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Abstract

Farnesylation is an important post-translational modification catalyzed by farnesyltransferase (FTase). Until recently it was
believed that a C-terminal CaaX motif is required for farnesylation, but recent experiments have revealed larger substrate
diversity. In this study, we propose a general structural modeling scheme to account for peptide binding specificity and
recapitulate the experimentally derived selectivity profile of FTase in vitro. In addition to highly accurate recovery of known
FTase targets, we also identify a range of novel potential targets in the human genome, including a new substrate class with
an acidic C-terminal residue (CxxD/E). In vitro experiments verified farnesylation of 26/29 tested peptides, including both
novel human targets, as well as peptides predicted to tightly bind FTase. This study extends the putative range of biological
farnesylation substrates. Moreover, it suggests that the ability of a peptide to bind FTase is a main determinant for the
farnesylation reaction. Finally, simple adaptation of our approach can contribute to more accurate and complete elucidation
of peptide-mediated interactions and modifications in the cell.
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Introduction

Protein prenylation is a post-translational modification in which

a prenyl group (farnesyl or geranylgeranyl) is attached to the

protein via a thioether bond to a cysteine at or near the carboxy

terminus of the protein (reviewed in [1,2]). Protein farnesyltrans-

ferase (FTase) and geranylgeranyltransferase type I (GGTase-I) are

also called CaaX prenyltransferases, due to their ability to catalyze

modification of peptides and substrate proteins bearing the

carboxy terminal (C’) Cys-aliphatic-aliphatic-variable amino acid

(Ca1a2X) motif [3].

Upon binding of the substrate and the C-terminal Ca1a2X

motif, the catalytic zinc ion of FTase coordinates the thiol side

chain of the cysteine and catalyzes the covalent attachment of the

lipid anchor to this residue. A detailed view of this mechanism has

been obtained by a series of structures solved at different stages of

the reaction [4]. After the covalent attachment of the isoprenoid in

the cytoplasm, substrate proteins can undergo further processing,

resulting in a C’ structure that is able to serve as a specific

recognition motif in certain protein-protein interactions [5] and to

direct the modified protein towards incorporation into cellular

membranes [6].

A wide range of proteins involved in diverse cellular functions

require this post-translational modification for their action [2].

While numerous proteins have been experimentally shown to

undergo farnesylation in vivo [7,8,9], it is likely that many FTase

substrates remain to be discovered. There is a wide interest in

the mapping of FTase targets in the genome, in part due to

the therapeutic potential of FTase inhibitors against cancer

[10,11,12], as well as parasitic infection [13,14]. Identification of

new targets might lead to novel therapeutic approaches [15].

Moreover, the elucidation of cellular FTase targets might shed

light on the function of various proteins, as well as on the cellular

network of interactions.

Computational approaches have predicted FTase targets based

on sequence features of known targets [7,8]. These methods show

good performance in terms of sensitivity, i.e. known targets are

correctly identified. Thus, prenylation is mainly defined by the last

four residues of the protein, although additional weaker sequence

constraints have also been identified upstream in the sequence

[16]. Other approaches were based on manual inspection and

derived from structural features [9].

Substrate specificity has also been examined using peptide

libraries. A comprehensive study by Hougland et al. on the

farnesylation of a large synthetic peptide library has allowed a

detailed characterization of FTase specificity [17]. In addition to

compiling a large and clean dataset of peptides that contains both

efficient substrates and non-substrates for FTase, this study

discovered a third group of sequences that are farnesylated only

under single-turnover (STO) conditions ([E].[S]). Analysis of

peptide substrates has also demonstrated that reactivity depends

on synergy between the side chains at the a2 and X positions [18].
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These findings indicate that FTase substrate recognition is more

complex than the simple Ca1a2X motif model, and that non-

canonical sequences can serve as substrates.

A large number of structures have been determined for FTase

and FTase-substrate peptide complexes [19]. The peptide binding

pocket is well-characterized, although a structure of the ternary

FTaseNfarnesyl diphosphate(FPP)Npeptide in an active conforma-

tion has not been determined [9]. The Ca1a2X cysteine sulfur

atom (prior to the product formation) coordinates the catalytic

Zn2+ ion together with side chains (D297, C299 and H362) of the

FTase b-subunit. The a1 side chain points out of the binding

pocket and faces the solvent, while the a2 side chain is buried

within the binding pocket and interacts both with the farnesyl

chain of FPP and the residues lining the pocket. The C’ X position

interacts with residues mostly from the FTase b-subunit and is

considered the main determinant for the specificity between FTase

and GGTase-I 9. Finally, two highly conserved hydrogen bonds

are formed: 1) between the C-terminal carboxylate group and the

side chain of FTase Q167a and 2) between the a2 backbone

carbonyl oxygen and the side chain of FTase R202b (Figure 1).

Despite this detailed structural information, only a handful of

different peptide sequences have been solved in complex with

FTase.

We previously developed a scheme for modeling the structures

of peptide-protein complexes (Rosetta FlexPepDock [20]), which is

incorporated within the Rosetta modeling suite framework [21].

This protocol is the starting point for the development of a

structure-based scheme for the prediction of peptide binding

specificity (FlexPepBind). Specifically, to refine FlexPepBind for

the prediction of FTase binding peptides, we have incorporated

constraints derived from the conserved features in solved FTase

structures and adapted the energy function to distinguish between

reacting and non-reacting tetrapeptides (based on an underlying

assumption that tetrapeptides that bind will react, while those that

do not bind will not react). We trained and tested this protocol

against the recent dataset published by Hougland et al. [17].

Validation of the protocol against several independent sets showed

accurate prediction of peptides that could be farnesylated, both

under multiple turnover (MTO) and single turnover (STO)

conditions. Evaluation of all possible Cxxx peptides identified a

previously uncharacterized class of farnesylation targets that

contain an acidic C-terminal residue. The 13 peptides predicted

to bind with best affinity were experimentally shown to indeed

undergo farnesylation in vitro. Finally, a genomic scan for novel

FTase targets revealed 77 novel putative FTase targets previously

undetected by sequence-based approaches. Among these, 13 out of

16 selected novel putative farnesylation targets were indeed

farnesylated by FTase in an in vitro experimental validation.

FTase-peptide binding is a model system for our approach to

peptide-protein binding specificity prediction and design. Our

protocol can easily be adapted to additional peptide-protein

interactions where both experimental structure and affinity data

are available, thereby providing a mechanism to identify targets

not detectable by sequence conservation only.

