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Holk Cruse1*, Rüdiger Wehner2,3

1 Biological Cybernetics, and Center for Excellence CITEC, University of Bielefeld, Bielefeld, Germany, 2 Brain Research Institute, University of Zürich, Zürich, Switzerland,
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Abstract

In many animals the ability to navigate over long distances is an important prerequisite for foraging. For example, it is
widely accepted that desert ants and honey bees, but also mammals, use path integration for finding the way back to their
home site. It is however a matter of a long standing debate whether animals in addition are able to acquire and use so
called cognitive maps. Such a ‘map’, a global spatial representation of the foraging area, is generally assumed to allow the
animal to find shortcuts between two sites although the direct connection has never been travelled before. Using the
artificial neural network approach, here we develop an artificial memory system which is based on path integration and
various landmark guidance mechanisms (a bank of individual and independent landmark-defined memory elements).
Activation of the individual memory elements depends on a separate motivation network and an, in part, asymmetrical
lateral inhibition network. The information concerning the absolute position of the agent is present, but resides in a
separate memory that can only be used by the path integration subsystem to control the behaviour, but cannot be used for
computational purposes with other memory elements of the system. Thus, in this simulation there is no neural basis of a
cognitive map. Nevertheless, an agent controlled by this network is able to accomplish various navigational tasks known
from ants and bees and often discussed as being dependent on a cognitive map. For example, map-like behaviour as
observed in honey bees arises as an emergent property from a decentralized system. This behaviour thus can be explained
without referring to the assumption that a cognitive map, a coherent representation of foraging space, must exist. We
hypothesize that the proposed network essentially resides in the mushroom bodies of the insect brain.
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Introduction

Desert ants are extremely skillful long-distance navigators,

which during their foraging journeys can leave their underground

colonies for distances of more than ten thousand times their body

length, and then return to their point of departure, an often

inconspicuous hole in the desert ground, with amazing accuracy.

Due to these feats of navigation, and the methodological ease with

which the spatial layout of their outbound and inbound journeys

can be recorded and experimentally manipulated, these ants have

become model organisms for the study of how insects find their

way in featureless as well as cluttered environments. As

neurobiological and behavioural research done over the past four

decades has shown (for reviews see [1–4]), the ant’s navigational

toolbox consists of a number of modules flexibly employed by the

animal in a variety of ways. Among these modules is a skylight

compass [5], a wind compass [6], a distance-integrating odometer

[7], a path integrator combining compass and odometer

information [8,9], one and another system of landmark guidance

used in place recognition and route navigation [4,10,11] as well as

an area-concentrated systematic search routine [12–15].

Apart from the wealth of information now available about these

various navigational systems, the question of how the insect finally

combines this information to accomplish a particular task at a

particular time of its foraging journey has been a matter of

substantial debate. Is the information provided, e.g., by the path-

integration and landmark-guidance systems combined and

integrated into a ‘cognitive map’ sensu Tolman [16], a global

spatial representation of the insect’s foraging terrain, as proposed

for honey bees first by Gould [17] and later more extensively by

Menzel et al. [18,19]? Or do the various navigational routines

interact, simultaneously and successively, in flexible, largely

context-dependent ways, with context provided by external cues

and internal motivational states [1,2,20,21]? As far as the neural

architecture of the insect’s navigational toolkit is concerned, the

former hypothesis implies that the domain-specific processing

modules feed their information into a ‘central integrator state’

[22], while the latter hypothesis proposes that the domain-specific

modules are interlinked within a distributed system [23].

The debate is not simplified by the fact that Tolman has defined

the term ‘cognitive map’ in an only loosely way: ‘‘… the incoming

impulses are usually worked over and elaborated in the central

control room into a tentative, cognitive-like map of the

environment. And it is this tentative map, indicating routes and

paths and environmental relationships, which finally determines

what responses, if any, the animal will finally release.’’ (Tolman,
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1948 - p. 192). His use of the terms ‘cognitive map’ and ‘central

control room’ is reminiscent of what cognitive scientists nowadays

often call ‘global neural workspace’ (see [24] for a review).

Functionally, this term describes the idea that different elements

stored separately in memory can dynamically be connected, for

example to allow for the invention of new behaviours. Applied to

the navigation problem, this means that different memory

elements, for example vectors representing the locations of two

food sites, may be used for common computation. In contrast, in a

decentralized or, as it is often called, reactive system such a

combination of separately stored vectors for computation is not

possible. In such a reactive system a memory content can only be

used within the context in which it has been learned. A basic

functional difference between both types of systems is that the

cognitive system allows for high flexibility but is slow because the

search for new combinations of memory elements requires time,

whereas the reactive architecture allows for fast, though inflexible

reactions. (For an example how a reactive system can be

transformed to constitute a cognitive system see [25]).

In the present account we follow the latter idea and design an

architecture that allows us to test whether a distributed network

based on the main experimental results obtained in the study of

desert ant navigation is able to simulate the behavioural

performances of ants and bees – and especially those performances

that have not been used in designing the architecture. If such a

solution was definitely found, a cognitive interpretation could be

given up as it represents a more complex hypothesis. If no such

solution was found, the probability for the existence of a cognitive

map would increase.

