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Abstract

Functional effects of different mutations are known to combine to the total effect in highly nontrivial ways. For the trait
under evolutionary selection (‘fitness’), measured values over all possible combinations of a set of mutations yield a fitness
landscape that determines which mutational states can be reached from a given initial genotype. Understanding the
accessibility properties of fitness landscapes is conceptually important in answering questions about the predictability and
repeatability of evolutionary adaptation. Here we theoretically investigate accessibility of the globally optimal state on a
wide variety of model landscapes, including landscapes with tunable ruggedness as well as neutral ‘holey’ landscapes. We
define a mutational pathway to be accessible if it contains the minimal number of mutations required to reach the target
genotype, and if fitness increases in each mutational step. Under this definition accessibility is high, in the sense that at least
one accessible pathway exists with a substantial probability that approaches unity as the dimensionality of the fitness
landscape (set by the number of mutational loci) becomes large. At the same time the number of alternative accessible
pathways grows without bounds. We test the model predictions against an empirical 8-locus fitness landscape obtained for
the filamentous fungus Aspergillus niger. By analyzing subgraphs of the full landscape containing different subsets of
mutations, we are able to probe the mutational distance scale in the empirical data. The predicted effect of high
accessibility is supported by the empirical data and is very robust, which we argue reflects the generic topology of sequence
spaces. Together with the restrictive assumptions that lie in our definition of accessibility, this implies that the globally
optimal configuration should be accessible to genome wide evolution, but the repeatability of evolutionary trajectories is
limited owing to the presence of a large number of alternative mutational pathways.
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Introduction

Mutations are the main sources of evolutionary novelty, and as

such constitute a key driving force in evolution. They act on the

genetic constitution of an organism at very different levels, from

single nucleotide substitutions to large-scale chromosomal modi-

fications. Selection, a second major evolutionary force, favors

organisms best adapted to their respective surroundings. Selection

acts on the fitness of the organism. How fitness is connected to

specific traits such as reproduction or survival depends strongly on

the environmental conditions, but indirectly it can be viewed as a

function of the organism’s genotype.

If one considers mutations at more than one locus, it is not at all

clear how they combine in their final effect on fitness. Two

mutations that individually have no significant effect on a trait under

selection can in combination be highly advantageous or deleterious.

Well known examples for such epistatic interactions [1] include

resistance evolution in pathogens [2–4] or metabolic changes in

yeast [5]. In general, the presence of epistatic interactions makes the

fitness landscape more rugged, particularly when epistasis affects the

sign of the fitness effects of mutations [6–8]. Fitness landscapes are

most easily dealt with in the context of asexual haploid organisms,

and we will restrict our considerations here to this case.

In a remarkable recent development, several experimental

studies have probed the effect of epistatic interactions on fitness

landscapes [3,4,7,9–16]. Most of these studies are based on two

genotypes, one that is well adapted to the given environment, and

another that differs by a known, small set of mutations; the largest

landscapes studied so far involve five mutations [3,10,16]. All (or

some fraction of the) intermediate genotypes are then constructed

and their fitness measured. However, selection in natural

populations does not act on small, carefully selected sets of

mutations, but rather on all possible beneficial mutations that

occur anywhere in the genome, making the number of possible

mutations many orders of magnitude greater than those

considered in empirical studies.

Figure 1 shows three sample landscapes obtained from an

empirical 8-locus data set of fitness values for the fungus Aspergillus

niger originally obtained in [17] (see Materials and Methods for

details on the data set and its representations). These landscapes

display a wide variation in topography, and despite their moderate

size of 24~16 genotypes, the combinatorial proliferation of

possible mutational pathways makes it difficult to infer the

adaptive fate of a population without explicit simulation [10]. In

fact, in view of the broad range of possible landscape topographies,

even a thorough understanding of evolution on one of these

landscapes would be of limited use when confronted with another

subset of mutations or even fitness landscapes from a different

organism. Instead, one would like to understand and quantify the

typical features of ensembles of fitness landscape, where an ensemble
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can be formed e.g. by selecting different subsets of mutations from

an empirical data set, or by generating different realizations of a

random landscape model.

Although genome-wide surveys of pairwise epistatic interactions

have recently become feasible [18], exploring an entire fitness

landscape on a genome-wide scale remains an elusive goal. In this

situation theoretical considerations are indispensable to assess the

influence of epistasis on the outcome of evolutionary adaptation.

Here, we aim to perform part of this task by answering the

following question: Does epistasis make the global fitness optimum

selectively inaccessible?

This question has a long history in evolutionary theory, and two

contradictory intuitions can be discerned in the still ongoing

debate [1]. One viewpoint generally attributed to Fisher [19]

emphasizes the proliferation of mutational pathways in high

dimensional genotype spaces to argue that, because of the sheer

number of possible paths, accessibility will remain high. The

second line of argument originally formulated by Wright [20], and

more recently promoted by Kauffman [21] and others, focuses

instead on the proliferation of local fitness maxima, which present

obstacles to adaptation and reduce accessibility with increasing

genotypic dimensionality. Here we show that both views are valid

at a qualitative level, but that Fisher’s scenario prevails on the basis

of a specific, quantitative definition of accessibility, since the

number of accessible pathways grows much faster with landscape

dimensionality than the inaccessibility per pathway as long as the

fitness landscape is not completely uncorrelated. Moreover, our

analysis of accessibility in the empirical A. niger data set illustrated

in Figure 1 shows how evolutionary accessibility can be used to

quantify the degree of sign epistasis in a given fitness landscape.