Results

FlexPepBind discrimination of FTase binding and non-
binding peptides

Recently Hougland et al. performed a large-scale study, in which

they characterized a TKCxxx peptide library for reactivity with

rat protein farnesyltransferase (rat FTase) [17]. Out of an ini-

tial library of 213 sequences, 77 peptides are farnesylated under

multiple turnover (MTO) conditions, and 51 sequences are not

farnesylated under any conditions. Interestingly, the remaining 85

sequences are farnesylated under single turnover (STO) conditions

but not under MTO conditions.

We set out to use FlexPepBind and the structural data available

for FTase to discriminate MTO sequences from non-reactive

(NON) peptide sequences, using the 77 MTO and 51 NON

peptide sequences as our training set (128 peptides in total; Dataset

S1A). Towards this end, we used the high resolution structure of

human FTase in complex with a peptide derived from the carboxy

terminus of Rap2a and a farnesyl diphosphate (FPP) analog (PDB:

1tn6 [9]) to create a starting model. The bound peptide was

truncated to include only the terminal Ca1a2X motif. Different

peptide sequences were then threaded onto the peptide backbone

and used as starting structures.

Initially, we modeled peptide-FTase complex structures for

different peptide sequences by applying the Rosetta FlexPepDock

protocol to the threaded starting models. This protocol was

developed previously in our lab for the modeling and refinement

of peptide-protein complex structures to high resolution [20]. Our

simulations included three constraints, namely the conservation of

the 2 structurally conserved hydrogen bonds (C’ carboxylate -

FTase Q167a; a2 backbone carbonyl oxygen - FTase R202b) and

the location of the cysteine sulfur atom coordinating the Zn2+ ion

(Figure 1, see Methods for more details).

For each simulation, the energy of the best scoring Cxxx peptide

was extracted (see Methods for further details). Figure 2A shows

the Receiver Operating Characteristic (ROC) plot for the ability of

the peptide energy to discriminate between MTO sequences and

non-substrate sequences. The plot shows very good discrimination

with an Area Under the ROC Curve (AUC) value of 0.915 on our

training set.

These results demonstrate that a structure-based evaluation of

the peptide energy can distinguish very well between farnesylated

and non-farnesylated peptide sequences. Since the known

constraints restrict the simulation to a closely defined region in

the binding site, we reasoned that a simpler and faster protocol

Author Summary

Linear sequence motifs serve as recognition sites for
protein-protein interactions as well as for post-translation-
al modifications. One such motif is the CaaX box located at
protein C-termini that serves as prenylation site. This
prenylation is critical for many signal transduction related
proteins and it is thus an important goal to uncover the
range of prenylated proteins. Due to poor generalization
ability, sequence based computational methods can only
go so far in predicting novel targets. In this study, we
introduce a novel structure based modeling approach that
allows both recovery of known farnesylation substrates, as
well as detection of a new class of farnesylation targets.
We demonstrate high accuracy in retrospective discrimi-
nation between substrates and non-substrates of farnesyl-
transferase (FTase). More importantly, in a prospective
study, in vitro experiments validate that 26/29 predicted
peptides indeed undergo farnesylation. These novel
peptides were derived either from actual human proteins,
or predicted to bind particularly well to FTase. Other than
the discovery of putative novel farnesylation targets in the
human genome, as well as possible inhibitors, we provide
insights into the main determinants of farnesylation. Our
approach could be easily extended to additional peptide-
protein interactions and help the elucidation of the cellular
peptide-protein interaction network.

Identification of Novel FTase Targets
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might be able to model the peptides with similar accuracy. Our

simplified protocol therefore includes only a minimization using

the Rosetta energy function [21,22] under constraints to retain the

2 structurally conserved hydrogen bonds and the cysteine sulfur

atom location coordinating the Zn2+ ion (see above and Methods

for more details). This protocol yielded similar results with an

AUC value of 0.875 on the training set. A peptide energy

threshold of -0.4 (i.e. sequences with energy below/above -0.4 are

predicted to be binders/non-binders and therefore farnesylated/

non-farnesylated, respectively) corresponds to a 69% True Positive

Rate (TPR) and 8% False Positive Rate (FPR). A more stringent

threshold of -1.1 energy units corresponds to a 44% TPR and 2%

FPR (Figure 2A). With the two protocols exhibiting similar

performance, we decided to proceed further using the fast

minimization protocol. (Performance on the training set using

additional sampling and scoring schemes is summarized in Table

S1.)

Validation of FlexPepBind on independent test sets
To assess FlexPepBind using the selected thresholds, we evaluated

performance on three independent test sets (Dataset S1B-D online).

1. Secondary synthetic library (Dataset S1B). In their

original paper, Hougland et al. [17] assayed the activity of a

secondary synthetic peptide library, biased towards sequences

containing canonical amino acids at the a2 and X positions. In this

library, 29 peptides displayed MTO activity with FTase and 15

peptides were not reactive. The sequences from this library were

not used at any stage during the development of our protocol. The

ROC plot for this test set in Figure 2A shows an AUC value of

0.913 that is even better than for the training set. Applying the

thresholds identified in the training set yields 86% TPR/12.5%

FPR for the 20.4 threshold, and 72%/12.5% for the 21.1

threshold, respectively.

2. Known FTase substrate sequences (Dataset S1C). This

dataset is based on Table S1 from the study by Hougland et al. [17]

which lists the carboxy terminal sequences of known proteins that

serve as substrates for FTase, collected from different studies [7,8,9].

Figure 2B shows the energy distribution of the known sequences, as

estimated by FlexPepBind. Applying the thresholds obtained from

the training set, we are able to recover 64% of the known substrates

with the stringent threshold, and 85% of the known substrates with

the less restrictive criterion. These values are much better than the

TPR obtained for the training set.

3. Ca1a2L library (Dataset S1D). In a recent work by

Krzysiak et al. [23], a synthetic library of peptides of the form

Ca1a2L, ‘‘canonical’’ GGTase-I substrates, was characterized for

reactivity with FTase. In this study, sequences for which product

conversion was detected by HPLC were labeled as ‘true’ substrates,

while sequences for which no conversion was detected were labeled

as ‘false’ substrates [23]. Using the threshold of -0.4 results in

Figure 1. Structural overview of the FTase binding pocket. A top view of the binding pocket of human FTase (orange) in complex with C’
CNIQ peptide in Rap2a (green), and a farnesyl analog (red) (PDB: 1tn6 [9]). Arrows indicate the constraints used during the simulations: the two
structurally conserved hydrogen bonds (C’ carboxylate to FTase Q167a and the a2 backbone carbonyl oxygen to FTase R202b), as well as the sulfur-
Zn2+ coordination. The figure was created using PyMOL (http://www.pymol.org).
doi:10.1371/journal.pcbi.1002170.g001

Identification of Novel FTase Targets
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predictions with 87.5% TPR and 17.5% FPR, consistent with the

performance on other peptide libraries (Figure 2C). These results

demonstrate that the C’ residue is not necessarily the main

determinant of FTase substrate selectivity.