The basic experimental results on which the simulation is based

are the following (for references see the papers cited above and the

references therein):

1. Path integration. There are various ways in which a path

integration (PI) system could work – egocentrically or

geocentrically, continuously or discontinuously, based com-

pletely on idiothetic cues or employing external cues as well -

but for our present purposes it is not important to differentiate

between these possibilities. We just assume that the animal

possesses a PI vector memory, in which the nest-to-food vector,

and reversed in sign the food-to-nest vector, is stored

(‘reference vector’), and that at any one time during an

inbound and outbound trip the animal compares the state of its

‘current vector’ with the reference vector. If the former

matches the latter, the path integrator has acquired its zero-

state, and the animal has reached the goal. Then the current

vector is reset to zero, but the reference vector remains in

memory. For the sake of illustration let us follow an ant that

leaves its home and sets out for a foraging journey. While the

ant is on the way, its PI system computes and continually

updates a current vector. When a food item has been found,

this current vector is stored and becomes a reference vector.

When the ant decides to visit the same food source at a later

time again, its current vector (which is zero when the ant leaves

the nest and increases in length as the ant proceeds on its way)

is continually subtracted from the reference vector. Once

current and reference vectors coincide, the ant has reached the

food site. Upon departure from that site the reference vector is

reversed in sign, and the PI system starts to work again in the

way described above.

2. Area-concentrated search. As any PI system is prone to

cumulative errors, a ‘zero-vector ant’ will not have arrived

exactly at the goal, but at some location close to it. The ant

then starts to perform systematic search movements that are

centred about the point at which the PI had reached its zero

state. It is important to note that during the entire search the

path integrator keeps running, and that it is reset to zero only

after the ant has entered the nest.

3. Landmark guidance: Place learning. To further aid the

localization of the (usually inconspicuous) nest entrance, the

ants make intensive use of landmark information. Experimental

results indicate that one or several ‘snapshots’ of the landmark

scene at the home site are taken and memorized. Later this

snapshot view, or an individual signpost within this view, is

used to guide the animal from any place near the home site to

the nest entrance. The underlying mechanism is best described

by an attempt to match the stored snapshot with the currently

seen view. This matching mechanism provides a direction

defined relative to the landmark. We will call this landmark a

‘home landmark’. Correspondingly, landmark views can be

acquired at the food source (‘food landmarks’).

4. Landmark guidance: Route learning. In addition to landmarks

at the nest and food sites, landmarks distributed in the area

between these two sites may be used for navigation. Any such

landmark view can be associated with a specific walking

direction termed ‘local vector’ (although it still remains to be

fully established to what extent the length of this ‘vector’ is

specified). As these landmarks are visited by the animals en route,

they will be called ‘route landmarks’.

In both types of landmark - place (nest and food) landmarks and

route landmarks – long term memories enable the animal to

compare the actual visual inputs with the memory stores. A best-

match procedure decides whether one of the stored memories is

activated, a walking angle is computed and delivered to the output

stages. The difference in the use of both types of landmark is that

in the case of the place landmark (or landmark scene) the input is

continuously compared with the stored view, whereas in the case

of the route landmark, once seen, a walking direction is

determined, and the landmark is then no longer attended. Hence,

in the case of a place landmark the walk leads to an even better

match, while in the case of a route landmark the walk leads the

Author Summary

When desert ants search for food, they often have to travel
over long distances, more then ten thousand times their
body lengths and then turn back to find the nest entrance.
It is known from many experiments that these animals
employ a skylight compass including the sun, a pedom-
eter, and a mechanism called path integration. This means
that during walking they continuously update the vector
pointing from their actual position back to the nest site. In
addition they use landmarks. However, based on observa-
tions of the behaviour of ants and honey bees several
authors have argued that these animals finally employ a
neural system that is able to represent frequently visited
locations in the form of a map (a ‘‘cognitive map’’). Having
a map-like system available would allow the animal to find
a shortcut between two separately learned locations
without having learned this direct path between both
locations beforehand. As such shortcuts have been
observed, cognitive maps have been assumed to exist.
Here we show in a simulation study based on artificial
neural networks that shortcuts as observed in the
experiments are also possible with a memory system
using a completely decentralized architecture not includ-
ing an explicit cognitive map.

No Need for a Cognitive Map
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animal away from the landmark. Furthermore, recognition of a

landmark suppresses the influence of the local vector provided by

an earlier landmark.

5. Multiple memories. Ants are able to learn and store (i) more

than one reference vector pointing to more than one food site

and (ii) several landmark-defined positions within their foraging

terrain, and (iii) more than one landmark-defined route.

6. Hierarchical relationships. If a familiar landmark is recognized,

ants follow the corresponding (landmark-associated) local

vector rather than their PI vector.

7. Motivational states. Landmarks are stored and retrieved only in

specific contexts. One of the most important (internal,

motivational) contexts is whether the ant is on its ‘outbound’

or ‘inbound’ trip, i.e., whether it walks from home to food or

from food to home, respectively.

Model

Structure of network
To simulate basic properties of ant navigation during foraging

the following network has been implemented (Figure 1). The net

consists of three main parts: (i) a system being responsible for path

integration (PI, eventually also termed vector navigation, [26,27])

as depicted at the left hand side of Figure 1, (ii) a recurrent network

controlling different motivations (Figure 1, upper right, in red),

and (iii) a bank of procedural memories (horizontal row of blue

Figure 1. The network controlling path integration and landmark navigation. Eight motivation units (red), a bank of memory elements
shown in blue, (Mem A, Mem B) and seven further elements (two food landmark elements, fLMA, fLMB, one home landmark element, hLM, and four
combined route landmark elements, rLMAout, rLMBout, rLMAin, rLMBin, lower right). The path integrator is schematically depicted at lower left (Curr.
Vect, PI). Box rand.gen. and the motivation units ACS on, off control ‘‘area-concentrated search’’ walks. For further details see text.
doi:10.1371/journal.pcbi.1002009.g001

No Need for a Cognitive Map
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boxes in the center of Figure 1). Each of these procedural elements

receives sensory input, indicated by the short bar at the upper left

of each box (e.g., visual input concerning a specific landmark), and

input from the motivation network. As outputs these memory

elements provide vectors determining a walking direction (relative

to an absolute external reference system defined by a compass).

