

For brevity, and as the only assumption on the rate equations and

kinetic parameters, we require that the pathway gives rise to a

Author Summary

Cellular signaling networks have to function reliably and
with high fidelity in an uncertain environment. In this
paper, we investigate the topological principles to achieve
such robust signal processing in living cells. Specifically, we
identify the topological organizing principles that enable a
signaling network to keep the stationary intracellular
concentrations of certain molecules, such as active
signaling compounds, within tightly defined bounds –
despite conditions of uncertainty and in the face of
multiple perturbations. We demonstrate that an appropri-
ate topological organization renders the output of the
pathway invariant against a large class of possible
detrimental fluctuations, such as changes in energy states
or total protein concentrations. Furthermore, we show that
the topological requirements for robust signal processing
can be formalized in terms of a linear vector space,
denoted as invariant perturbation space, that predicts the
robustness properties of the network. Constructing this
invariant perturbation space for the Escherichia coli
chemotaxis pathway reveals that the pathway is indeed
invariant with respect to most dominant perturbations
that would otherwise significantly hamper information
transmission. Our framework provides a counterpoint to
the hypothesis that cellular function relies on an extensive
machinery to fine-tune or control intracellular parameters.
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unique stationary state for each value of p. To obtain insight about

the concentration robustness of the variable a with respect to p, we

construct the invariant perturbation space, derived from the

concatenated matrix (MjK). The matrix M is given by the

logarithmic partial derivatives of reaction rates with respect to the

intermediate non-robust variable m. We obtain

M~

0

b

0

0

0
BBB@

1
CCCA, ð4Þ

where b :~Llnv{a=Llnm denotes the unknown state-dependent

logarithmic partial derivative with respect to the variable m. In

general, the precise value of b depends on the functional form of

the rate equations, the value of the perturbation p, and the kinetic

parameters.

The matrix K can be constructed algorithmically from the

stoichiometric matrix. We obtain,

K~

da

da

0

0

0
BBB@

0

0

dm

dm

1
CCCA, ð5Þ

where da~vs
za~vs

{a and dm~vs
zm~vs

{m denote the stationary

flux values.

To obtain a matrix representation I of the invariant perturbation

space, we now need to identify the largest parameter-independent

subspace spanned by the columns of (M jK). To this end, we note

that the vector space spanned by the columns of a matrix remains

invariant under elementary matrix operations (EMO), such as

multiplication of a column by the same non-zero factor or the

addition of an arbitrary multiple of one column to another.

Applying a set of suitable EMOs, we obtain

(MjK)[I~

1

1

1

0

1

1

0

0

1

0

0

0

0
BBB@

1
CCCA: ð6Þ

We note that in this particular case, the invariant perturbation space

is of the same dimension as the local vector space. In general,

however, not all dimensions of the local space are retained, see

Section III of Text S1 for an example.

To test for global concentration robustness of the variable a with

respect to p, we now have to evaluate the rank condition

rank (PjI)~rank (I). The perturbation is characterized by the

vector

P~

g

0

0

0

0
BBB@

1
CCCA, ð7Þ

where g :~Llnvza=Llnp denotes the unknown state-dependent

value of the logarithmic partial derivative. It can be straightfor-

wardly ascertained that the rank condition for global concentra-

tion robustness is fulfilled, irrespective of the value of g. Hence, the

variable a exhibits global concentration robustness with respect to

perturbations in its synthesis rate.

We note that our simple example is a well-known instance of

robust perfect adaptation [9,10]. Biologically, the variable m acts

as an integrator, under the condition that the degradation rate of

m is independent of the concentration of m itself. Utilizing our

approach, the invariant perturbation space can be constructed

algorithmically for any given reaction network. The condition for

global concentration robustness can then be ascertained by a

simple numerical test and does not require extensive computations

or additional expert knowledge.