Exploration of the full substrate sequence space
Using FlexPepBind, we modeled all of the 8000 possible Cxxx

sequences and scored them according to our protocol. The

thresholds for the discrimination of MTO/NON predict that 1349

(17%; stringent threshold = 21.1) and 2309 (29%; thresh-

old = 20.4) of all tetramer peptide sequences could be possible

substrates (see Figure 3). This set of putative farnesylation targets

suggest a much more versatile binding motif than previously

accepted (see Figure 4): while position a2 of the Ca1a2X motif is

still prominently aliphatic (ILE/VAL/LEU/PHE), positions a1

and X are less restricted than previously reported (compare

Figure 4C to Figures 4A&B). In particular, we identify within this

set a novel class of farnesylation targets that contain an acidic

residue at the C-terminus (238/1349 putative targets; ,20%; see

Figure 4D).

Figure 4C indicates that the minimization-based protocol tends

to miss larger residues at the C-terminal X position. Indeed,

assessment of the prediction accuracy for this position on the

training set shows that only 1/8 CxxF and 0/3 CxxW sequences

are correctly predicted with the chosen protocol (CxxM peptides

are predicted with higher accuracy: 10/14). Using the FlexPep-

Dock based protocol, performance increases to: 6/8 CxxF; 2/3

CxxW and 11/14 CxxM, demonstrating that CxxF peptides are

indeed rescued by the additional backbone flexibility. Therefore, it

might be advisable to use the FlexPepDock based protocol for

peptides that contain a bulky C-terminal side chain.

Comparison to sequence-based approaches
We compared our predictions to the PrePS [7] prediction of

prenylation targets on the initial training set of peptides. Re-

garding the discrimination of MTO substrates from non-active

peptides, PrePS results are comparable to FlexPepBind (AUC of

0.92, with a threshold corresponding to 60% TPR for 2% FPR).

However, the performance for STO peptides is significantly better

for our structure-based approach: while FlexPepBind recovers

47% and 32% of the STOs with the loose and stringent thresholds

concordantly, PrePS predicts only 14% of these sequences as

substrates.

Experimental confirmation of novel substrate class
Since our retrospective studies indicated that our approach can

very accurately retrieve actual farnesylation targets, we were

interested in testing it prospectively – could novel targets be indeed

identified? We selected the 13 best scoring peptides (i.e. predicted

tightest binders), yet previously uncharacterized for experimental

validation. These are mostly ‘non-canonical’ peptides, including 5

peptides with an acidic C-terminal residue. Indeed, PrePS [7]

predicts only 2 out of the top-scorers to be FTase substrates. In vitro

Figure 2. FlexPepBind allows good discrimination between substrate - and non-substrate sequences. A. ROC-plot of the discrimination
between MTO peptide sequences and non-active peptide sequences on the training set with the FlexPepDock based protocol (green), the fast,
minimization based protocol (red), an independent test set (blue), and expected random discrimination (black). The Area Under the ROC Curve (AUC)
value for the training set is 0.915/0.875 for the FlexPepDock and minimization based protocols, accordingly. Note that the performance of the
minimization-based protocol on the test set is even better than on the training set (0.91 vs. 0.875). For the indicated points on the plot, an energy
threshold of -0.4 corresponds to a 69% True Positive Rate (TPR) and 8% False Positive Rate (FPR). A more stringent threshold of -1.1 energy units
corresponds to a 44% TPR and 2% FPR. Training and test sets are detailed in Dataset S1A&B. B+C. Validation on additional independent test
sets shows robust and reliable performance of our modeling protocol. B. The distribution of energies for known FTase substrate sequences.
The horizontal line indicates the -0.4 threshold obtained from the training set (see Text). Using this criterion, 85% of the known binders are recovered.
Note that this corresponds to a significantly better TPR than the one obtained on the training set. C. Energy distribution for a synthetic library of
Ca1a2L peptides investigated in Krzysiak et al. [23]. As in B., the horizontal line indicates a threshold of -0.4, which in this case displays 87.5% TP and
12.5% FP rates (i.e., only 3 false negatives and 2 false positives). The peptide sequences and scores can be found in Dataset S1C&D.
doi:10.1371/journal.pcbi.1002170.g002

Identification of Novel FTase Targets
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farnesylation assays indicate that all of these peptides indeed

undergo farnesylation catalyzed by FTase: 10 under MTO

conditions and 3 under STO conditions (Table 1A). These results

demonstrate the robustness of our protocol and its exceptional

accuracy. Importantly, they confirm the novel class of farnesyla-

tion substrates that contain a negatively charged C-terminal

residue (Figure 4D).

Structural investigation of this novel class of substrates suggests

that the negatively charged C’ side-chain is stabilized by FTase

residue His 149bwhile accepting a hydrogen bond from Trp102b
(GLU) and creating an additional hydrogen bond with the side-

chain of Ser99b (GLU & ASP) (see Figure S1). Additional polar

interactions with water molecules are possible but were not

explicitly modeled.

Genomic scan for novel human FTase targets
Equipped with a score that can predict both known and novel

FTase targets, we set out to scan the human genome for proteins

that may undergo farnesylation. Our protocol was developed based

on experimental assays on rat FTase (and the structure of human

FTase [9]). Since rat and human FTases show very high sequence

identity (92% and 96% for subunits a and b respectively), and none

of the sequence differences are located at or near the peptide

binding site, we are confident that our prediction scheme can be

applied to human farnesylation as well.

We identified 756 unique proteins in human SwissProt [24] that

contain the Cxxx motif at their carboxy terminus. 167 and 309 of

these protein sequences obtained scores lower than the 21.1 and

20.4 threshold values, respectively, indicating that these proteins

might be farnesylated by FTase. We focused on the group of 167

proteins detected with the more stringent threshold.

Could these proteins indeed be FTase substrates? Several

indications support our predictions: First, amongst the 167

candidates, 42 contain a Cxxx motif of a known FTase substrate.

Secondly, the Gene Ontology (GO) [25] cellular compartment

annotation for most of these 167 proteins is Membrane related (see

Figure S2; see Methods for more details). This supports their

association with membranes, possibly by farnesylation (albeit this

localization annotation might have been inferred from sequence

similarity). Furthermore, peptide library studies have demonstrat-

ed FTase-catalyzed farnesylation (under STO or MTO conditions)

of 50 of these Cxxx motifs (representing 66 human proteins) [17].