Mathematical framework
The dynamics of adaptation of a haploid asexual population on

a given fitness landscape is governed by population size N,

selection strength s and mutation rate u, and different regimes for

these parameters have been identified [22–24]. Here we assume a

‘strong-selection/weak mutation’ (SSWM) regime [25,26], which

implies that mutations are selected one by one and prohibits the

populations from crossing valleys of fitness. In natural populations

of sufficient size, a number of double mutants is present at all

times, and the crossing of fitness valleys can be relatively facile

[27,28]; the SSWM assumption may therefore seem overly

restrictive. However, we will see that even under these conditions,

the landscapes considered are typically very accessible.

In the remainder of the paper, the genetic configuration

of the organism will be represented as a binary sequence

s~fs1, . . . ,sLg of total length L, where si~1 (si~0) stands

for the presence (absence) of a given mutation in the landscape of

interest. The SSWM assumption together with the fact that we

only consider binary sequences gives the configuration space the

topological structure of a hypercube of dimension L. Accessibility

can then be quantified by studying the accessible mutational paths

[2,3,29]. A mutational path is a collection of point mutations

connecting an initial state sI with a final state sF . If these two

states differ at l sites, there are l! shortest paths connecting them,

corresponding to the different orders in which the mutations can

be introduced into the population [30]. The assumed weak

mutation rate implies that paths longer than the shortest possible

path have a much lower probability of occurrence and hence are

not considered here, adding to the constraints already imposed on

accessibility. A mutational path is considered selectively accessible

(or accessible for short) if the fitness values encountered along it are

monotonically increasing; thus along such a path, the population

never encounters a decline in fitness. If two states are separated by

a fitness valley, the path is inaccessible. Neutral mutations are

generally not detected in the empirical fitness data sets of interest

here, though they may be present at a finer scale of resolution [31].

In our modeling we therefore assume that the fitness values of

neighboring genotypes can always be distinguished (but see the

discussion of the holey landscape model below).

Unlike Ref. [3] we only consider whether a given path is at all

accessible or not, independent of the probability of the path

actually being found by the population. Our reason for focusing on

Figure 1. Graphical representation of three fitness landscapes of size m~4 extracted from the empirical 8-locus fitness data set for
A. niger. The presence/absence of a given mutation is indicated by 1/0. Arrows point towards higher fitness, local maxima are enlarged and
underlined, and colors mark basins of attraction of maxima under a greedy (steepest ascent) adaptive walk. (A) All combinations of mutations argH12,
pyrA5, leuA1, oliC2. This landscape has a single fitness maximum (the wildtype), but only 9 out of 4! = 24 paths from {1111} to {0000} are accessible. (B)
Mutations argH12, pyrA5, leuA1, pheA1. This landscape has three maxima and no accessible path. (C) Mutations fwnA1, leuA1, oliC2, crnB12. The
landscape has four maxima and 2 accessible paths.
doi:10.1371/journal.pcbi.1002134.g001

Author Summary

Fitness landscapes describe the fitness of related geno-
types in a given environment, and can be used to identify
which mutational steps lead towards higher fitness under
particular evolutionary scenarios. The structure of a fitness
landscape results from the way mutations interact in
determining fitness, and can be smooth when mutations
have multiplicative effect or rugged when interactions are
strong and of opposite sign. Little is known about the
structure of real fitness landscapes. Here, we study the
evolutionary accessibility of fitness landscapes by using
various landscape models with tunable ruggedness, and
compare the results with an empirical fitness landscape
involving eight marker mutations in the fungus Aspergillus
niger. We ask how many mutational pathways from a low-
fitness to the globally optimal genotype are accessible by
natural selection in the sense that each step increases
fitness. We find that for all landscapes with lower than
maximal ruggedness the number of accessible pathways
increases with increases of the number of loci involved,
despite decreases in the accessibility for each pathway
individually. We also find that models with intermediate
ruggedness describe the A. niger data best.

Evolutionary Accessibility of Mutational Pathways
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this restricted notion of accessibility is that it can be formulated

solely with reference to the underlying fitness landscape, without

the need to specify the adaptive dynamics of the population (see

also Discussion). The endpoint of the paths considered here,

much like in the experimental studies [3,4,10], is the global fitness

maximum, and the starting point is the ‘antipodal’ sequence which

differs from the optimal sequence at all L loci. Because it is at the

opposite end of the configuration space, these are the longest

direct paths. As such, they are a priori the least likely to be

accessible and thus give a lower limit on the accessibility of typical

paths (note that the mean length of the path from a randomly

chosen genotype to the global maximum is L=2).