The Robustness of Two-Component Systems
To further illustrate the construction of the invariant perturba-

tion space, we briefly consider the robustness of a canonical two-

component system – one of the simplest and best-studied examples

of robust signaling. Bacterial two-component systems typically

consist of a membrane-bound sensor kinase that senses a specific

stimulus and a cognate response regulator that modulates the

signal response. Reliable functioning of two-component systems

often requires that the output of the pathway, the concentration of

phosphorylated response regulator as a function of an external

stimulus, is not compromised by fluctuations in total protein

concentrations of both components. The robustness of bacterial

Figure 1. A simple example of global concentration robustness. (A) The output variable a of the pathway is subject to a strong perturbation
p in its synthesis rate. Closed arrows denote regulatory interactions. (B) The concatenated matrix (MjK) is constructed based on the network
architecture. The first two columns correspond to the logarithmic partial derivatives of the rate equations with respect to both variables a and m. The
latter two columns correspond to a representation of the scaled nullspace K . Greek letters denote unknown parameter-dependent values. (C) A
largest parameter-independent representation I , spanning the invariant perturbation space I , is obtained by elementary matrix operations. To test
for output invariance, we ascertain that rank (PjI)~rank (I), irrespective of kinetic parameters. The condition for global concentration robustness of
a with respect to the perturbation p is thus fulfilled.
doi:10.1371/journal.pcbi.1002218.g001
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two-component systems with respect to such concentration

fluctuations was investigated previously [11,12]. In particular,

Batchelor and Goulian [11] identified that the principal

mechanism for concentration robustness is due to a bifunctional

histidine kinase that phosphorylates and dephosphorylates its

cognate response regulator.

Figure 2 depicts a simplified model of the respective system. The

histidine kinase (H ) is phosphorylated by an external ligand. The

phosphorylated kinase (HP) transfers the phospho-group to the

unphosphorylated response regulator (R). The pathway output is

the concentration of the phosphorylated diffusible response

regulator (RP). Importantly, dephosphorylation of the response

regulator (RP) requires the participation of the bifunctional

histidine kinase (H). Utilizing our approach, we seek to confirm

that, in this case, the stationary concentration of RP is invariant to

variations in the expression levels of both proteins. For brevity, we

again consider a highly simplified system and focus on the

construction of the invariant perturbation space. In particular, the

formation of protein complexes is neglected and all phosphory-

lation reactions are assumed to follow mass-action kinetics. A

solution of the full system, including an explicit account of

conserved moieties, is provided in Text S1 (Section VII).

To obtain the invariant perturbation space, we first derive the

matrix M of logarithmic partial derivatives of reaction rates with

respect to the non-robust variables H , R, and HP. We assume that

both proteins are synthesized and degraded with unknown rates

v+H and v+R – using the simplifying assumption that degradation

(or dilution) acts only on the unphosphorylated forms H and R.

The unknown partial derivatives of the degradation reactions are

denoted as aH~Llnv{H=LlnH and aR~Llnv{R=LlnR, respec-

tively. The remaining reactions are assumed to follow mass-action

kinetics, resulting in partial logarithmic derivatives of unit value.

Specifically, the phosphorylation rate v1 is dependent on the

concentration of the unphosphorylated form H , the phospho-

transfer rate v2 depends upon the concentration of R and HP, and

the dephosphorylation rate v3 finally depends on the concentration

of the phosphorylated response regulator RP, as well as the

unphosphorylated form H of the bifunctional kinase. The matrix

M is given in Figure 2B.

As the next step, we need to identify the nullspace K of the

scaled stoichiometric matrix N :diag(vs). The nullspace of the

unscaled stoichiometric matrix is readily available using standard

tools of linear algebra. The representation of the unscaled

nullspace is subsequently scaled with the unknown steady state

reaction rates, such that d{1
1 :~vs

+H , d{1
2 :~vs

+R, and

d{1
3 :~vs

1~vs
2~vs

3. A representation of the scaled nullspace is

provided in Figure 2B. Taken together, we again obtain the

invariant perturbation space as the maximal subspace spanned by

the columns of M jKð Þ independent of kinetic parameters or

steady state reaction rates. A matrix representation of the invariant

perturbation space is given in Figure 2C.

We assume that the system is perturbed by unknown variations

in the synthesis rates of both proteins, vzH and vzR, respectively.

The corresponding partial derivatives with respect to unknown

perturbations are denoted as gH and gR and shown in Figure 2C.

To ascertain global concentration robustness of RP, we confirm

that the rank condition rank (PjI)~rank (I) is indeed fulfilled.

Hence, the output of the pathway, the steady state concentration

of RP, is invariant to perturbations in the synthesis rates of both

components.

We note that, in general, our approach does presuppose that

the system gives rise to a biologically feasible steady state

solution for RP. This requirement usually entails additional

constraints on the possible reaction rates and kinetic parame-

ters. For example, robustness of RP is only feasible under the

condition that the total expression of the response regulator

RT~RzRP exceeds the steady state solution for RP. Below we

present a generalization of the rank condition to account for

additional constraints on molecule concentrations (see also Text

S1, Section VIII).