The path integrator system represents a procedure, too, containing

memory elements (Figure 1, blue boxes, upper left) and providing

a corresponding output vector. All these sensorimotor, or

procedural, memories are independent of each other. Their

output values undergo a weighted summation. The weights are

dynamically determined by a lateral inhibition network that, based

on the vector lengths, determines a confidence or salience value for

each memory element. To keep the simulation as simple as

possible, learning processes as such are not simulated, but

memories may be switched off or on by hand to simulate different

learning states. To study the behaviour of an agent controlled by

this network we apply an environment containing a nest (home)

and two food sources (A and B). In the experiments presented in

Figures 2, 3 and 4, there are 12 route landmarks distributed over

the space between home and the two food sources (Different

landmarks are used in a later experiment, see Figure 5).

Main procedures
In the following the different parts of the network will be

described in more detail. Let us begin with the path integrator. As

detailed models are available (e.g., [28,29], for a comprehensive

review of types of model, see [30]), this part is simulated here in an

abstracted form only. The path integrator (not shown in Figure 1)

provides the ‘current vector’ (Figure 1, left, Curr. Vect.). If a food

source is detected, the actual current vector is stored as a long term

memory (e.g. Mem A, Figure 1, upper left) and is termed

‘reference vector’. The reference vector might, in the simplest case,

only be stored as a kind of short term memory that is cleared after

the nest has been reached again. If, however, the food source is

rich enough, so that further visits are intended, this vector might

(and can be, by bees and ants) stored as a long term memory

element. Therefore, the quality of the food appears to be a crucial

motivational factor influencing learning.

The stored reference vector pointing from the home position to

that of the food source can be used to later control visits of this

food source by subtracting the current vector from the reference

vector (Figure 1, upper left, circle containing a subtraction symbol:

Mem() – Curr. Vect.). The difference provides angles describing

the walking direction (defined relative to an absolute direction

given by a compass) and the remaining distance to the goal. The

same system controlling these ‘outbound’ walks can be used to

control the walks from food back to home (‘inbound’ walks), when

the goal vector refers to the home site, i.e., has zero length. The

output of this system is represented in Figure 1 by box PI. Before

further computation, the output vector of this box is normalized to

show a length of 1.

Motivation network. To use this system for navigation, at

least one basic decision must be made. Is the agent in inbound

mode or in outbound mode? A further decision is necessary if the

agent has learned the position of two different food sources, A and

B. Which food source should be selected? On a higher level, the

agent may furthermore have the ability to choose between

foraging behaviour and any other type of behaviour. To take a

simple example, we use as a second behaviour ‘stay’, i.e. stay in the

nest. All these decisions are formed by a recurrent neural network

(Figure 1, red; units connected by double headed arrows or

Figure 2. Walk from home to food source A and back. The
catchment areas of the landmark elements home, and the two food
sources A and B are shown by circles coloured in yellow and green,
respectively. Catchment areas of route landmarks are shown in red or
blue for outbound and inbound landmarks, respectively. Outbound
walk is depicted by red squares, inbound walk by blue squares. For
further explanations see text.
doi:10.1371/journal.pcbi.1002009.g002

Figure 3. Walk from home to food source B and back. The
catchment areas of the landmark elements home, and the two food
sources A and B are shown by circles coloured in yellow and green,
respectively. Catchment areas of route landmarks are shown in red or
blue for outbound and inbound landmarks, respectively. Outbound
walk is depicted by red squares, inbound walk by blue squares. For
further explanations see text.
doi:10.1371/journal.pcbi.1002009.g003

No Need for a Cognitive Map
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inhibitory connections), the units of which are called ‘motivation’

units here. A motivation unit can adopt a value between 0 and 1.

The connections between these units (for technical details see

below) are designed in a way that the three pairs (inbound –

outbound), (forage – stay) and (sourceA – sourceB) are connected

by mutually inhibitory weights (Figure 1, dashed red lines). Such a

connection has the effect that only one unit of each pair can be

active after the net has relaxed to a stable state (or attractor). If unit

‘stay’ is active, unit ‘forage’ is inactive and as a consequence all

other units positively connected to unit ‘forage’ are inactive, too. If

unit forage is active, one of the units sourceA or sourceB is active,

while the other one is inactive. The output of these units

determines which memory content can be used by the vector

navigation system (see input to boxes MemA and MemB in

Figure 1). The decision between units sourceA and sourceB may

be a random decision or may be determined by other contents of

the agent’s memory, e.g. the quality of the food, values being given

as input to the motivation units (not shown in Figure 1).

Correspondingly, a decision between inbound and outbound is

made by sensory input to the corresponding units. For example, if

the agent leaves home, activation of the unit outbound is

stimulated. If food has been found, this stimulus activates unit

‘inbound’ (not depicted in Figure 1, either). The motivation unit

for ‘outbound’ controls the output of the memory elements

(MemA, MemB). If outbound is switched off, their output will be

zero. Thus, path integration depends on two motivations, sourceA

or sourceB, and inbound or outbound, as is the case for the

procedural memories that will be described next.