Finally, analysis of the putative target proteins with the PrePS

server predicts that most of them (90/167) are indeed FTase

targets, while the other 77 are not predicted to be farnesylated (see

Figure S3). To further characterize the latter, we proceeded with

in vitro experimental validation of selected sequences.

Figure 3. Energy distribution of all possible Cxxx sequences, as well as previously characterized peptides (STO, MTO and NON) [17].
The distributions of known single turnover (STO) and multiple turnover (MTO) peptide sequences overlap, and are both significantly shifted towards
low peptide energies, compared to peptide sequences that do not undergo farnesylation (NON). The thresholds obtained for the discrimination of
MTO/NON predict 1349 (17%; -1.1 threshold) and 2309 (29%; -0.4 threshold) of the possible tetramer peptide sequences to undergo farnesylation.
doi:10.1371/journal.pcbi.1002170.g003

Figure 4. A novel class of farnesylation targets. The sequence logos of different sets of Farnesylation targets are shown for A. 72 known
substrates (Dataset S1C); B. 77 MTO peptides from Dataset S1A; C. 1349 (out of 8000) sequences that pass the stringent threshold of -1.1 and are
predicted to undergo farnesylation – while position a2 of the motif is still prominently aliphatic (ILE/VAL/LEU/PHE), positions a1 and X are much more
versatile than expected; D. A subset of C with D/E at C-terminal position (238/1349) constitutes a novel substrate class for FTase (Logos created by
http://weblogo.berkeley.edu/).
doi:10.1371/journal.pcbi.1002170.g004

Identification of Novel FTase Targets
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Experimental validation of human targets
Among these 77 proteins (containing 72 unique Cxxx motifs),

39 motifs had not yet been tested for in vitro farnesylation. The

second set chosen for experimental validation consisted of 16 top-

scoring peptides selected from these 39 motifs. Of the 16 tested

peptides, 9 and 4 peptides are farnesylated in vitro under MTO and

STO conditions, respectively, while only 3 were not farnesylated

by FTase (Table 1B). None of the 16 sequences in this second set

are predicted to serve as farnesylation targets by PrePS. Interest-

ingly, for 9 of these 16 sequences, PrePS predicts that the upstream

context of the motif is suitable for farnesylation. In these cases, the

PrePS negative prediction is based on the sequence of the Cxxx

motif. This suggests that improved characterization of the

contribution of the 4 C-terminal residues to farnesylation can

identify more farnesylation targets. Finally, for 8 of these 16

sequences, PrePS would predict farnesylation of the Cxxx motifs in

Table 1. Experimental evaluation of farnesylation of predicted peptide substrates: 26/29 (90%) of the predictions are indeed
farnesylated, including a novel class of farnesylation targets identified in this study.

PrePS prediction

Motif Derived from proteinc Fulld x-CVLSe H-Ras-Cxxxf Scorea Exp. Resultb

(A) Top-scoring peptides

CYLI - -3.96 MTO

CYLE - -3.82 STO

CYLV - -3.60 MTO

CFLV - -3.60 MTO

CLII ++ -3.51 MTO

CYVE - -3.43 MTO

CYIE - -3.40 MTO

CFIE - -3.34 STO

CLIV ++ -3.33 MTO

CYLL - -3.24 MTO

CYLD - -3.13 MTO

CWVI - -3.03 STO

CWLV - -3.01 MTO

(B) Top-scoring peptides that occur at C-termini of human proteins

CYVA Q9NTW7-3 - - + -2.88 MTO

CFLT Q2UVF0 -- - + -2.74 MTO

CAFI Q7Z2H8 -- + - -2.62 STO

CWLS A6QL63-3 - + + -2.46 MTO

CCLS Q9NZM3-3 -- -- ++ -2.37 MTO

CTTE Q5T2R2-2 -- - - -2.14 STO

CHFH Q8TCU3-2 --- + -- -2.14 STO

CKLA Q9BPZ7-6 - - + -2.06 MTO

CWTC Q8NFG4-3 - ++ - -1.94 MTO

CSLI Q14CB8-5 - + ++ -1.90 MTO

CLFE Q9UHP7-3 -- + -- -1.77 None

CPFF Q8N693 --- - -- -1.69 STO

CGVG A6NHS1 - - + -1.65 MTO

CFDI Q8NEB5 -- ++ -- -1.59 None

CHCI Q99988 -- + - -1.56 None

CVCV O75391 - + + -1.12 MTO

(A) Top-scoring peptides. (B) Top-scoring peptides that occur at C-termini of human proteins.
The novel class of farnesylation targets identified in this study that contains acidic C-terminal residues (see Figure 4D) are shown in bold.
aPeptide score for sequences as measured by the FlexPepBind protocol developed in this study.
bExperimental validation of farnesylation of predicted peptides in this study (see Methods).
cUniprot [24] identifier of human proteins containing putative farnesylation motif.
d-fPrePS predictions [7]:
dbased on 30 C-terminal residues of protein sequence;
ebased on 30 C-terminal residues of protein, with the last 4 residues replaced by the H-Ras canonical Cxxx motif (CVLS) (this indicates the amenability of the upstream
sequence to allow farnesylation of the C-terminus);

fbased on 30 C-terminal residues of known substrate H-Ras, with last 4 residues replaced by Cxxx motif (this indicates the amenability of the given Cxxx C-terminal
sequence to undergo farnesylation within the context of a known strong farnesylation target).

doi:10.1371/journal.pcbi.1002170.t001

Identification of Novel FTase Targets
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the background of the favorable H-Ras upstream sequence. The

balance between the upstream signal and the C-terminal Cxxx

motif is therefore an interesting subject for future research.

Most of the proteins identified by this study as novel FTase

substrates have not been well characterized to date. Consequently,

in vivo experiments that evaluate the cellular localization and

prenylation status of these proteins, in conjunction with the in vitro

farnesylation demonstrated in this study, will advance their

functional characterization.

Discussion

We present here a simple and accurate structure-based scheme

for prediction of the sequence of FTase-binding peptides. We have

validated our protocol against several test sets, and predictions

were experimentally verified in vitro to reveal novel putative

FTase substrates and potential tight binders. This approach has

expanded our understanding of farnesylation, both within the

context of the reaction itself, as well as in the greater context of

cellular biology. Furthermore, this protocol presents an advance in

the computational prediction of binding specificity in general.