Conserved Moieties and Further Applications
Our approach is applicable to a variety of different scenarios,

including several special cases which are discussed in the following.

In particular, our approach relies on an interpretation of the

elements of the matrix M – the logarithmic partial derivatives of

reaction rates with respect to the intermediate variables. For

typical biochemical rate equations, these partial derivatives are

nonlinear functions of kinetic parameters and therefore usually

represent unknown and state-dependent quantities. However, as

demonstrated above, our approach is still applicable in such a

situation and does not require extensive knowledge of the

Figure 2. Robustness of two-component systems. (A) The model consists of 7 reaction rates and includes synthesis and degradation of the
histidine kinase (H) and the response regulator (R). Robustness against fluctuations in expression is conveyed by the bifunctionality of the histidine
kinase that catalyzes dephosphorylation of the response regulator (RP). (B) The matrices M and K are constructed as described in the main text.
Lowercase Greek letters denote real numbers, corresponding to unknown partial derivatives and unknown steady state reaction rates. (C) A matrix
representation I of the invariant perturbation space that is independent of kinetic parameters. The perturbations affect the synthesis rates of both
proteins and the corresponding perturbation vectors have nonzero elements for the respective reaction rates. However, in both cases, the
perturbation vector is an element of the invariant perturbation space, hence the condition for perfect concentration robustness of RP for these
perturbations is fulfilled.
doi:10.1371/journal.pcbi.1002218.g002

Robust Signal Processing in Living Cells

PLoS Computational Biology | www.ploscompbiol.org 4 November 2011 | Volume 7 | Issue 11 | e1002218



functional form of the rate equations. In the most general case,

each logarithmic partial derivative is represented by an unknown

non-zero value within the matrix M . The resulting invariant

perturbation space is required to be independent of these unknown

derivatives. Hence, the invariant perturbation space is predomi-

nantly a structural property of the network and is identical for

structurally equivalent networks. See Text S1 for details.

However, in some cases the elements of the matrix M can be

constraint further, owing either to particular functional forms of

the rate equations or to simplifying assumptions that allow to

approximate more complicated rate equations. An example of the

former are generalized mass-action (GMA) kinetics of a reaction

rate vi(x,p),

vi(x,p)~ki P
n

j~1
x

aij
j : ð8Þ

For GMA kinetics, the partial logarithmic derivatives correspond

to the exponents aij and are often considered to be constant

quantities. Consequently, the partial logarithmic derivatives may

be represented as constant entries within the matrix M . In this

case, the invariant perturbation space is particularly straightfor-

ward to obtain.

As an example of simplifying assumptions, we note that complex

rate equations are often approximated by more simple equations

corresponding to specific kinetic regimes. In particular, a

Michaelis-Menten equation can be approximated by a mass-

action term or a constant for substrate concentrations far below or

far above the Michaelis constant, respectively. In this case, the

logarithmic partial derivative is approximately constant or zero,

respectively. However, any result from applying the criterion for

global concentration robustness is only valid as long as the

assumptions underlying the approximation are fulfilled.

As yet, we have only considered reaction networks in the

absence of mass-conservation relationships or conserved moieties.

However, often the total concentration of some compounds can be

considered as approximately constant over the relevant time-

scales, giving rise to additional dependencies between variables. In

this case, the system of differential equations for the independent state

variables, x is augmented by a set of dependent state variables xD,

whose values are determined by a set of mass conservation

equations. The full system of equations governing the time

evolution of the system is

_xx~N :v x,xD,p
� �

ð9Þ

xT~L:xzxD, ð10Þ

with the vector xT denoting the total concentration of each

molecular component. The matrix L denotes a link matrix and

usually consists of integer elements. To incorporate these

dependencies within our approach, we must modify the definition

of the matrix M to account for the logarithmic partial derivatives

with respect to the dependent variables. See Text S1 for details.

Using the augmented matrix M , our approach proceeds as

described above. As a corollary, we then obtain a simple criterion

to judge global concentration robustness with respect to pertur-

bations in conserved total concentrations [5,6], see Text S1

(Section VII.B).

Our approach differs from a number of previous approaches to

investigate robustness of biochemical reaction networks [1,5,6,13].