Route landmarks. After having learned the global vectors

(MemA, MemB) pointing to the corresponding food sources, the

agent may in addition learn specific route landmarks situated

anywhere in the landscape between home and food sites. As

mentioned in the Introduction, ants can learn ‘local vectors’

associated with each landmark or sets of landmarks. When having

perceived a learned landmark, the animal follows a specific angle

(relative to an absolute direction given by a compass). There is no

strong experimental evidence how exactly ants and bees detect the

walking direction associated with a route landmark, but there is

strong evidence that they do [11,31]. In the simulation the walking

direction is simply provided as soon as the agent enters the

catchment area. It is also not fully clear yet from behavioural

experiments whether or to what extent the length of this ‘vector’ is

specified [32,33]. As it has been found that ants indeed use

landmarks for navigation, the simplest assumption is that the ant

follows the local direction until it finds another known landmark,

which then specifies a new angle. However, there might be a

maximum length to be followed.

For the simulations shown in Figures 2, 3 and 4 we assume that

the agent has learned three route landmarks walking from home to

food source A and three other route landmarks for the way back

from A to home. Similarly, it has learned three further route

landmarks on the way from home to source B (outbound) and

three more route landmarks from B to home (inbound). The three

long term memory elements belonging to one trip are graphically

packed into one box. As we have four trips, four such boxes are

required (see Figure 1, rLM Aout, rLM Ain, rLM Bout, rLM Bin).

To simplify the drawing, only one output vector is depicted.

Actually, however, there are three such vectors, one for each

Figure 4. Walk from home to food source. A. As there is no food,
the agent performs a short cut to food source B. After having found
food, it returns to home using one route landmark. As the local vector
to the next route landmark is too short, path integration takes over. The
catchment areas of the landmark elements home, and the two food
sources A and B are shown by circles coloured in yellow and green,
respectively. Catchment areas of route landmarks are shown in red or
blue for outbound and inbound landmarks, respectively. Outbound
walk is depicted by red squares, inbound walk by blue squares. For
further explanations see text.
doi:10.1371/journal.pcbi.1002009.g004

Figure 5. Flight path of a honey bee that is transported from
the food source to a place about north of the feeder (dashed
black arrow). After being released, the simulated bee performs a
straight flight following the path integrator, then performs a search
flight (small dots) until the bee by chance meets a known route
landmark. The catchment areas of the landmark elements home and
the food source are shown by circles coloured in yellow and green,
respectively. Catchment areas of route landmarks are shown in blue for
inbound landmarks. Outbound trip is depicted by red squares, inbound
trip by blue squares. For further explanations see text.
doi:10.1371/journal.pcbi.1002009.g005

No Need for a Cognitive Map
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landmark, as the three elements of each box are specified

independently. It is important to emphasize that no information

is stored that concerns the spatial/temporal order according to

which the landmarks may be visited.

A given landmark memory is only active if (i) the appropriate

motivation unit (inbound or outbound) and (ii) the motivation unit

concerning the actual goal (sourceA, sourceB) are active. In other

words, the procedure driven by a particular landmark is only

allowed to be in charge if both necessary motivations are activated.

Therefore, as for the path integration memories, each box in

Figure 1 is shown to receive two motivation inputs. Reaction to

such a landmark is simply simulated as follows. As soon as the

agent enters the ‘catchment area’ of this landmark (indicated by

circles in Figures 2 to 5), the corresponding angle value is

generated provided that activation by both appropriate motiva-

tions have reached threshold.

How to deal with the output values provided by the procedural

memories? Each procedure provides an output vector, consisting

of an angle (Figure 1, dashed arrows) and a vector length (Figure 1,

solid arrows), see Computational Details in Text S1 for details of

implementation. The vector of a route landmark vector is set to a

length of 1 when the landmark was perceived. However, when the

walk continues, some kind of ‘forgetting’ takes place such that the

vector length decreases stepwise by 0.05 for ten steps, then stays

constant at 0.5 for another five steps. After a given number of

steps, in our case 15 steps, the vector length of this route landmark

decreases to zero. This decrease, the detailed time course of which

is not critical, has the effect that a newly recognized landmark can

override the memory of the landmark detected earlier. Recall that

vector length does not control movement directly, but is only used

as salience value, the usage of which will be explained below (Sect.

Cooperation among Procedures).

Home and food landmarks. As mentioned in the

Introduction, ants have been shown not only to use route

landmarks that are freely distributed in the landscape between

the home and the food site, but most importantly also landmarks

that define particular places such as the home and one or another

frequently visited food site (referred to as home landmark and food

landmark, respectively). In our simulation we assume that there

are three such procedures stored, that when stimulated provide an

angle leading the agent to the corresponding goal, i.e., to either

food source A, food source B, or home (Figure 1: fLMA, fLMB

and hLM, respectively). These landmark elements consist of three

signposts each. The signposts are, however, not stored as separate

elements, as is the case for the route landmarks explained above,

but form one landmark, i.e., are stored in the form of a ‘snapshot’.

Again, there is a number of simulation approaches available in the

literature. In our case, each home- or food-landmark memory

element is represented by a simple algorithm [34], which

determines the mean value of three vectors calculated from

learned vectors and the vectors pointing from the agent’s position

to the position of the landmark. Length of the mean vector is set to

a value of 1. As for the landmark vectors explained above, the food

memories and home memories are controlled by double

motivational input (as depicted in Figure 1). (The salience value,

i.e., the length of the vector, might be smaller than 1, representing

sensory input being deteriorated by noise, but this case has not

been simulated here).