Insights into the mechanism of farnesylation from
structure-based predictions - Binding affinity vs.
reactivity

The protocol that we developed essentially estimates the binding

affinity of FTase for Cxxx peptides, using a training set of reactive

peptides, rather than predicting the farnesylation activity of these

sequences. This has several implications and limitations. Remark-

ably, the ability to discriminate peptides that undergo MTO

reaction from non-active peptides according to binding energy

suggests that the non-active peptides may bind weakly or not at all

to FTase (see Figure 3). This finding is supported by results from

an in vitro inhibition experiment in which none of the tested non-

active peptides inhibited FTase-catalyzed farnesylation of a known

substrate [17]. In turn, the members of the small class of

FlexPepBind false positive peptides may bind to FTase with high

affinity but still not be farnesylated. These false positive peptides

could therefore serve as FTase inhibitors and represent an in-

teresting set to characterize in future work.

Previous studies have shown that the sequence immediately

upstream of the conserved cysteine residue may also play a role in

substrate selectivity [16]. These sequences modulate peptide

affinity and reactivity with FTase, i.e. a high-affinity terminal

tetramer sequence does not necessarily ensure farnesylation of the

protein. For half of the proteins tested in the study, the PrePS [7]

program predicts favorable upstream sequences. This result

coupled with the high-affinity -Cxxx motif predicted by FlexPep-

Bind (see Results and Table 1B) increases the confidence that the

human proteins containing the said Cxxx motif could be

farnesylated in vivo. In turn, a favorable upstream sequence might

compensate for a weak C-terminal signal. Our future work will

therefore further characterize the balance between these two

signals in determining farnesylation.

STO peptide substrates
One puzzling aspect of FTase substrate recognition is the large

number of peptides that exhibit single turnover activity. The single

turnover rate constant, kfarn, reflects all of the rate constants up to

but not including the release of the farnesylated product

[4,26,27,28]. Therefore, the STO peptides bind to FTase and

are readily farnesylated, but the product dissociates very slowly so

multiple turnover activity is very slow. Consistent with this,

FlexPepBind achieves an AUC value of 0.776 in the discrimination

between STO and non-active peptides on the training set,

indicating that STO peptides have higher affinity for FTase than

the non-active peptides (see Figure 3). Our protocol thus identifies

STO peptides much better than sequence-based methods (see

Results and Hougland et al. [17]).

What then discriminates between MTO and STO peptides?

Hougland et al. postulated that the farnesylated STO peptides

might bind more tightly to FTase than farnesylated MTO

peptides, and as a consequence FPP-catalyzed product dissociation

is slow [17]. However, binding energy, as approximated by our

approach, seems to be a poor discriminator between MTO and

STO peptides (AUC value of 0.625 on the training set – Dataset

S1B). That is, estimation of the binding affinity of peptides in the

context of static conformations of the protein cannot explain the

difference in reactivity. Furthermore, application of this approach

to models of MTO and STO peptides at different stages of the

reaction sequence (pre-farnesylation, post-farnesylation with the

farnesyl group in the exit groove) was not able to account for this

difference as well. Hence, rather than binding affinity, a parameter

related to the dynamics of product dissociation might dictate turnover.

We therefore conclude that a dynamical approach, such as

molecular dynamics, will be required to explain the mechanism

that distinguishes STO from MTO peptides.

Are the proteins corresponding to MTO and STO
peptides FTase substrates in vivo?

Past in vitro peptide farnesylation experiments with FTase have

measured kcat/KM
peptide under MTO conditions and kfarn rate

constants under STO conditions [17]. The estimated reactivity of

MTO and STO peptides (see Methods) measured in this work falls

within the range of previously measured activity [17]. Therefore,

these peptides have comparable reactivity to other substrates,

including peptides that correspond to proteins that are farnesy-

lated in vivo.

Measured under MTO conditions, the kinetic parameter kcat/

KM
peptide is termed the specificity constant and best reflects the

reactivity of an enzyme in the presence of multiple substrates, as

observed in vivo [29]. In a cell, the reactivity of a protein substrate

with FTase depends on the value of kcat/KM
peptide as well as on the

concentration of the substrate within the cytosol. Although a

protein substrate with a higher value of kcat/KM
peptide is more likely

to be farnesylated in vivo, it is unclear what level of in vitro activity

corresponds to a true FTase substrate in vivo. Furthermore, in vivo

the optimal levels of farnesylation of a given substrate may vary

and a low fraction of modification may still be biologically

relevant. Additionally, a substrate must be localized to the proper

cellular locale in order for modification to occur and the C-

terminus of the protein must be structurally available. Peptide

library studies and this work have aided in determining potential

FTase substrates and have also identified already known

substrates, but more work is needed to characterize the reactivity

of these substrates in vivo.

As for the STO-only peptides, these substrates are readily

farnesylated but the product does not dissociate rapidly. One

possibility is that these proteins function as FTase inhibitors and

consequently play a regulatory role within the cell [17]. However,

both FPP and peptides have been implicated in catalyzing product

dissociation of farnesylated STO peptides [17,30,31] and therefore

it is possible that other cellular components could activate product

dissociation allowing rapid farnesylation of these proteins in vivo.

Therefore, competition or synergy among different FTase sub-

strates could play an important functional role for modification

and localization of proteins. Improved identification of STO

peptides using the structure-based FlexPepBind approach presented
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here will expand our understanding of regulatory aspects of this

reaction. In addition, the overlap in substrate preference of FTase

and GGTase-I [3] indicates that modulation of the type of prenyl

modification (e.g. changes in relative enzyme availability or

magnesium concentration) might be functionally important as well.

Our future focus on structure-based characterization of GGTase-I

specificity will allow an improved investigation of this regulatory

feature, complementary to sequence-based studies [7,8].

Identification of new putative farnesylation targets
Scanning the human genome for putative FTase targets using

our structure-based approach revealed many putative, not yet

detected, farnesylated proteins. These new farnesylation substrates

may provide novel disease targets for farnesyltransferase inhibitors.

Moreover, the prediction that these proteins are farnesylated

might shed light on their function. As an example, the putative

proteins Q8NA34, A6NHS1, and P0C7P2 (UniProt identifiers

[24]) all contain C’ sequences strongly predicted to serve as

farnesylation targets suggesting that the proteins are membrane

localized. Additionally, our method also predicts FTase substrates

that have recently been identified from in vivo experiments. For

example, Kho et al. used a tagging-via-substrate proteomic

approach to discover novel farnesylation targets [32]. They found

a total of 18 farnesylated proteins: 13 are well known, and of the

remaining 5 our approach predicts 4 to be farnesylated, including

one hypothetical protein. Furthermore, it was recently found that

pathogens can hijack the host farnesylation machinery to their

own advantage, for example, anchoring effector proteins to the

membrane of Legionella-containing vacuoles [33,34,35]. Thus, in

addition to the identification of putative new farnesylation targets

in the human genome, FlexPepBind can be used to scan pathogen

genomes for farnesylation as well.