The formalism is not restricted to systems described by mass-

action kinetics, but is applicable a wide range of ODE-based

descriptions of biochemical networks. Likewise, we do not focus on

specific types of perturbations, such as variations in conserved

moieties [5] or temperature [13]. Rather, our approach is

applicable to any perturbation that can be described by a vector

of partial derivatives of reaction rates – of which variations in

conserved moieties, as well as of temperature are particular

examples. We also mainly envision a scenario, where the

perturbations are slow compared to the intrinsic fluctuation-

compensation dynamics of the pathway. In particular, we consider

the steady state of a selected subset of variables to represent the

robust output of the system. Transient fluctuations in the vicinity

of this state are not considered. However, the scenario described in

this work indeed holds for many instances of cellular robustness.

For example, in the case of gene expression noise, the observed

fluctuations in expression levels are usually at least an order of

magnitude slower than the phosphorylation dynamics in subse-

quent signaling pathways. Hence such fluctuations can be

compensated by post-translational mechanisms – as described

within this work. Similar arguments apply for several dominant

fluctuations typically encountered by cellular signaling pathways,

such as variations in temperature or abundance of common

resources like ATP.

The Robustness of the Escherichia coli Chemotaxis
Pathway

To substantiate the explanatory power achieved by an

interpretation of a complex cellular signaling network in terms

of its associated invariant perturbation space, we now consider the

robustness of the E. coli chemotaxis pathway. The topology of the

pathway is depicted in Figure 3. The pathway responds to changes

in concentrations of chemoeffectors such as certain amino acids or

sugars by altering the phosphorylation state of the diffusible

response regulator CheY. The concentration of free phosphory-

lated CheY (Yp) – the central output quantity of the pathway –

then determines swimming behavior of the cell. Robust and

precise regulation of Yp is a prerequisite for high chemotaxis

efficiency and is maintained in the face of multifarious perturba-

tions, most notably ATP availability, stochasticity in component

abundance [14], and receptor cluster assembly [15,16]. However,

seemingly contradicting its functional objective, the pathway is

rather sensitive to variations in the expression of some of its

constituent proteins. For example, it was shown that a two-fold

overexpression of CheZ or CheY levels already result in an 50%

decrease of experimentally observed chemotactic performance, as

determined by the size of swarm rings on soft agar plates [17].

To reveal the mechanisms underlying the remarkable robust-

ness that nonetheless allows reliable functioning of the pathway,

we construct the invariant perturbation space I as described

above. The concatenated matrix (MjK) is obtained by consider-

ing the stoichiometric matrix and the kinetic dependencies

shown in Figure 3. See SI (Section V) for details of the derivation.

A parameter independent representation of the invariant

perturbation space is shown in Figure 4A. To investigate the

robustness of the pathway, we first consider changes in

chemoeffector concentration (L), perturbations in the expression

of CheA (AT) and CheW (WT), as well as variations in receptors

(T) and ATP availability (ATP). The corresponding perturbation

vectors are shown in Figure 4B. In each case, the corresponding

perturbation vector is an element of the invariant perturbation

space and the rank condition for global concentration robustness

of Yp is fulfilled. Hence, the diffusible response regulator Yp

indeed exhibits global robustness of its stationary concentration

with respect to these five highly detrimental influences.

Robust Signal Processing in Living Cells
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Next, we consider changes in the expression of the individual

proteins CheR (RT ), CheB (BT ), CheY (Y T ), and CheZ (ZT ). The

corresponding perturbation vectors are given in Figure 4C. As can

be ascertained by inspection of the rank condition, the respective

perturbation vectors are not elements of the invariant space – in

good agreement with the rather high sensitivity exhibited by the

pathway in response to variations in the expression of these

proteins [17]. Nonetheless, the observed total concentrations of

CheR, CheB, CheY, and CheZ are not ‘‘fine-tuned’’ and are

known to exhibit considerable variability under various conditions.