For a fitness landscape comprised of up to L mutations, there

are a total of L! paths connecting the antipodal sequence to the

global maximum. How many of them are selectively accessible in

the sense described above? Given that natural selection is expected

to act genome-wide, we are interested in the behavior of

accessibility properties when the number of loci L becomes very

large. Two questions are of particular interest: What is the

probability of finding at least one accessible path, and what

number of accessible paths can one expect to find on average? The

first question addresses the overall accessibility of the global fitness

maximum [32], while the second question is relevant for the

repeatability of evolution: If there are many possible mutational

pathways connecting the initial genotype to the global maximum,

depending on population dynamics different pathways can be

chosen in replicate experiments and repeatability will be low. To

address these questions in a quantitative way, consider a sample of

fitness landscapes, obtained e.g. as random realizations of a

landscape model or by choosing subsets of mutations from a large

empirical data set (see Figure 1). The fraction of these that have

exactly n accessible paths is denoted by pL(n), and gives an

estimate of the probability that a given fitness landscape has n

accessible paths (cf. Figure 2). The expected number of paths is

given by the mean of this probability distribution,

vnLw~
XL!

n~0

npL(n), ð1Þ

and 1{pL(0) is the probability to find at least one accessible path.

The behavior of these two quantities will be investigated in the

following, both for model landscapes and on the basis of empirical

data.

Results

House of Cards (HoC) model
Consider a model where fitness values are uncorrelated and a

single mutation may change fitness completely [21,24,29];

following Kingman [33] we refer to this as the ‘House of Cards’

model. In real organisms one expects fitnesses of closely related

genotypes to be at least somewhat correlated, and in this sense the

HoC model serves as a null model. The expected number of

accessible paths can be computed exactly by a simple order

statistics argument [34]. Each of the L! shortest paths contains

Lz1 genotypes. Out of the Lz1 fitness values encountered along

a path, all but the last one (which is known to be the global

maximum) are arranged in any order with equal probability. One

of the L! possible orderings is monotonic in fitness, hence for the

HoC model

SnLT~
L!

L!
~1 ð2Þ

for all L. The probability pL(0) of not finding any path is more

Figure 2. Accessibility of mutational pathways in the House-of-Cards model. Main figure shows the distribution of the number of
accessible paths for three different sequence lengths in the HoC model in semi-logarithmic scales. The value of pL(0) is an outlier, indicating that a
large fraction of landscapes have no accessible paths at all. This is a typical feature of rugged fitness landscapes of moderate dimensionality L, see
Figures S4 and S5. Inset shows pL(0) as function of L for the HoC model. The top curve makes no assumptions about the antipodal sequence, while
the bottom curve assumes it to be the global fitness minimum. Note the decline in the bottom curve.
doi:10.1371/journal.pcbi.1002134.g002

Evolutionary Accessibility of Mutational Pathways
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difficult to compute and was so far only analyzed by numerical

simulations. We find that for sequence lengths up to L~20, pL(0)
appears to approach unity, see inset of Figure 2 and Figure S1.

Whether this is asymptotically true remains to be established, but

the scaling plot in the inset of Figure 3 suggests that pL(0) is indeed

monotonically increasing for all finite L.

This behavior changes drastically when the antipodal state is

required to be the global fitness minimum. This case was

considered previously by Carneiro and Hartl [32], who postulated

that pL(0) saturates to an asymptotic value around 1=3 for large L.

However by continuing the simulations to L~19, one sees a clear

decline (inset of Figure 2), indicating that accessibility increases with

increasing L. We will see in the following that this is in fact the

generic situation.

Rough Mount Fuji (RMF) model
Next we ask what happens if some fitness correlations are

introduced. The Rough Mount Fuji (RMF) model [35] accom-

plishes just that: Denoting the number of mutations separating a

given genotype s from the global optimum by ds, the RMF model

assigns fitness values according to

Fs~{h:dszxs, ð3Þ

where h§0 is a constant and the xs are independent normal

random variables with zero mean and unit variance. When h:0
the RMF reduces to the HoC case, and thus it can serve as starting

point for approximate calculations to first order in h. For the

expected number of accessible paths one obtains [34]

SnLT&1zhL(L{1)c, ð4Þ

where cw0 and terms of higher order have been neglected (see

also Eq. (7)). In this limit SnLT grows like L2 for large L and

constant h. Compared to the HoC case h~0, this shows that the

large L-behavior of a landscape with even the slightest correlation

between fitness values is substantially different from the case

without correlations.

The probability of finding no accessible paths was again

obtained by numerical simulation, and is shown in Figure 3(A). In

striking contrast to the unconstrained HoC model, the probability

1{pL(0) of finding at least one accessible path is seen to increase

for large L. Motivated by the result (4), in the inset of Figure 3(A)

the simulation results are plotted as a function of hL(L{1), which

leads to an approximate collapse of the different data sets. On the

basis of these results we conjecture that, for any hw0, the

probability pL(0) decreases for large L, and most likely approaches

zero asymptotically for L??.

LK model
Better known as the NK-model [21,36], this classical model

explicitly takes into account epistatic interactions among different

loci. Each of the L sites in the genome is assigned a certain number

K of other sites with which it interacts, and for each of the possible

2Kz1 states of this set of interacting loci the site under

consideration contributes to the fitness by a random amount.