The biological relevance of putative novel targets
13/16 motifs derived from human proteins tested for in vitro

farnesylation indeed undergo the reaction. Will this also happen in

vivo? In the following we compile additional available details on

these targets that might help answer this question.

One way to assess the in vivo relevance of the observed in vitro

ability to undergo farnesylation of the C-terminus of a protein is to

look for homologous proteins that also undergo farnesylation. Such

information can easily be retrieved from PRENbase [8]. A search in

this database revealed that Kinesin-like protein KIF21B variant

(Q2UVF0; CFLT) maps to a cluster of 9 highly similar eukaryotic

sequences (E-val,e-20) that are all predicted to undergo farnesyla-

tion by PrePS. Similarly, Ankyrin repeat and BTB/POZ domain-

containing protein BTBD11 (A6QL63-3; CWLS) maps to a cluster

of 25 sequences of related proteins in PRENbase. Zinc finger

protein 64 homolog (Q9NTW7-3; CYVA) also contains a number

of conserved homologs in PRENbase, however in this specific

isoform the target cysteine is part of the Zinc-finger structural motif,

and therefore it might not readily be farnesylated.

Another interesting putative farnesylation target that we have

identified is the short isoform of Intersectin-2 protein (Q9NZM3-

3; CCLS). This protein is involved in clathrin-mediated endocy-

tosis [36,37], and farnesylation could be a mechanism for regulation

and localization to the membrane, similar to the prenylation of Rho

GTPases for endocytosis [38]. In particular, the long isoform of

intersectin-2 contains additional domains [39], including a PH

domain known to bind phosphoinositides [40], and a C2 domain

known to be involved in Ca-dependent and independent binding of

phospholipids [41]. Consequently, in the short isoform that lacks

these domains, farnesylation might indeed be used as an alternative

way to achieve membrane proximity and attachment. While the

localization of some Rho GAP proteins (e.g. p190 [42]) is regulated

by phosphorylation, the short isoform of Rho GTPase-activating

protein (GAP) 19 (Q14CB8-5; CSLI) exposes a new C’ motif that

may target it to the membrane (while keeping the Rho GAP domain

intact). The same goes for MAPKAP1 isoform 6 (Q9BPZ7-6;

CKLA), a subunit of mTORC2. While the full length protein was

shown to contain a functional PH and Ras binding domains [43],

the truncated isoform reveals a C’ putative farnesylation motif

instead. Thus, for all but three MTO sequences we could gather

additional information that supports actual in vivo farnesylation. We

further discuss alternative splicing as a regulatory mechanism below.

Four motifs were found to undergo in vitro farnesylation under

STO conditions. The Homeobox protein ESX1 (Q8N693; CPFF)

is cleaved into an N’ and C’ domain; while the N’ enters the

nucleus, the C’ domain is localized to the cytoplasm where it

inhibits cyclin degradation[44]. A search for homologues in

PRENbase produced a cluster with 2 sequences predicted to

undergo farnesylation by PrePS. While the latter could support

actual farnesylation of this protein, in this case this modification

would serve for purposes other than membrane association, such

as the interaction with new partners [5]. Isoform 2 of the integral

membrane protein solute carrier family 7 member 13 (Q8TCU3-

2; CHFH) is missing an intracellular domain, and therefore places

its C’ in proximity to the membrane. Here farnesylation could play

a role in targeting this transmembrane protein to a specific

membrane compartment [45], resulting in different membrane

distributions for alternative spliced isoforms. Decaprenyl-diphos-

phate synthase subunit 1 isoform (Q5T2R2-2; CTTE) is a nuclear

encoded mitochondrial protein. If indeed farnesylated, this would

be a first example where an isoform of a mitochondrial protein is

farnesylated in the cytosol. Finally, the proton-coupled amino acid

transporter 1 (Q7Z2H8; CAFI) is likely not a farnesylation target,

since mutation of the target cysteine to alanine did not affect

its function [46]. As discussed above, the biological role of

farnesylation under STO conditions is not yet clear; furthermore,

if these proteins are farnesylated in vivo, the function is likely more

complex than localization to the membrane.

For the three motifs that were not farnesylated under in vitro

conditions, additional information about the cognate proteins

indeed suggests that the C-terminal cysteines are likely not

farnesylated in vivo. The target cysteines of Growth/differentiation

factor 15 (Q99988; CHCI) and the extracellular C-type lectin

domain family 2 member D isoform (Q9UHP7-3; CLFE) are part

of a conserved disulfide bridge and therefore most likely not

farnesylated in vivo.

In this study, we chose peptide motifs for in vitro experimental

characterization based on their predicted ability to bind FTase

and their novelty (i.e. not predicted by PrePS, and not yet

experimentally tested). While our post-hoc literature analysis

reinforces some of the predictions, other targets will apparently

undergo farnesylation only in vitro. The latter represent an

interesting set of proteins that allow the investigation of additional

factors that regulate the actual farnesylation in vivo, and that

therefore distinguish between the ability of a protein to undergo

farnesylation in vitro and in vivo. In any case, future in vivo validation

is required for all putative targets to unequivocally define their

functional importance in the cell.

Alternative splicing as regulator of farnesylation
Approximately half of the proteins strongly predicted by

FlexPepBind to undergo farnesylation (86/167) appear in

alternative splicing isoforms (according to Swissprot [24]; the

actual number of isoforms is expected to be higher, as more

experimental data accumulate from large scale sequencing efforts).
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Among these 86 proteins, most (61) contain the Cxxx motif only

in some of the isoforms. This may present a second layer of

regulation for the localization of such proteins, in which a

protein can reside in different cellular compartments as a

function of the isoform expressed at a given time or a given tissue

and therefore perform different functions. This form of

regulation may be a consequence of the irreversible nature of

farnesylation. On the other hand, farnesylation can be

maintained despite alternative splicing. For example, in Rab28

the two reported isoforms (hRab28S, hRab28L) differ only by a

95-bp insertion within the coding region [47]. This insertion

generates two alternative sequences in the 30 C-terminal amino

acids, which strikingly both contain a high-affinity farnesylation

motif (CSVQ – L isoform, CAVQ – S isoform) at the C-

terminus. This is similar to the case of KRas that also expresses

as two splice variants with strong farnesylation motifs (CIIM - 2A

isoform, CVIM - 2B isoform) and different upstream sequences.