To explain this alleged paradox, we have to take the sequential

arrangement of genes into operons, as shown in Figure 3B, into

account. A closer inspection of Figure 4 then reveals that

perturbations that arise from concerted fluctuations in protein

concentrations, induced by stochastic synthesis of meche operon

transcripts, are within the invariant perturbation space. And,

indeed, coupling of expression levels of chemotaxis proteins

adjacent on an operon has been experimentally shown to

positively correlate with chemotactic efficiency and to underlie

active selection during chemotactic spreading on soft agar plates

[18]. Generalizing from this example, we expect that gene

organization into operons and expression from polycistronic

mRNA is a generic, evolutionary driven, mechanism to alle-

viate detrimental effects of stochasticity in gene expression. In

the context of our framework, coupling of expression on the

transcriptional [14] and translational level [18], reduces the

effective dimensionality of a perturbation, thereby enabling an

invariant perturbation space of lower dimension to compensate

and counteract the detrimental effects of fluctuations. In this sense,

strong transcriptional and translational coupling is closely related

to the robustness conveyed by bifunctional enzymes [5]. For the E.

coli chemotaxis pathway strong coupling of genes expressed from

one operon is evident in cells expressing yellow and cyan

fluorescent protein fusions to CheY and CheZ, respectively, from

one bicistronic plasmid construct, as shown in Figure 5A [14,19].

The striking invariance of the pathway output upon a seven fold

concerted increase in the transcriptional activity of the chemotaxis

operons following the deletion of the anti sigma factor FlgM is

shown in Figure 5B [14,19].

As argued previously [20], the benefits of co-variation to reduce

the effective dimensionality of perturbations are likely to confer a

selective advantage strong enough to drive the assembly of genes

into operons. Our results also highlight the functional importance

of seemingly redundant or insignificant interaction characteristics,

whose functional relevance is difficult to ascertain without an

appropriate theoretical framework. A striking example is the

catalyzed dephosphorylation of CheY by CheZ, as opposed to the

uncatalysed dephosphorylation of CheB. While such a difference

often seems extraneous to reliable signal transduction, such

differences also shape the invariant perturbation space and are

therefore crucial to achieve robust signal processing. A further

example of a relevant interaction characteristic is the competitive

binding of CheY and CheB to CheA, which results in a

phosphotransfer rate to CheB that scales as 1=½CheY �. While

not fine-tuned on the parameter level, this qualitative dependence

is a prerequisite for robustness of the pathway output and in

excellent agreement with experimental findings [21]. In this sense,

our approach also offers a theoretical framework to investigate the

functional relevance of given reaction characteristics – beyond

their role in straightforward signal transmission.

Conclusions
The interpretation of a complex cellular signaling network in

terms of its associated invariant perturbation space has profound

implications for our ability to understand and eventually rationally

engineer robust biological circuits. There is increasing evidence

that the utilization of post-transcriptional noise compensatory

networks is a widespread mechanism in prokaryotic signaling.

Experimentally ascertained examples include instances of two-

component systems [1,11,12], the regulation of the glyoxylate

bypass [22], and the sporulation network of B. subtilis [20]. In each

case, an evolved network topology relegates potentially detrimen-

tal fluctuations in compound concentrations to its associated

invariant perturbation space – rather than utilizing an expensive

machinery to fine-tune native expression levels. We expect that

similar mechanisms will provide an indispensable backbone for

synthetic biology. Guided by the algorithmic construction of the

invariant perturbation space, a key strategy for synthetic biology is

to either maximize the invariant perturbation space by rationally

rewiring the specificity of protein interactions [23,24], or

correlating perturbations among components, by placing genes

on polycistronic mRNA or by building fusion constructs – in each

case circumventing the need to fine-tune parameters that are

experimentally hard to control. Our algorithm is applicable to

large systems and requires only qualitative information on kinetic

Figure 3. The E. coli chemotaxis pathway. (A) A pathway diagram
and (B) the organization of its constitutive genes into two operons,
denoted as mocha and meche. (C) To a good approximation, the
pathway can be described by three variables: the average methylation
state m, the concentration of phosphorylated methylesterases CheB
(Bp) and the concentration of phosphorylated response regulator
protein CheY (Yp). See Materials and Methods for definitions and
equations.
doi:10.1371/journal.pcbi.1002218.g003
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interactions. Our results allow us to clarify several long-standing

issues relating to the emergence of cellular robustness. In

particular, we hypothesize that the ubiquitous existence of

puzzling, seemingly redundant, interaction loops that characterize

our current understanding of cellular pathways is deeply rooted in

as yet unrecognized mechanisms to counteract functional fragilities

[10,25]. In this sense, an interpretation of signalling architecture in

terms of its invariant perturbation space offers a novel paradigm to

understand cellular robustness, with the prospect to rationally

engineer robust signaling circuits or target cellular defects.