Area concentrated search. Before we continue to explain

how the output values of all the procedural memories are

combined to determine a walking direction, let us describe the

procedural element that is responsible for the final area concentrated

search behaviour. As mentioned in the Introduction, a so called

zero-vector ant, i.e., an ant that has arrived at the goal but has not

succeeded in pinpointing it exactly, engages in a specific type of

search walk, the so called area concentrated search (ACS). In our

simulation such a zero-vector ant corresponds to an agent whose

input to the PI element is zero. Instead of explicitly implementing

a specific area-concentrated search procedure, we simplified the

system in the following way. Box (rand.gen.) depicted in Figure 1

represents a simple random process that changes the actual

walking direction by a randomly chosen angle. In our simulation,

the actual angle change could be selected from an equal

distribution out of an interval between 0.7 and 20.3 [rad], thus

providing a bias that supports a tendency to counterclockwise

turns. Search walk is switched on if, during inbound walks, the

current vector is about zero indicated by the input from Curr.

Vect. in Figure 1. The length of the output vector of box (rand.

gen.) is 1. However, this vector length is changed depending on the

length of the current vector and on time elapsed since the search

walk has started in the following way. Vector length is 1 for current

vector lengths smaller than 3.3 length units, then linearly decreases

to zero until the length of the current vector has reached a value of

20 units, thus roughly approximating a Gaussian function. As ants

increase their searching area when the duration of the search is

increasing [12], in the simulation these two figures linearly

increase with searching time until the maximum values of 33 and

200 have been reached, respectively. This function is represented

by box f(d) in Figure 1. (We did not implement the property of ants

that the search area is also increased when the preceding travel

was longer [14,15]). The resulting vector length activates a specific

motivation unit, ACSon, which determines the actual length of the

output vector of the random generator (Figure 1, multiplication of

rand. gen. output and ASCon output). The motivation unit

ACSon is coupled, via mutual inhibition, to a second motivation

unit, ACSoff. Both motivation units receive excitatory input from

the motivation unit ‘forage’. As the search walk should be switched

off as soon as a relevant landmark is observed, vector lengths of all

landmark elements are summed and this value activates the

ACSoff unit, which in turn inhibits the unit ACSon. As due to

experimental results the output of the path integrator is not

applied when a landmark procedure is active, this sum is also used

to zero the vector length of the path integrator output. Before

further treatment, vector lengths of the search procedure and of

the path integrator are multiplied by a factor of 0.2 (not shown in

Figure 1). This has been done to guarantee that in the final step, as

explained next, signals from landmarks can override signals from

the ACS procedure and the PI procedure.

Cooperation among the procedures
Finally we must implement ways of how to combine the outputs of the

different procedures: To accomplish this task the angular output values

of the active procedural memories are subject to a weighted

summation. The weights, or ‘salience values’, are determined in

the following way. The vector lengths (but not the angle values)

provided by the procedures are given to a one-layered feedforward

lateral inhibition network. This network is shown by the boxes

‘‘Lat. Inhibition’’ in Figure 1. Lateral inhibition has the effect that

there will be one winner while all other output values are zero or

nearly zero when there is a large difference between the

competitors. If the difference between two strong competitors is

small, there will be no winner but only some kind of minor

decrease of both salience values. However, the weights of the

Lateral Inhibition network itself are chosen sufficiently strong to

guarantee that in the simulation, with one exception noted below,

there will always be one winner. In our Lateral Inhibition network,

the connections between the units are basically symmetric using

fixed inhibitory weights of b = 20.4. There are however two

No Need for a Cognitive Map
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exceptions from complete symmetry. First, within the landmark

procedures, there are inhibitory influences from the food- and

home elements to those representing the route landmarks, but

there are no influences in the opposite direction. This structure has

the effect that information gained from landmarks signalling food

or home will be weighted stronger than information signalling

route landmarks. Second, the connections between the path

integrator and the random walk procedure are separated from

those of the landmark procedures (indicated by the separation of

the two boxes ‘‘Lat. Inhibition’’ in Figure 1). In the former case,

there are situations were both vector lengths may show similar

values leading to a mixed contribution of the random generator

output and the path integrator output.

How are the salience values used that are produced by the

Lateral Inhibition network? As indicated in Figure 1, each

procedure has two output values, the vector length (full arrows),

and the angle, represented as a vector with normalized length

(dashed arrows). The vector is now multiplied by the salience value

and then all these vectors are simply summed up (depicted by the

unit marked by S in Figure 1). Therefore, the salience values

weight the contribution of the different procedures. Summing up

the weighted vectors and finally using the angle of the resulting

vector would in principle correspond to calculation of the weighted

mean of all angles. However, as mentioned above, there is always

only one procedure exhibiting a salience value much higher than

those of the other procedures. In particular, the salience of the PI

element is zero whenever any landmark memory is active. This is

guaranteed by the inhibitory influence mentioned above in the

context of the area concentrated search. As explained earlier the

network only provides an angle determining the walking direction.

The length of the motor output vector, corresponding to velocity,

is not controlled by the network but assumed to be a fixed value of

ten length units in the simulation.

An interesting case occurs in a zero-vector ant. In this state the

salience of the random generator is relatively high if no landmark

is perceived. Therefore random selection of angles governs the

output. However, as during these random movements the current

vector increases again, there will be a blending of the outputs of

both procedures and, if the current vector is long enough, path

integration may control the output completely. As a result, an

area-concentrated search can be observed even if a corresponding

procedure is not explicitly implemented. As mentioned above, if a

landmark is perceived, the latter overrides the salience value of the

path integrator and the random procedure, due to the influence of

the summed output of the landmark procedures (see Figure 1,

horizontal black arrows below the blue boxes and above the Lat.

Inhibition network).

For further information see Computational Details in Text S1

and [35–40].

Results

Using this network, several experiments have been simulated

using the environment depicted in Figures 2, 3 and 4. In the first

type of experiment, all route landmark memories are switched off

by hand, which corresponds to the situation that route landmarks

have not been learned yet. Depending on which motivation unit -

sourceA or sourceB - is stimulated stronger, the agent starts from

home to the corresponding food source and then returns to the

home site, all based on path integration.