Thus the parameter 0ƒKƒL{1 defines the size of the

epistatically interacting parts of the sequence and provides a

measure for the amount of epistasis. Like the RMF model, the LK
model reduces in one limit to the HoC case, which is realized for

K~L{1.

Due to the construction of the model, even local properties such

as the number of local fitness optima [37,38] are generally very

difficult to compute. Figure 3(B) shows the variation of pL(0) with

L obtained from numerical simulations of the LK model. In this

figure two different relations between K (the number of interacting

loci) and L (the total number of loci) were employed. In the main

plot the fraction of interacting loci K=L was kept constant. Under

this scenario, the curves show a non-monotonic behavior of pL(0)
similar to that of the RMF model at constant epistasis parameter h.

In the inset, the number of interacting loci K is kept fixed, which

results in a monotonic decrease of pL(0). A third possibility is to fix

the difference L{K (the number of non-interacting loci), see Figure

S2. In this case one can argue that for L&1, the difference in

behavior between K~L{1 and K~L{2, say, should not be

substantial, and indeed the curves for pL(0) seem to be

monotonically increasing with L, showing qualitatively the same

behavior as the curve for K~L{1, which is equivalent to the

HoC model. Finally, in Figure S3 we show the expected number of

accessible paths for different values of K and L. The data are seen

to interpolate smoothly between the known limits SnLT~L! for

K~0 and SnLT~1 for K~L{1.

Holey landscapes
The neutral theory of evolution [39] implies a very simple, flat

fitness landscape without maxima or minima. When strongly

deleterious mutations are included, the resulting fitness landscape

has plateaus of viable states and stretches of lethal states [40]. Such

‘holey’ landscapes can be mapped [41] to the problem of

percolation, a paradigm of statistical physics [42]. In percolation,

each configuration is either viable (fitness 1) with probability p or

Figure 3. Accessibility in fitness landscape models with tunable ruggedness. (A) Behavior of pL(0) in the RMF model as function of the
correlation parameter h. Inset shows normalized rescaled curves, all taking their maximum at hL(L{1)*4. This implies that pL(0) increases
monotonically only for h:0. (B) Probability pL(0) for the LK model as a function of L at fixed K=L (main figure) and fixed K (inset), respectively.
doi:10.1371/journal.pcbi.1002134.g003
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lethal (fitness 0) with probability 1{p, independent of the others.

Our definition of accessibility must be adapted in this case, as there

is no notion of increasing fitness and no global fitness optimum.

However, one can still ask the question whether it is possible to get

from one end of configuration space to the other on a shortest path

of length L! without encountering a ‘hole’, i.e. a non-viable state.

Apart from the restriction to shortest paths, the probability

1{pL(0) of finding at least one connecting path then corresponds

to the percolation probability.

The percolation problem on the hypercube differs from the

standard case of percolation on finite-dimensional lattices [42] in

that the parameter L represents both the dimensionality and the

diameter of the configuration space. Percolation properties are

therefore described by statements that hold asymptotically for large

L under some suitable scaling of the viability probability p [43,44].

Specifically, when p~l=L for some constant l, it is known that for

lw1 a giant connected set of viable genotypes emerges for L??.

Conversely, taking L?? at fixed p one expects that two antipodal

genotypes are connected by a path with a probability approaching

unity. Indeed, the simulation results shown in Figure S4 support the

conjecture that the quantity corresponding to pL(0) vanishes for

large L and any pw0. The equivalent of computing SnLT is

straightforward: The probability that L consecutive states are viable

factorizes by independence of the fitness values to the product of the

individual probabilities of viability, to simply yield pL, which, as

pv1, decays exponentially. We already know that there are L!
possible paths in the sequence space, thus we find

SnLT~pLL!: ð5Þ

Since L! grows faster than pL declines, SnLT grows without bounds

for large L.

Comparison to empirical data
Next we compare the predictions of the models described so far

to the results of the analysis of a large empirical data set obtained

from fitness measurements for the asexual filamentous fungus A.

niger. As described in more detail in Materials and Methods,

we analyzed the accessibility properties of ensembles of subgraphs

containing subsets of m~2,::,6 out of a total of 8 mutations which

are individually deleterious but display significant epistatic

interactions [17]. The full data set contains fitness values for 186

out of the 28~256 possible strains, and statistical analysis shows

that the 70 missing combinations can be treated as non-viable

genotypes with zero fitness. The distribution of the non-viable

genotypes in the subgraph ensemble is well described by a simple

two-parameter model which reveals that the lysine deficiency

mutation lysD25 is about 25 times more likely to cause lethality

than the other seven mutations (see Materials and Methods).

Results of the subgraph analysis are displayed in Table 1 and in

Figure 4. The data in Figure 4(A) show a systematic increase of the

average number of accessible paths with the mutational distance m
in the empirical data, which rules out the null hypothesis of

uncorrelated fitness values and is quantitatively consistent with the

RMF model with h&0:25 (inset). The data for even subgraph sizes

m~2,4,6 are equally well described by the LK model with L~m
and K~m=2 (main figure). Alternatively, the empirical data can

be compared to the results of a subgraph analysis of a LK fitness

landscape with fixed K and L~8 (Figure S5). While the fit

between model and data is less satisfactory than that shown in

Figure 4(A), the comparison is consistent with a value of K
between 4 and 5, which again indicates that each locus interacts

with roughly half of the other loci.