Materials and Methods

Local Concentration Robustness
In the following, we outline the conditions for local concentra-

tion robustness, as stated in Eq. (2). We employ a logarithmic

expansion of the stationary form of Eq. (1), N :vs~0, with

vs :~v(xs,p), to linear order in a perturbation Dp and the resulting

changes in the state variables Dx,

0~N :diag(vs): P:Dp̂pzM :Dx̂xMzA:Dx̂xA
� �

ð11Þ

with diag(vs) denoting a square matrix with entries vs on the

diagonal. The expansion coefficients are

Pi :~
p

vs
i

Lvs
i

Lp
, M ij :~

xM
j

vs
i

Lvs
i

LxM
j

, Aij :~
xA

j

vs
i

Lvs
i

LxA
j

: ð12Þ

The relative perturbation and its response are defined as

(Dp̂p)~Dp=p, (Dx̂xM )i~DxM
i =xM

i , and (Dx̂xM )i~DxA
i =xA

i .

Figure 4. Robustness of the E. coli chemotaxis pathway. (A) A representation of the invariant perturbation space I , obtained from the
concatenated matrix (M jK). The column headers indicate the provenance of each column, as either a partial derivative with respect to the three
variables Yp , m, and Bp , or the representation of the nullspace. (B) The perturbation vectors for variations in concentrations of chemoeffectors (L),
total CheA (AT ), total CheW (W T ), receptor assembly (T) and ATP availability (ATP). Lowercase Greek letters denote real numbers corresponding to
contributions from the derivatives of (unspecified) nonlinear functions, namely Ac~Ac(AT ,W T ,T), Ps~Ps(m,L), and kA~kA(ATP). The rank
condition, rank (PjI)~rank (I), is fulfilled for each perturbation vector. Hence, the pathway output Yp maintains global concentration robustness
with respect to these perturbations. (C) Pertubations in the total concentrations of individual proteins CheR (RT ), CheB (BT ), CheY (Y T ), and CheZ
(ZT ) are not elements of the invariant space. However, the pathway exhibits robustness against concerted variations in the expression of the meche
operon. In this case, the perturbation vector P consists of additive contributions from each individual perturbation – corresponding to an effective
reduction of dimensionality of the perturbations.
doi:10.1371/journal.pcbi.1002218.g004

Figure 5. Concerted behavior of the expression level and robust response dynamics of the E. coli chemotaxis pathway as a
consequence of the operon and regulon structure. (A) Single-cell concentrations of CheY-YFP and CheZ-CFP, bicistronically expressed from
one plasmid pVS88 at 50 mM IPTG induction. (B) Response dynamics of the pathway activity measured by FRET after a step-like addition of attractant
(30 mM a-DL-methylaspartate) at time 50 s, followed by attractant removal at time 300s, for native (black line) and seven fold upregulated (red line)
transcriptional activity of the chemotaxis pathway genes (see SI, Section VI, for details).
doi:10.1371/journal.pcbi.1002218.g005
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In the absence of the condition for robustness of the pathway

output, Dx̂xA~0, the expansion Eq. (11) has a unique solution for

Dx̂x that quantifies the local linear response to a sufficiently small

perturbation in parameters. The existence of the solution is

guaranteed by the requirement that the Jacobian of the system is

of full rank and hence invertible, implied by the dynamic stability

of the considered steady state. Similar consideration are

extensively utilized within, for example, Metabolic Control

Analysis [8,13,26,27].

However, the requirement of concentration robustness,

Dx̂xA~0, removes the degrees of freedom that correspond to

(changes in) the output variables x̂xA. In this case, Eq. (11)

translates into the condition

0~N :diag(vs): P:Dp̂pzM :Dx̂xM
� �

ð13Þ

In general, Eq. (13) is overdetermined, that is, no solution exists

and the condition DxA~0 cannot be fulfilled. Eq. (13) has a

unique solution Dx̂xM if and only if at least one of the following two

conditions holds: Either the columns of the matrix P are elements

of the right nullspace of the matrix N :diag(vs), spanned by the

columns of the matrix K . In this case, we obtain N :diag(vs):P~0

and, necessarily, Dx̂xM~0. Or, the columns of the matrix P are

linearly dependent on the columns of the matrix M . In

mathematical terms, these two conditions can be summarized in

the equation

rank(PjMjK)~rank(MjK): ð14Þ

Here, the columns of K span the right nullspace of N :diag(vs),
such that N :diag(vs):K~0. The notation (M jK) denotes a

concatenation of the columns of the matrices M and K , as

described in the main text. See also SI (Sections II and IV) for a

rigorous derivation.