The same happens in the second type of experiment in which

route landmarks memories are activated, but in which the agent

does not happen to touch the catchment area of any landmark.

Then the agent again moves in a straight line from the home to the

food site. However, if a catchment area is entered, the agent is

controlled by the local vector of this landmark. An example is

shown in Figure 2. The agent starts from home (yellow circle) to

food source A. Outbound moves are depicted by red squares,

inbound route landmarks by blue squares. The agent is first

controlled by path integration and thus follows a straight line

which points from home to site A. As the agent reaches the

catchment area of the first route landmark (red circle), the

corresponding memory element takes over control. We have

chosen the direction and the length of the local vectors in such a

way that the agent will normally meet another landmark. The

second landmark will then guide the agent to the third one. The

last landmark provides an angle leading to the food source. In this

final section, the network provides redundant information as both

the local vector and the PI vector point in the same direction. On

the way back (inbound routes and inbound route landmarks are

depicted blue), the agent does not meet the catchment area of any

inbound route landmark, so that it is completely controlled by its

path integrator. Accidentally, as depicted in this example, the

agent meets an outbound (red) landmark. However, this landmark

stimulus does not influence the agent’s behaviour at all, as the

outbound motivation is zero. If the agent’s position had been

changed by the experimenter in such a way that the agent would

have met one of the inbound route landmarks (depicted in blue),

the agent would have been controlled immediately by landmark

navigation (not shown in Figure 2 and 3, but see Figure 5).

Figure 3 provides an example in which the outbound walk is

governed by path integration. On the way back the agent meets the

catchment area of a route landmark (inbound, depicted in blue).

Therefore the agent is now heading towards the (blue) landmark

positioned near the lower margin of the environment. However, the

local vector is not long enough. Notice that when the local vector

has been run off before the next landmark is met, as is the case here,

the path integrator again governs the agent’s behaviour and leads

the agent directly to the goal, in this case to the home site.

Next we describe a situation in which the ant has learned to visit

two food sites (food A and food B) by running from the nest site

independently to either food A or food B. Now let us assume that it

has once arrived at site A but does not find food there (because the

reward has been removed by the experimenter). Would it then run

directly to site B? As illustrated in Figure 4, the agent leaves home

walking to food source A, because motivation unit sourceA is

highly activated. However, as the agent having arrived at site A is

unsuccessful there, the value of the motivation unit sourceA is

decreased (the input for stimulus ‘food’ is not shown in Figure 1).

Due to the properties of the motivation net – the motivation unit

‘forage’ is still running – motivation unit sourceB is activated.

Consequently, the agent is immediately heading towards food

source B (Figure 4). This section of its path is controlled by path

integration, as the agent does not meet any landmark. (If the agent

had met an outbound route landmark associated with food source

B, this landmark element would have guided the agent to site B).

After the agent has arrived at food site B and has been rewarded

there, the inbound motivation unit gets activated and the

outbound motivation unit shut off. The agent would now move

back towards home – exactly as a real ant does ([2] and B. Voegeli,

M. Knaden and R. Wehner, unpublished results).

To avoid possible misunderstandings let us recall that except for

the current vector within the PI system, our network does not have

the ability to subtract two vectors stored in any of the memory

elements (for example two food vectors). If this were possible, the

behavior of the agent could be explained as resulting from a

subtraction (B-A), because the resulting vector describes the route

taken by the agent. Actually, however, only the memory of vector
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B is used. This is possible because the effect produced by vector A

is given in the form of the already performed movement from the

nest to site A. With its current vector numerically corresponding to

vector A, the agent now continues to walk until its current vector

state equals that of its reference vector, i.e. vector B, and when this

has been accomplished has arrived at site B. Steering along the

novel route A-to-B has been governed completely by the ant’s path

integrator. Once food has been picked up at site B, the ant reverses

the sign of its reference vector, which in our model is realized by

switching off the output of memory element B, and walks directly

home to the starting point.

To what extent can this approach be applied to the map-like

navigation behaviour described in honeybees? Menzel and co-

workers [19] recorded the bees’ round-trip flight paths by applying

the harmonic radar technique as introduced for such purposes by

[41]. First the bees were allowed to acquire landmark information

about the surroundings of the hive for about three to six days.

Then they were trained to a food source, say, east of the hive. After

they had filled their crops, they were captured and transported to

another place, e.g., to the north of the feeder. Upon release they

first performed a straight flight path pointing westwards, and

hence obviously controlled by the state of their current path

integration vector. After they had flown off this home vector, i.e.,

after their path integrator had reached its zero state, they started

search flights consisting of ever widening loops. At one or another

point, dubbed ‘homing point’ by the authors, most of the bees

started a direct flight back towards the hive. Menzel et al. [19]

argue that at these homing points the bees had read their map,

determined the relative positions of the homing point and the hive,

and had then been able to compute their homeward course

appropriately. Some bees flew back in the direction of the feeder

(i.e. south-east in our example) rather than to the hive, to which

they returned only after having passed the feeder.

The bees’ behaviour described above can be explained by our

model as well. We assume (see also [23]) that at the ‘homing

points’ the bees rather than having resorted to a coherent map-like

representation of their foraging space had associated familiar

landmarks with local vectors pointing - may be not directly but

approximately - in the home direction. To simulate this behaviour,

we use another environment. Our artificial landscape now

contains a home site, one food site and seven inbound route

landmarks. Figure 5 shows an example. The simulated bee uses

path integration for searching the food site (red squares). After

having been transported from the food site to a release site to the

north (indicated by a black arrow), the simulated bee performs a

straight path controlled by path integration and then starts its

search flights (for details see Supporting Information in Figures S1,

S2 and Results Concerning Area Concentrated Search in Text

S2). As soon as it meets a known landmark during these search

flights, it directly moves home by employing the learned local

vectors associated with that landmark. The local vector may point

either directly to the home site or to another landmark.