Further analysis of statistical properties of the A. niger landscape

confirms this conclusion. As an example, in Figure 4(B) we display

the cumulative distribution of the number of accessible paths

qm(n)~
Xn

k~0

pm(k) ð6Þ

obtained from the analysis of the largest subgraph ensemble with

m~4. The main figure shows that good quantitative agreement is

achieved with the L~4,K~2 LK model. The inset displays a

similar comparison to the RMF-model, which leads to the estimate

h~0:25+0:1 for the roughness parameter, in close agreement

with the estimate obtained from SnmT.

For the m~4 subgraph ensemble, the probability p4(0) of

finding no accessible path is approximately 0.5. Corresponding

estimates pm(0) for other values of m can be found in the last

column of Table 1. Up to m~6, the probability is found to

increase with m, which implies that the ultimate increase of

accessibility (decrease in pm(0)) predicted by the models cannot yet

be seen on the scale of the empirical data. This is consistent with

the estimates of the epistasis parameters h and K mentioned

above, for which the maximum in pL(0) is reached at or beyond

six loci (compare to Figure 3).

Discussion

Evolutionary accessibility
The models considered here represent a wide variety of

intuitions about fitness landscapes, from the null hypothesis of

uncorrelated fitness values through explicitly epistatic models to

the holey fitness landscapes derived from neutral theory, thus

covering all classes of fitness landscapes that are expected to be

relevant for real organisms. With the exception of the extreme case

of uncorrelated fitness values, which is ruled out by comparison to

the empirical data, all models show that fitness landscapes become

highly accessible in the biologically relevant limit of large L: The

probability of finding at least one accessible path is an increasing

function of L which we conjecture to reach unity for L??, and

the expected number of paths grows with L without bounds. The

latter feature limits the repeatability of evolutionary trajectories.

Table 1. Subgraphs of the A. niger data set.

m # SG # VSG SnmTleth SnmT pm(0)

2 28 20 (19.5) 1.61 (1.72) 0.82 0.36

3 56 29 (28.1) 4.05 (4.22) 1.34 0.39

4 70 19 (19.5) 12.53 (13.19) 2.01 0.50

5 56 4 (4.9) 55.32 (48.81) 3.16 0.63

6 28 0 (0.2) 246.0 (201.16) 6.07 0.68

The table summarizes properties of subgraphs of sizes m~2,:::,6 of the

empirical A. niger fitness landscape. Second column shows the total number of

subgraphs
8

m

� �
and third column the number of viable subgraphs not

containing any non-viable genotypes, with the model prediction (10) given in
brackets. Fourth column contains the number of accessible paths that would be
present if accessibility were reduced only because of the presence of non-viable
genotype, with the model prediction (11) shown in brackets. Finally, the last
two columns show the mean number of accessible paths SnmT and the
probability of no accessible path pm(0), respectively, computed from the full
subgraph ensemble.
doi:10.1371/journal.pcbi.1002134.t001
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In view of the robustness of these properties, we believe that

their origin lies in the topological structure of the configuration

space: The probability of accessibility of a given path (and thus the

relative fraction of accessible paths) decreases exponentially with L,

but this is overwhelmed by the combinatorial proliferation of

possible paths (*L!), see Eq. (5) for the neutral model and Eq. (8)

for the RMF model. As we have imposed severe constraints on the

adaptive process by prohibiting the crossing of fitness valleys by

double mutations and by only considering shortest paths, our

estimate of accessibility is rather conservative. We therefore expect

that naturally occurring, genome-wide fitness landscapes should

show a very high degree of accessibility as well.

A second general conclusion of our study is that pathway

accessibility in epistatic fitness landscapes is subject to large

fluctuations, as evidenced by the typical form of the probability

distribution pL(n) in Figure 2 and Figures S6, S7. For landscape

dimensionalities L in the range relevant for the available empirical

studies, a substantial fraction of landscapes, given by pL(0), does

not possess a single accessible pathway. On the other hand, for all

models except the HoC model, the average number of accessible

pathways exceeds unity and increases rapidly with increasing L.

This implies that in those landscapes in which the maximum is

accessible at all, it is typically accessible through a large number of

pathways. For example, among the 70 m~4 subgraphs of the A.

niger landscape, half do not contain a single accessible path, but the

average number of paths among the graphs with n§1 is 4, and

two subgraphs display as many as 10 accessible paths.

This observation becomes relevant when applying similar

analyses to empirical fitness landscapes based on mutations that

are collectively beneficial, such as the examples described in

[4,15,16]. In these cases the adapted multiple mutant could not

have been formed easily by natural selection (alone) unless at least

one selectively accessible pathway from the wildtype to the mutant

existed. The statistics of such landscapes is therefore biased

towards larger accessibility, and a comparison with random

models should then be based on the probability distribution pL(n)
conditioned on n§1. The general question as to whether

landscapes formed by combinations of beneficial or deleterious

mutations have similar topographical properties can only be

answered by further empirical studies.