In this case one upstream sequence harbors an additional

palmitoylation site, and may thus lead to different distribution in

the membrane [48].

Computational approaches for the prediction of binding
specificity – challenges and successes

FlexPepBind is a framework for designing peptides that bind to

a given protein, as well as for the prediction of peptide binding

specificity. It is based on our previously developed modeling

protocol FlexPepDock for peptide-protein structures [20]. Inclu-

sion of constraints derived from known structures with bound

peptides allows for the definition of backbone flexibility that is

appropriate for the specific system of interest, and optimization of

the energy function is based on a given set of binding and non-

binding peptides.

How much conformational freedom should be given to the

peptide in order to sample the correct conformation, without

introducing too much noise? What is the best score for dis-

crimination of active and non-active peptides? While Grigoryan et

al. were able to design peptides that bind to specific members of

the bZip family [49], Goldschmidt et al. identified fibril-forming

peptides on a large scale [50], and Kota et al. defined a binding

motif for type I HSP40 peptide substrates [51] using fixed

backbone conformations, the incorporation of backbone confor-

mational flexibility has generally improved computer-aided design

of functional protein interactions, as well as structure-based

prediction of peptide-protein and protein-protein interaction

specificity [52]. In particular, a range of backbone conformations

created by the backrub method [53] improved computational

sequence recovery of experimental phage display results on human

growth hormone [54], and variation along normal modes allowed

improved optimization of binding between the anti-apoptotic

protein BCL-xl and BH3 helical ligands [55]. Modeling of the

structure of HIV protease – peptide targets using a flexible docking

protocol allowed the distinction between peptides that are cleaved

from those that are not, opening new avenues towards the design

of HIV protease inhibitors [56].

In our modeling study of FTase binding peptides, side-chain

repacking alone that restricts sampling to a discrete rotameric

representation results in a low AUC value of 0.606 over the

training set. Simple minimization that allows for very subtle

backbone, side chain, and rigid-body adjustments relieves clashes

that cannot be resolved with a simple rotameric side-chain search,

and indeed improves performance significantly (AUC = 0.875).

Much more extensive sampling with Rosetta FlexPepDock [20]

produces even better AUC values (up to 0.94). Therefore, the

more we sample, the better we perform. On the other hand,

restricted sampling can also improve performance: the incorporation

of conserved structural constraints into the simulations, as well

as the inclusion of the FPP farnesyl analog, significantly

improves the identification of farnesylation targets. The

performance of different sampling and scoring schemes is

summarized in Table S1.

Incorporation of additional FTase backbone conformations

from additional FTase-substrate complex structures could enhance

the predictions. To examine this, we evaluated the FlexPepBind

protocol with two additional backbone templates, and assessed for

each the performance on the training set. Using PDBs 1tn7 [9]

and 2h6f [57], we achieve comparable and slightly worse AUC

values of 0.85 and 0.75, respectively. Combining the scores based

on 1tn6 and 1tn7 gave a marginally better performance

(AUC = 0.88) and could indeed represent an avenue for future

improvement of the protocol.

In addition to sampling, calibration of the energy function can

also improve the prediction of binding peptides. In a study on

PDZ-peptide interactions, Kaufmann et al. optimized the Rosetta

energy function on 28 peptide interactions with PDZ domain 3 of

PSD-95 for binding prediction. The resulting interface energy

using an increased contribution of the hydrogen bond term

produces a ROC plot with an AUC value of 0.78 on a general set

of 144 peptide-PDZ interactions [58].

In our study we find that scoring with the Rosetta energy

provided by the peptide provides the best results for the

discrimination of active and non-active peptides. This energy

includes the internal peptide energy as well as the interface energy,

minus a reference energy term that had been previously introduced

to optimize sequence recovery in the design of globular proteins

[46]. De-facto, removal of this term favors (in decreasing order)

C,W,F,H,Y,V,I,A,P and disfavors R,Q,N,E,D,K,S,M,T,G,L. Con-

sequently, without this term, hydrophobic residues will be favored,

and performance on the training set improved (probably due to the

significant proportion of hydrophobic residues in this set, see

Figure 4B). Inferior results are obtained using the Rosetta energy

score provided by the interface, as well as the total protein structure.

In addition, we would like to note that when using FlexPepDock for

sampling, averaging the scores of the best 10 models always gives

better results than using merely the top-scoring model (see Table S1

for the performance of different scoring functions).

While the FlexPepDock based protocol gives better results, it is

computationally expensive, however, and would impede large-

scale characterization (even though it may be the method of choice

to make specific decisions once a threshold has been determined

from the training set). We found that simple minimization worked

well for FTase specificity prediction (and is about 500 times faster

than the full FlexPepDock-based protocol). This is due to the

restricted nature of the binding - three very strong limitations

constrain the peptide backbone orientation. Other systems will

probably benefit from increased modeling of backbone flexibility.

In summary, proper calibration of the energy function together

with conformational sampling provides efficient structure-based

characterization of peptide-protein interactions. It has been

estimated that up to 40% of the cellular protein-protein interaction

network is mediated by peptide-protein interactions [59]. FlexPep-

Bind is generic in the sense that very little prior knowledge is needed

in order to predict the specificity profile for a certain peptide-protein

interaction. Given a structural template and a small set of known

examples, prediction can be made to identify additional putative

targets. We therefore anticipate that this approach can be expanded

to a large scale by adapting it to additional peptide-protein

interaction motifs in the cellular peptide-protein interaction

network.
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Methods

Detailed description of the protocol
Template structure. The complex of human FTase with

Rab2a C’ peptide was selected as template (PDB: 1tn6 [9]),

keeping only the four C’ residues of the peptide (CNIQ) and a co-

crystallized farnesyl analog ([(3,7,11-trimethyl-dodeca-2,6,10-

trienyloxycarbamoyl)-methyl]-phosphonic acid) in place. We also

evaluated the use of additional templates, such as 1tn7 [9] and

2h6f [57] (see Discussion).

Threading and repacking. Different terminal sequences

were threaded onto the peptide backbone and their side chains

were packed to find the optimal rotameric configuration (FTase

side chains were not allowed to move at this time). Extra rotamers

were used both for x1 and x2 angles during the rotameric search.

Extended FlexPepDock protocol. The prediction protocol

using Rosetta FlexPepDock [20] included the creation of 100

models for each of the sequences. Models were scored using the

scoring scheme described below, and for each sequence the top-

scoring model was chosen as representative.