A behavior less easily to be explained is provided by those bees

that at the ‘homing point’ headed first to the feeder. In our model

we assume that during their search flights these bees as well as the

majority of tested bees have encountered a known inbound

landmark pointing to the home site. We further assume (in accord

with Menzel et al. [19]) that both the inbound unit and the

outbound unit are activated. Under the assumption, that the

mutual inhibitory connections are due to habituation, the

activation of both units will start to oscillate [42]. In other words,

both outbound and inbound motivation units are active in an

alternating fashion. Thus, after the agent has performed the

straight path controlled by the path integrator, and then, during a

search flight, has found an inbound landmark, the inbound unit

allows for activation of the corresponding inbound landmark

element (as is assumed for the other bees, too). The outbound unit,

on the other hand, triggers the path integrator, if there are no

outbound landmarks around in this part of the environment as it is

the case in our example. As a result, the bee will come across the

site of the food source again. - As an alternative interpretation

(which has been provided by one of our anonymous reviewers), the

bee might have found an outbound landmark which then would

have led it directly to the food source. - When it perceives that site,

which it had actually – and successfully – visited before, the

motivation to approach the food source again (the activation of the

outbound motivation unit) might be decreased, so that the bee’s

behaviour would now be dominated by the active state of the

inbound motivation unit. Hence, our fully decentralized model

system can account even for the behaviour of the feeder-directed

bees. What of course remains to be answered is the question why

in these bees the outbound motivation state is activated at all, i.e.,

alongside the inbound state.

Discussion

What have we gained? Let us try to answer this question by

summarizing the elements and functions of the network presented

in this account. What we propose is an artificial neural system that

consists of a network allowing for both path integration and

landmark guidance. Each memory element receives a direct

sensory input, which might have already been pre-processed in

certain ways. In the case of the path integration procedure, there is

some pre-processing necessary, which comprises a subtraction of

the current vector from the reference vector stored in long term

memory. The output values provide an angle value and a vector

length and are controlled by input from motivational units. The

vector length values are subject to a competition based on lateral

inhibition. The vector length values are not responsible for the

determination of the forward walking component (i.e. the velocity),

but are only used for determining the salience values. The

resulting salience values are used to weight the angle values

proposed by the different procedures. These weighted angle values

are simply summed up to provide the resulting walking direction.

The complete network contains three types of connectivities that

support the decision on which procedure may contribute to the

final output. (i) The motivation net switches on or off groups of

procedural nets. Only procedures that belong to both a given food

source and a given state (outbound or inbound) may possibly be

activated at the same time. (ii) As, however, the landmarks of an

activated group are spatially separated, two landmarks of this

group could only be candidates of simultaneous activation if they

follow each other in a short enough distance so that the memory

for the first one has not yet been completely erased when the

second landmark is occurring. In this case the decision is forced by

the Lateral Inhibition net. Weights of the Lateral Inhibition

network are chosen in a way that in general there is one procedure

winning the competition. (iii) The third type of influence

suppresses the output of the path integrator and the ACS

procedure as long as any landmark procedure is active (see

Figure 1, horizontal black arrows below the blue boxes and above

the Lat. Inhibition network). The information concerning the

absolute position of the agent is present, but resides in a separate

memory element (Figure 1, Current Vector) that can be used to

control the behaviour, but cannot be used for computational

purposes within the system outside the path integrator subsystem.

Apart from the Current Vector, subtraction between any of the

vectors stored in the memory elements is not possible. Activation
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of the motivation unit ‘‘forage’’ is not only required within the

motivation network, but is also used to drive forward walking (not

shown in Figure 1). These two output signals, forward walking and

angle, can directly be applied to a network controlling six-legged

walking, as for example Walknet [43].

It is important to note that there is no information exchange

between the different memory elements. Each memory element

only has access to its ‘‘private’’ data. In other words, there is no

cognitive map implemented in the sense defined in the

Introduction. Nevertheless, the system allows for novel shortcuts,

a behavioural property that is often used as a strong hint for the

existence of a cognitive map. This result shows that there is no

need to explicitly implement a procedure that is responsible for

controlling shortcuts. Furthermore, no explicit procedure is

necessary to produce an area-concentrated search. In the

simulation, the latter behaviour results from a blending of the

output of a random generator and the path integrator.

One might be inclined to argue that the reduction of directional

outputs combining numerous decentralized navigation modules to

a single output is conceptually related to the ‘‘central control

room’’ of Tolman. However, the final summation of all outputs

simply reflects the fact that there is one motor output system onto

which all memory elements necessarily have to be projected. It

appears not to be sensible to equate this simple projection onto a

common motor output, formally a summation, with an operation

corresponding to Tolman’s central control room in which ‘‘the

incoming impulses are worked over and elaborated [ … ] [to]

finally determine[s] what responses, if any, the animal will finally

release’’. The introduction of a specific term like cognitive map to

simply characterize the property that there is one common motor

output is definitely not justified. Rather, as has been mentioned in

the Introduction, we propose to define the term cognitive map

along a borderline that characterizes a qualitative step between the

continuum of different types of reactive systems and a ‘cognitive’

system in the following sense. A cognitive system - and therefore

the application of a cognitive map - allows for exploitation of

memory elements independently of the context in which these

elements have been acquired (see [25] for an example).