The A. niger landscape
The analysis of accessible mutational pathways in the empirical

A. niger data set has allowed us to quantify the amount of sign

epistasis in this landscape in terms of model parameters like the

roughness scale h in the RMF model or the number of interacting

loci K in the LK model. Similar to a recent experimental study of

viral adaptation [45], we ruled out the null model of a completely

uncorrelated fitness landscape. Nevertheless our results suggest

that the epistatic interactions in this system are remarkably strong.

To put our estimate of K into perspective, we carried out a

subgraph analysis of the TEM b-lactamase antibiotic resistance

landscape obtained in [3] (Figure S8). In this case the number of

loci is L~5, and the comparison of the mean number of accessible

paths in subgraphs of sizes m~2{4 with simulation results for the

LK model suggests that K&1{2, significantly smaller than the

estimate K&L=2 obtained for the A. niger landscape. A low value

of Kƒ1 was also found in the analysis of a DNA-protein affinity

landscape for the set of all possible 10 base oligomers [46].

Our finding of a high level of intergenic sign epistasis, compared

to the examples of intragenic epistasis considered in [3] and [46],

contradicts the general expectation that epistatic interactions

should be stronger within genes than between genes [15,16,47].

Note, however, that the comparisons among the available epistasis

data are confounded by differences in the combined fitness of the

mutations involved: while the A. niger mutations were chosen

without a priori knowledge of their (combined) fitness effects, the

mutations considered in most studies were known to be collectively

beneficial [3,4,9,13,15,16], and hence biased against negative

epistatic combinations.

Population dynamics
In the present paper we have focused on the existence of

accessible mutational pathways, without explicitly addressing the

probability that a given pathway will actually be found under a

specific evolutionary scenario. This probability is expected to

depend on population parameters, primarily on the mutation

supply rate Nu, in a complex way. In the SSWM regime

characterized by Nu%1 it is straightforward in principle to assign

probabilistic weights to mutational pathways in terms of the

known transition probabilities of the individual steps [3,26]. For

larger populations additional effects come into play, whose bearing

on accessibility and predictability is difficult to assess.

On the one hand, an increase in the mutation supply rate Nu
may bias adaptation towards the use of mutations of large

beneficial effects, which makes the evolutionary process more

deterministic [24] but also more prone to trapping at local fitness

maxima [48]. While this reduces the accessibility of the global

Figure 4. Comparison of models to empirical data. (A) Mean number of accessible paths for HoC, RMF and LK models compared to the
empirical A. niger data. With the exception of the HoC model, all curves show an increase of SnLT with L. Both RMF (inset) and LK (main plot) models
can be fit to the empirical data. Error bars on the empirical data represent standard deviations obtained from the resampling analysis. (B) Cumulative
probability of the number of accessible paths as observed in the empirical fitness landscape compared to LK (main plot) and RMF (inset) model.
Error bars represent the standard deviation estimated by the resampling method.
doi:10.1371/journal.pcbi.1002134.g004
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optimum, at the same time the crossing of fitness valleys becomes

more likely due to the fixation of multiple mutations at once [28],

which tests mutants for their short-term evolvability [49] and

enlarges the set of possible mutational pathways. We plan to

address the interplay between landscape structure and population

parameters in their effect on pathway accessibility in a future

publication.

Materials and Methods

Numerical simulations
For the numerical simulations of random landscapes, fitness

values were assigned to each of the 2L genotypes according to the

ensemble to be sampled from (HoC, RMF or LK model). The

number of paths was then found by a depth-first backtracking

algorithm implemented as an iterative subroutine starting at the

antipodal genotype and either moving forward, i.e. towards the

global fitness maximum, or, if a local maximum is reached, going

back to the last genotype encountered before the local maximum.

For finding the probability pL(0) of no accessible paths, the search

was ended upon finding the first path, making this search much

faster than that for the full distribution of paths and thus enabling

us to consider much larger genotype spaces. Results were typically

averaged over 105 realizations of the random landscape. In

analyzing the empirical A. niger data, the same routines were used

but with the measured fitness values as input instead of fitness

values sampled from one of the models.

Analytic results for the RMF model
It was argued above that both the expected number of

accessible paths SnLT and the probability of no accessible path

pL(0) behave fundamentally different for h~0 (HoC-model) and

the RMF model with strictly positive h, even if h%1. Here we

provide additional information on the relation (4) and lend support

to the statement that typically pL, the probability of a given path

being accessible, decays exponentially in L. Since by linearity of

the expected value SnLT~L!pL, it is sufficient to consider pL to

compute SnLT.

It was shown in [34] that

pL(h)&
1

L!
z

h

(L{2)!

ð
dx f 2(x)zO(h2) ð7Þ

for h%1, where f (x) is the probability density of the random

fitness contribution xs. From this form it is clear that the HoC case

h~0 is quite different from the general case hw0. Note that

according to (7), pL(h) still decays factorially as L??. This

changes, however, when higher order terms in h are taken into

account.

For the special case when the random fitness contributions are

drawn from the Gumbel distribution f (x)~exp {e{x{xð Þ, the

probability pL can be computed explicitly for any h [34]. One

obtains the expression

pL(h)~
(1{e{c)L

PL
n~1 (1{e{cn)

ð8Þ

with c~(p=
ffiffiffi
6
p

) h. For large L, the denominator approaches a

constant given by

lim
L??