Towards Global Concentration Robustness
In the following, we outline the formal definitions and proof for

global concentration robustness. For conciseness, we consider only

generalized mass action (GMA) networks without conserved

moieties. The general case, including a formal derivation of the

conditions for global concentration robustness, is described in SI,

Section IV. The biochemical network is defined as in Eq. (1). We

consider a perturbation p that takes values in a physically

reasonable, connected set P. For a GMA network, the reaction

rates are given by vi(x,p)~ki P
m
j~1 x

aij

j Wi(p) for reaction rates

affected by the perturbation and vi(x,p)~ki P
m
j~1 x

aij

j for reaction

rates not affected by the perturbation. The concentration vector is

split into x~(xA,xM ) as described in the main text. The network

is assumed to have a perturbation-dependent steady state xs(p)
which is asymptotically stable for all p in a physically reasonable,

connected perturbation set P.

The property of global concentration robustness is then formally

defined as follows: For any values of the reaction rate parameters

ki and any choice of the functions Wi, the steady state output

concentration vector xA
s (p) is constant over P.

The global invariant perturbation space as discussed in the main

text for a GMA network is given by I~ im Mzim K , where im
denotes the image or range of the matrix. Thereby, M are the

columns of the matrix with elements aij , i.e. the logarithmic

derivatives of the reaction rate vector with respect to xM , and K is

a matrix whose columns span the space of the vectors which are in

the kernel of N diag(a) for all a in the kernel of N .

To obtain a condition for global concentration robustness, we

consider the vectors P whose elements Pi are zero whenever the

reaction rate vi is not affected by the perturbation p. If all such

vectors P are element of the space I , then the network has global

concentration robustness. Conversely, if there exists such a P
which is not in the space I , then there exists rate parameters ki

and functions Wi for which the steady state output concentration

xA
s (p) is not constant over P, and thus the network does not have

global concentration robustness. Computationally, the condition

P[I can be tested by the rank condition rank (PjI)~ rank I ,

where I is any matrix whose columns span the space I .

The E. coli Chemotaxis Pathway
The signal transduction of the E. coli chemotaxis pathway can

be described to good accuracy by the interplay of the core

components, the methyl accepting chemoreceptors (Tar, Tap, Tsr,

Trg), the methyltransferase CheR, the methylesterase CheB, the

response regulator CheY and its designated phosphatase CheZ

(see Box 1). The total concentrations of these proteins are

approximately RT :~½CheR�&0:2mM, BT :~½CheB�&0:3mM,

Y T :~½CheY�&10mM, ZT :~½CheZ�&3mM, AT :~½CheA�
&5mM, T :~½Tar�z½Tsr�&3mM, and Ttot :~½Tar�z½Tsr�z
½Trg�zTap�&5mM. The concentration T includes all receptors

where CheR and phosphorylated CheB can bind to with high

affinity, via a pentapeptide sequence at the carboxyl termini of the

Tar and Tsr receptors. The set of mass action equations that

determine the phosphorylation level of free diffusible response

regulator proteins, Yp, are listed below.

Methylation. The time evolution equation of the average

receptor methylation level in the cell, m :~
P

k k
T

(a)
k

Ttot
, with T

(i)
k

the concentration of receptors of type i and k residues methylated,

is given by

Ltm~kR
RT

KTzT
{kB

Bp

KTzT
, ð15Þ

with Bp the concentration of phophorylated methylesterases,

CheB, whose catalytic activity is 10{100-fold higher than in the

unphosphorylated case. The dissociation constants of CheR and

phosphorylated CheB to the pentapeptide sequence of Tar and

Tsr are similar and are given a fixed value KT for both proteins.

The functional form of the net methylation rate reflects

experimental findings in the physiological relevant low-activity

regime of receptor clusters [28]. We note that most mathematical

models ignore CheB phosphorylation and assume that CheB acts

predominantly on active receptors, a contribution which is ignored

in our approach. As to leading order Bp*BT P(t), with P(t) the

probability to find receptors in the active state, both approaches

show essentially the same adaptation dynamics. The reason why

the net methylation rate does not follow the biochemically

expected rate _mm*const{Bp P(t) is still unknown [28].