Simple minimization protocol. Instead of FlexPepDock,

this simpler protocol applies only minimization over all of the

peptide’s degrees of freedom (i.e. all w/y/v angles, all of the side-

chains x angles, as well as the rigid-body orientation of the

peptide), the FTase interface side chains (Cb within 8Å of the

peptide) and the FPP dihedral angles, using the Davidon-Fletcher-

Powell (DFP) minimization algorithm with an absolute tolerance

of 0.0001, as implemented in the Rosetta modeling suite [21].

Modeling with constraints. Both in the extended FlexPepDock,

as well as in the simple minimization protocols, simulations were

performed under three constraints that ensure the conservation of

observed characteristic structural features in the binding site (Figure 1).

The cysteine sulfur atom was forced to stay in its position (the Zn2+ ion

was not included in the modeling, instead distance constraints to the

coordinating residues of FTase were used), and the two structurally

conserved hydrogen bonds were enforced as well (i.e. the hydrogen

bonds between C’ carboxylate - FTase Q167a and between

a2 backbone carbonyl oxygen - FTase R202b̃Constraints were

implemented as harmonic distance functions with a standard

deviation of 60.1Å of the original measured lengths. Constraints

with a larger standard deviation (60.25 Å) performed slightly better

(see Table S1).

Scoring. The chosen score for discrimination between MTO

sequences and non-active sequences consists of the sum of the

energy contribution of the 4 peptide residues (as calculated by the

Rosetta score12 energy function [22]), but excluding a constant

reference energy term (Eref) which is fixed per amino acid type and

was originally introduced to bias for native protein sequences

during fixed backbone sequence design [60].

The scoring schemes that were evaluated in this study include:

(1) Total score - the regular Rosetta score12 for the entire complex;

(2) Interface score - the score of the complex less the scores of the

peptide and receptor when pulled apart. This score accounts only

for interactions across the interface; (3) Peptide score - the sum of the

energy contribution of the 4 peptide residues; (4) Peptide score no

Ref.: same as Peptide score excluding a constant reference energy

term (Eref) which is fixed per amino acid type and was originally

introduced to bias for native protein sequences, and (5) iBSA:
Buried surface area of the interface. Table S1 summarizes the

performance of these different scoring schemes on the training set.

Genome scan
Human SwissProt [24] was downloaded from IPI [61] (newest

version available as of 19.01.10), and was scanned for sequences

containing a Cxxx regular motif as the last 4 residues in the

protein sequence.

GO enrichment analysis
Gene Ontology [25] terms were associated with each of the 167

identified candidates for farnesylation (see Results). Enrichment

for different cellular compartments, evaluated using DAVID [62],

extracted a subset of 93 proteins that are enriched with 18 GO

cellular compartment terms, most of them related to the

membrane (see Figure S2).

PrePS
We used the PrePS web-server [7] to obtain sequence-based

predictions on our set of 167 selected proteins. For each protein

suggested by our protocol to undergo farnesylation, we calculated

its prenylation ability using 30 C-terminal residues as input to the

server.

Experimental procedures
Farnesylation screens were performed using radioactivity assays.

Different conditions were used to assess the ability of Cxxx

sequences to undergo farnesylation under multiple turnover

(MTO) and single turnover (STO) conditions, as detailed below.

Peptides that do not undergo farnesylation under either of these

conditions were defined as NON (see Hougland et al. [17] for more

details).

Steady-state turnover (multiple turnover conditions). 3 mM

dansylated-peptide (dns-TKCxxx) was incubated with 1 mM 3H-

farnesyldiphosphate and 25 nM rat FTase in 50 mM HEPPSO,

pH 7.8, 5 mM TCEP, 5 mM MgCl2 at 25uC for two hours. The

reaction was quenched with 80:20 isopropanol:acetic acid and run on a

silica TLC plate (8:1:1 isopropanol:ammonium hydroxide: water). The

TLC plates were visualized by autoradiography. Peptides that were

observed to be at least 10–20% reacted, as compared to dns-GCVLS,

were considered MTO substrates. Using the assumptions that

[peptide] , KM and that [FPP] is saturating, the lower limit of this

assay is approximately 200–400 M21s21, similar to previous work [17].

Single turnover. Single turnover assays were carried out the

same way as the MTO assays, except that 1 mM FTase, 0.8 mM
3H-FPP, and 3 mM dns-TKCxxx peptide were incubated for one

hour before the reaction was quenched. Peptides were considered

a STO substrate if at least 10 - 20% of the 3H-FPP reacted with

the peptide after one hour. The range of reactivity of the STO

substrates measured in this study is similar to that observed in

other studies [17].

Supporting Information

Figure S1 Structural basis of the novel CxxE binding
motif. Models of CYLE (green) CYVE (cyan) CYIE (magenta)

CFIE (yellow) peptides bound to FTase (orange) are shown. The

models suggest that the negatively charged C’ Glutamate residue

of the peptide is stabilized by FTase His149 and forms hydrogen

bonds with Trp102 and Ser99. Additional potential interactions

with water molecules might exist, but are not modeled.

(PNG)

Figure S2 According to GO cellular compartment anno-
tation, most of our predicted substrates in the human
genome are associated with the membrane, suggesting
that they indeed might be farnesylation targets. A GO

cellular compartment enrichment analysis conducted with DAVID

[62] discovered 18 GO cellular compartment terms enriched in a

subset of 93/167 of the predicted substrate proteins. Red columns
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indicate the –log(p-value); Blue diamonds indicate the number of

counts for the term in the dataset.

(PNG)

Figure S3 FlexPepBind identifies 77 novel putative targets
undetected by PrePS. The plot shows the distribution of PrePS

predictions on the set of 167 protein sequences that were predicted to

undergo farnesylation by FlexPepBind. Almost half of these

sequences were not detected by PrePS (in red). The number of +
and – symbols indicates the confidence of PrePS in its prediction of a

substrate and non-substrate, respectively.

(PNG)

Dataset S1 The different peptide sequences datasets
used for training and testing in this study. A Training
set. 77 MTO and 51 NON peptide sequences. B Test set 1.
Secondary synthetic library: 29 MTO and 15 NON peptide

sequences. C Test set 2. 72 Known FTase substrate

sequences (from naturally occurring proteins) D Test set 3.

Ca1a2L library containing 24 binding and 17 non-binding

peptides.

(XLS)

Table S1 Optimization of the FlexPepBind protocol on
the training set: performance of different schemes. In

this table we report the performance of the FlexPepBind protocol

over the training set using different sampling and scoring schemes.

(DOCX)
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