P
L

n~1
(1{e{cn)&

ffiffiffiffiffiffi
2p

c

r
exp {

p

6c
z

c

24

� �
, ð9Þ

and thus pL decays exponentially, pL*(1{e{c)L. We expect this

behavior to be generic for most choices of f (x).

Data set
The fitness values constituting the 8-locus empirical data set are

presented in Table S1. Here we briefly describe how these values

were obtained. A detailed description of the construction and

fitness measurement of the A. niger strains is given elsewhere

[10,17].

Briefly, A. niger is an asexual filamentous fungus with a

predominantly haploid life cycle. However, at a low rate haploid

nuclei fuse and become diploid; these diploid nuclei are often

unstable and generate haploid nuclei by random chromosome

segregation. This alternation of ploidy levels resembles the sexual

life cycle of haploid organisms and is termed parasexual cycle,

since it does not involve two sexes. We exploited the parasexual

cycle of A. niger to isolate haploid segregants from a diploid strain

that originated from a heterokaryon between two strains that were

isogenic, except for the presence of eight phenotypic marker

mutations in one strain, one on each of its eight chromosomes.

These mutations include, in increasing chromosomal order, fwnA1

(fawn-colored conidiospores), argH12 (arginine deficiency), pyrA5

(pyrimidine deficiency), leuA1 (leucine deficiency), pheA1 (phenyl-

alanine deficiency), lysD25 (lysine deficiency), oliC2 (oligomycin

resistance), and crnB12 (chlorate resistance). The wild-type strain

only carried a spore-color marker (olvA1, causing olive-colored

conidiospores) on its first chromosome to allow haploid segregants

to be distinguished from the diploid mycelium with black-colored

conidiospores. Because these mutations were individually induced

with a low dose of UV and combined using the parasexual cycle it

was unlikely that the two strains differed at loci other than those of

the eight markers.

From the 28~256 possible haploid segregants, 186 were

isolated after forced haploidization of the heterozygous diploid

strain on benomyl medium from among 2,500 strains tested.

Fitness of all strains was measured with two-fold replication by

measuring the linear mycelium growth rate in two perpendicular

directions during radial colony growth on supplemented medium

that allowed the growth of all strains, and was expressed relative to

the mycelium growth rate of the olvA1 strain with the highest

growth rate (see Table S1). As will be explained in the next section,

missing genotypes are assigned zero fitness.

Data analysis
To analyze the data set, first one has to address the problem of

missing strains. In the experiments, 186 out of 256 possible strains

were found in approximately 2500 segregants. Assume first that all

genotypes are equally likely to be found in the sample. Denoting

the number of segregants by S, the probability for a given strain to

be missed by chance is p~(1{1=256)S&5:6|10{5. The

probability pn for at most n genotypes to have been missed is

then given by a Poisson distribution with mean 256|p&0:014.

This gives the estimates p0&1{256|p~0:986 and

p1&1{(256|p)2&0:9998. For a more conservative estimate,

one may assume that different genotypes have different likelihoods

to be found, which are uniformly distributed in the interval ½r,1�
with 0vrv1. Choosing r~0:274 which corresponds to the lowest

relative fitness that was observed among the viable genotypes,

simulations of this scenario yield p0&0:74 and p1&0:956. We

conclude that it is unlikely that more than one viable genotype has

been missed by chance. This justifies the assignment of zero fitness

to the missing 70 genotypes.

Next we need to verify that accessibility in the empirical fitness

landscape is predominantly determined by sign epistasis among
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viable genotypes, rather than by the presence of lethals. As

described in the main text, we consider subgraphs of the A. niger

data set containing all combinations of m of the eight mutations in

total. The set of subgraphs of size m is composed of
8
m

� �
distinct

m-locus landscapes, each of which spans a region in genotype

space ranging from the wild type genotype shared by all subgraphs

to one particular m-fold mutant. We focus here on the ensembles

with 2ƒmƒ6.

Key properties of the subgraph ensembles are summarized in

Table 1. The first column shows the total number
8

m

� �
of

subgraphs, and the second column shows the number of viable

subgraphs (VSG’s), defined as subgraphs which contain no non-

viable strains. Two of the four VSG’s with m~5 were previously

analyzed in [10], and three of the 19 VSG’s with m~4 are

shown in Figure 1. To assess the impact of lethal genotypes on

accessibility, let SnmTleth denote the average number of

accessible paths per subgraph (averaged across all subgraphs

of fixed m) that would be present if only lethal states were

allowed to block a path and the actual fitness values of viable

genotypes were ignored. Similarly, SnmT denotes the average

number of accessible paths per subgraph for fixed m if both

mechanisms for blocking are taken into account. Comparison

between the two numbers, displayed in the fourth and fifth

column of Table 1, shows that the contribution of the lethal

mutants to reducing pathway accessibility is relatively minor.