Receptor activation. The signal amplification within a

receptor cluster can be explained by assuming N receptors to form

independent allosteric units that change activity in unison [29]. Here,

the probability to find an active receptor complex takes the form

P(t)~½1zexp½N(FzS)��{1, ð16Þ

with receptor energy F~E{E’m, as a function of the average

methylation level per receptor, m, and the free energy contribu-

tion of attractant binding to receptors of type i, S~
X

i
Ni=N

½ln(1zL=K
off
i ){ln(1zL=Kon

i )�, with L the ligand concen-

tration. Any transient dynamics in receptor activation is absent for
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fixed m and L as the required conformational changes of these

molecules equilibrate on the milliseconds time scale.
Binding of CheY to CheA. CheY binds with high affinity to

the P2 domain of CheA with dissociation constants KY&1mM,

KYp&1mM and high on and off rates. This determines the free

concentrations of CheA which is given by

A~AT 1

1z(KY ){1Yz(KYp){1Yp
&AT KY

YzYp
ð17Þ

Here, binding of CheB to CheA has been neglected as

YzYp&BzBp.
Binding of CheB to CheA. CheB binds with high affinity to

the P2 domain of CheA with dissociation constant KB&2mM and

is assumed to have similar high on and off rates as CheY. This

determines the free concentration of CheB given by

B~(BT{Bp)
KB

KBzA
&(BT{Bp), ð18Þ

where the approximation follows the same reasoning as above.
CheY phosphorylation. CheY receives phospho-groups at

the P2 domain of CheA by phosphotransfer from the P1 domain

of CheA. As P1 domain phosphorylation is the rate limiting step,

only a small fraction of CheA is phosphorylated in the adapted

state. We can therefore describe CheY phosphorylation dynamics

to good approximation by

LtYpT~kAP(t)(Ac{Ac
p){kZ½ZYp� ð19Þ

&kAP(t)Ac{kZZT Yp

KZzYp
, ð20Þ

where in the last line the ½ZYp� complexes have been resolved by

introducing the Michaelis-Menten constant KZ . The concentration

of total and free diffusible phosphorylated CheY is denoted by YpT

and Yp, respectively. We emphasize that the autophosphorylation

rate of CheA depends on the intracellular ATP concentration,

kA~kA(ATP), and only those P1 domains can be phosphorylated

where CheA is part of functional allosteric receptor complexes. The

concentration of these functional receptor-kinase complexes is

denoted by Ac~Ac(T ,W T ,AT ) and depends on the concentrations

of its constituents, CheA, CheW, Tar, Tap, Tsr and Trg, with

variable receptor stoichiometry.
CheB phosphorylation. CheB gets phosphorylated at the P2

domain of CheA, receiving a phospho-group from the P1 domain

of CheA. As for CheY, the P1 domain phosphorylation is believed

to be the rate limiting step. Thus we have to good approximation

LtBp~kAP(t)Ac KY

KB

B

Y
{cBBp: ð21Þ

Here, the term
KY

KB

B

Y
reflects the reduced phosphotransfer rate to

CheB as a consequence of the *30-fold higher abundance of

CheY, which occupies most of the P2 binding domains as

KY&1mM.

Stationary Solutions and the Dependency Matrices
In the following, we consider the stationary case of the

chemotaxis equations. We thereby employ the approximations
KY

YzYp
&

KY

Y
as Yp%Y , KT%T , B&BT as Bp%BT , and

Y&Y T . The simplified set of stationary equations read

Ps(m,L)~
1

1zexp½N(F s(m)zSs(L))� ð22Þ

0~ kR
RT

T|fflffl{zfflffl}
v1

{ kB
Bp

T|fflffl{zfflffl}
v2

ð23Þ

0~ kAPsAc KY

KB

BT

Y T|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
v3

{ cBBp|ffl{zffl}
v4

ð24Þ

0~ kAPsAc|fflfflfflffl{zfflfflfflffl}
v5

{ kZZT Yp

KZzYp|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
v6

, ð25Þ

where we have resolved the complexes ½AY �~(KY ){1A Y and

½AB�~(KB){1A B and introduced the stationary functions F s and

Ss as defined above for time independent mean methylation level

m and fixed ligand concentration L. A derivation of the entries in

Figure 4 is provided in Text S1.

Supporting Information

Text S1 Supplementary information. A formal derivation

of the conditions for global concentration robustness and

additional examples.

(PDF)
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