Is it possible to experimentally distinguish between our

hypothesis and that of a cognitive map? Assume that the

experiment shown above (Figure 3) is performed such that, after

having learned the locations of food source A and food source B,

the animal is not allowed to walk from then nest to source A, but is

cought when leaving the nest and then released – still as a zero-

vector ant (see above) - inside the catchment area of food source A.

If there is no food at source A, the agent applying our network will

now activate the motivation unit of source B and then follow a

path not characterized by vector (B-A), but by vector B. This

means that it will normally not move towards source B. In

contrast, an agent equipped with a cognitive map in the sense

defined above would be able to perform the vector subtraction (B-

A) and therefore steer the shortcut route.

Taken together, our network is able to ‘‘allow[s] the bee to perform

novel shortcuts and to choose between two potential goals, the hive

and the feeder’’ ([19], p. 3044). However, contrary to the authors’

conclusion, the spatial behaviour observed in the bees does not

necessarily mean that a ‘cognitive map’ is in charge, which Menzel

and his coworkers define as a system in which ‘‘spatial relations

between environmental features [are] coherently represented’’ ([19],

p. 3045) - as ‘‘a common spatial memory of geometric organisation (a

map) … as in other animals and humans’’ ([44], p. 429).

Where in the brain might the presumed structures defined by our

network model be located? Neuropils that immediately spring to

mind in the bee’s and ant’s ‘forebrain’ are the mushroom bodies

(corpora pedunculata). With their massively parallel processing

lines, their ‘‘numerous subunits each served by its own arrangement

of inputs and providing its own outputs’’ ([45], p. 281) as well as

their recurrent network connections between other protocerebral

neuropils and the mushroom body lobes they are likely candidates

for housing our network structures. The longitudinal subdivision of

the lobes indeed suggests longitudinal multiplexing of discrete

integrative networks [46] that form an essential element of the

procedural memories inherent in our model. Furthermore, the

microglomerular synaptic complexes of multimodal input

neurons and Kenyon cell dendrites in the mushroom body

calyces might provide ‘‘the context in which multimodal

integration is performed at discrete loci within the mushroom

body lobes’’ [45], p. 286) and thus might functionally correspond

to our motivation network. Heisenberg [47] lists several examples

that indeed show that mushroom bodies are required for the

stabilization of, and the switching between, different modes of

behaviour. Experience-related changes in the microglomerular

synaptic complex, as they occur in bees [48,49] as well as

Cataglyphis ants [50,51], could indicate that the Kenyon cells at

their calycal sites are involved in memory formation. Moreover,

the mushroom bodies have long been regarded as centers of

multimodal interconnections, especially as regards to the context-

dependent processing of multimodal information (e.g., [52,53])

and decision making (e.g., [54]). Finally, the outputs of local

mushroom body circuits reach, via protocerebral neuropils, the

central complex [46], which is responsible for the higher-order

control of oriented walking [55–57].

Supporting Information

Figure S1 Searching paths. When a simulated zero-vector ant starts

a searching movement, the distance to the starting position shows a

temporal development similar to that observed in real ants (compare

with [12], Figure 8). Distance d (length of current vector) vs. time.

(TIF)

Figure S2 The density profile of searching paths (mean values

from n = 10 simulated searching paths) is in good agreement with

profiles recorded from real ants performing search paths (compare

with [12], Figure 5).

(TIF)

Text S1 Computational details. Further information is given

concerning the structure of the motivation network, the simulation

of landmark networks, and a brief discussion comparing the

application of Cartesian or polar coordinate systems.

(DOC)

Text S2 Results concerning area concentrated search. Figure 5

shows an individual example of an Area Concentrated Search

path. Here we illustrate how the distance between starting position

and actual position develops over time (Figure S1) and show the

density profile averaged over 10 searching paths to allow for a

comparison with biological data.

(DOC)
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35. Kühn S, Beyn W-J, Cruse H (2007) Modelling Memory Functions with

recurrent neural networks consisting of input compensation units. I. Static

situations. Biol Cybern 96: 455–470.
36. Makarov VA, Song Y, Velarde MG, Hübner D, Cruse H (2008) Elements for a

general memory structure: Properties of recurrent neural networks used to form
situation models. Biol Cybern 98: 371–395.
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43. Dürr V, Schmitz J, Cruse H (2004) Behaviour-based modelling of hexapod
locomotion: Linking biology and technical application. Arthropod Struct

Develop 33: 237–250.
44. Menzel R, Brembs B, Giufra M (2007) Cognition in invertebrates. In: Kaas JH,

ed. Evolution of nervous systems, Volume 2: Evolution of nervous systems in
invertebrates. Academic press, New York. pp 403–442.

45. Strausfeld NJ, Sinakevitch I, Brown SM, Farris SM (2009) Ground plan of the

insect mushroom body: functional and evolutionary implications. J Comp
Neurol 513: 265–291.

46. Strausfeld NJ (2001) Insect brains. In: Roth G, Wullimann MF, eds. Brain Evol
Cogn. New York: Wiley. pp 367–420.

47. Heisenberg M (2003) Mushroom body memoir: from maps to models. Nature

Rev Neurosc 4: 266–275.
48. Krofczik S, Khojasteh U, Hempel de Ibarra N, Menzel R (2008) Adaptation of

microglomerular complexes in the honeybee mushroom body lip to manipu-
lations of behavioural maturation and sensory experience. Dev Neurobiol 68:

1007–1017.
49. Münz TS, Oberwallner G, Gehring K, Rössler W (2008) Plasticity of synaptic
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