For example, for m~4 lethals reduce the number of accessible

paths from 4!~24 to 12, by a factor of 0:5, whereas the epistasis

among viable genotypes leads to a much more substantial

further reduction from 12 to 2, by a factor of 1=6; for m~6 the

corresponding factors are 0:34 and 0:025. We conclude that

pathway accessibility is determined primarily by epistasis among

viable genotypes.

Inspection of the VSG’s shows that the role of different

mutations in causing lethality is strikingly inhomogeneous. In

particular, we find that the lysine deficiency mutation lysD25 is

not present in any of the VSG’s, whereas the distribution of the

other mutations across the VSG’s is roughly homogeneous. The

lys mutation is also strongly overrepresented in the non-viable

strains, being present in 62 out of 70 cases. The main features of

the set of lethal mutations can be captured in a simple model in

which the presence of a mutation i leads to a non-viable strain

with probability qi, and different mutations interact multiplica-

tively, such that a strain containing two mutations i and j is viable

with probability (1{qi)(1{qj). The data for the number of

VSG’s for different m cannot be described assuming the qi to be

the same for all mutations, but a two-parameter model assigning

probability qlys to the lys mutation and a common value

q0%qlys to all others suffices. Simple analysis show that under

this model the expected total number of viable strains is

Nviable~(2{qlys)(2{q0)7, while the total number of viable

strains in the subset of strains excluding lys is ~NNviable~(2{q0)7.

With Nviable~186 and ~NNviable~120 we obtain the estimates

qlys&0:45 and q0&0:018. Given that the VSG’s do not contain

the lys mutation, the expected number of VSG’s depends only on

q0, and is given by

Cm~
L

m

� �
(1{q0)m2m{1

: ð10Þ

The prediction for the expected number of viable subgraphs is

shown in brackets in the third column of Table 1, and is seen to

match the data very well. Similarly, the expected number of paths

that do not contain any lethal genotypes can be computed

analytically, resulting in the expression

SnmTleth~m! (1{q0)
m(mz1)

2

1{
m

L
z

1

L

1{qlys

qlys{q0
1{

1{qlys

1{q0

� �m� �	 

,

ð11Þ

which is shown in brackets in the fourth column of Table 1.

Resampling procedure
The accessibility of mutational pathways in the A. niger data set

was analyzed using two different approaches. The first approach is

based on a single set of fitness values obtained by averaging the

two replicate fitness measurements for each strain; these average

fitness values are shown in Table S1. In the second approach the

influence of errors in the fitness measurements was taken into

account by using a resampling procedure previously described in

[10]. In this approach the fitness assigned to each viable genotype

is a normally distributed random variable with the mean given by

the average of the two fitness measurements and a common

standard deviation s0&0:03 estimated from the mean squared

differences between replicate fitness values in the entire data set;

the fitness of genotypes identified as non-viable remains zero.

Statistical properties of accessible pathways are then computed by

averaging over 105 realizations of this resampled landscape

ensemble. Empirical data points and error bars shown in

Figure 4 represent the mean and standard deviations obtained

from the second approach. Results obtained by directly analyzing

the mean fitness landscape (first approach) do not differ

significantly from those presented here.

Supporting Information

Figure S1 Plot of 1{pL(0) as function of 1=L for the HoC

model. While the extrapolation to 1=L~0 is not straightforward,

1{pL(0) clearly decreases monotonically with a limiting value

below 0:1.

(PDF)

Figure S2 Simulation results for the probability of finding no

accessible path in the LK model when the number of non-

interacting loci L{K is kept fixed.

(PDF)

Figure S3 Simulation results for the mean number of accessible

paths for the LK model.

(PDF)

Figure S4 Simulation results for the probability of finding no

shortest connected path between two viable antipodal genotypes

for the holey landscape (neutral) model at different viability

probabilities p. In these simulations the initial genotype and its

antipode were constrained to be viable.

(PDF)

Figure S5 Mean number of accessible paths obtained from

subgraph analysis of the A. niger landscape (diamonds with error bars)

compared to the results of a subgraph analysis of LK landscapes with

L~8, K~4 (circles) and K~5 (squares) and K~7 (triangles).

(PDF)

Figure S6 Distribution of the number of accessible paths in the

RMF model with L~7. Note that the behavior for the HoC-case

h~0 is typical for small values of h with most of the probabilistic

weight on n~0. This changes for larger values of h, where the
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probabilistic weight shifts towards many accessible paths. This

effect becomes more pronounced as L grows.

(PDF)

Figure S7 Distribution of the number of accessible paths for the

LK model with L~5 and different values of K . For all K§1, the

most likely outcome is n~0. Note the pronounced peaks for K~1,

which reflect complex combinatorial correlations among the

paths.

(PDF)

Figure S8 Mean number of accessible paths obtained from

subgraph analysis of the TEM b-lactamase resistance landscape of

Weinreich et al. [3] (squares) compared to the results of a subgraph

analysis of LK landscapes with L~5, K~1 (triangles), K~2
(crosses) and K~3 (circles).

(PDF)

Table S1 Mean fitness W (mycelium growth rate) of the 186

segregants of A. niger relative to that of the wildtype strain with the

olv marker. Presence or absence of marker mutations is indicated

with 1 and 0, respectively. Missing genotypes are marked with m.

(PDF)
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