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Abstract

It is currently believed that the atlas of existing protein structures is faithfully represented in the Protein Data Bank.
However, whether this atlas covers the full universe of all possible protein structures is still a highly debated issue. By using
a sophisticated numerical approach, we performed an exhaustive exploration of the conformational space of a 60 amino
acid polypeptide chain described with an accurate all-atom interaction potential. We generated a database of around
30,000 compact folds with at least 30% of secondary structure corresponding to local minima of the potential energy. This
ensemble plausibly represents the universe of protein folds of similar length; indeed, all the known folds are represented in
the set with good accuracy. However, we discover that the known folds form a rather small subset, which cannot be
reproduced by choosing random structures in the database. Rather, natural and possible folds differ by the contact order, on
average significantly smaller in the former. This suggests the presence of an evolutionary bias, possibly related to kinetic
accessibility, towards structures with shorter loops between contacting residues. Beside their conceptual relevance, the new
structures open a range of practical applications such as the development of accurate structure prediction strategies, the
optimization of force fields, and the identification and design of novel folds.
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Introduction

The total number of distinct protein folds which have been

experimentally solved is very small compared to the amount of

genome-wide protein sequences [1,2]. Indeed, folds are evolution-

arily more conserved than sequences and the same fold can house

proteins performing different biological functions [3,4]. Thus a

fundamental question concerns the extension of the library of

protein folds: are the observed structures a small fraction of the

whole fold universe? If so, then is it because evolution has not yet

run enough to explore it or rather because a selection principle is

on which has slowed down/stopped the search for alternatives?

Addressing these issues on the basis of the principles of physics

and chemistry is a question of fundamental importance, currently

at the center of intense investigation. Several properties of the

folding process have been shown to depend more on the fold

topology than on the specificity of the aminoacids [5–10]. For a

few proteins, native backbone geometries were shown to be closely

mimicked by local energy minima of poly-alanine chains [11].

More recently, a unified approach to the origin of protein folds

was proposed in which the inherent anisotropy of a chain

molecule, the geometrical and energetic constraints placed by

hydrogen bonds, steric hindrance and hydrophobicity yield a free

energy landscape with minima resembling protein structures

[12–14]. One of the predictions is that a limited library of folds

exists. Along the same lines, based on a coarse grained model,

Zhang et al proposed [15] that there is a one-to-one correspon-

dence between the Protein Data Bank (PDB) library and the

structures that one can obtain with a homopolymer from the

requirement of ‘‘having compact arrangements of hydrogen-

bonded, secondary structure elements and nothing more’’ [15]. A

different scenario has been proposed in ref. [16] where, by using

structure prediction method based on an idealized secondary

structure lattice representation they argued that the space of

possible folds might be larger than the space of natural folds.

Recent advances in supercomputing power and sampling

methods [17,18] allow us addressing these issues by accurate

atomistic simulations. We here describe the results of a 50 ms
molecular dynamics simulation of a 60 amino acids polypeptide

chain performed with an accurate all-atom interaction potential

and a setup specifically designed in order to extensively explore the

configuration space. The length of 60 was chosen because it

represents the limit of what can be simulated with our

computational resources. Natural proteins are on average much

longer than 60 amino acid, but several autonomously folded

domains of this size exist [19], making the comparison between

simulation and nature meaningful. In the simulation we visit

practically all the *300 folds observed in nature for proteins of

comparable length. However, at variance with what found in [15],

we find that natural folds are only a small fraction of the structures

that are explored. Many of the structures found in our simulation

resemble real proteins (in terms of secondary content, stability and

PLoS Computational Biology | www.ploscompbiol.org 1 November 2010 | Volume 6 | Issue 11 | e1000957



compactness) but have not been observed in nature. This finding

immediately rises a question on the nature and meaning of these

novel folds: why are they not exploited in real proteins? Do natural

folds have something ‘‘special’’ or have they simply been selected

randomly?

Results

A library of 30,000 folds
By using a state-of-the art enhanced sampling technique [18],

we simulate a 60 amino acid polyvaline (VAL60) described by an

all-atom potential energy function [20] as explained in Methods.

This allows generating, in 50 ms of simulation, *30,000 structures

characterized by a significant secondary content and a small radius

of gyration. A movie with a short part of the trajectory (1:2 ns) is

available as Video S1. It shows the exploration proceeds mostly by

local reorganization of secondary structure elements. From time to

time the system unfolds completely, exploring a totally indepen-

dent topology. A selection of the 30,000 structures is represented

in Fig. 1-a and a repository, with their all-atom configuration, is

available at http://dx.doi.org/10.5061/dryad.1922. By steepest

descent optimization (see Methods) we verified that even if these

structures have been obtained with an enhanced sampling

technique, they closely correspond to local minima of the potential

energy surface of VAL60. Consistently with Ref. [11], they also

correspond closely to local minima of the potential energy surface

of polyalanine (ALA60) (see Methods).

Even though these structures correspond to local minima, one

still wonders if their structural quality is good and if they resemble

real proteins. In order to address this issue, we monitored several

structural quantities on our dataset. In Fig. 2-a we show the

Ramachandran plot of the VAL60 structures. One can see that the

dihedrals populate the allowed regions. The relative height of the

various peaks is determined by the probability to observe the

different secondary structural elements and the random coil in the

full dataset. The ‘‘stereochemical quality’’ of the VAL60 set was

also assessed using PROCHECK [21]. This program provides an

overall quality measure, called G-factor, which takes into account

dihedrals, bond lengths and angles, as compared with stereo-

chemical parameters derived from well-refined, high-resolution

structures. If the G-factor is higher than 21.0 the structure is

considered to be ‘‘normal’’. In Fig. 2-b the G-factor distribution is

shown for the VAL60. For a comparison, we computed the same

distribution also for the structures of length smaller than 75 amino

acids belonging to the CATH database [19]. We also used

PROCHECK to estimate the average hydrogen bond energy. The

distributions of this quantity for VAL60 and CATH is shown in

Fig. 2-c and compared (dash line) with its ideal mean and standard

deviation [21]. For the VAL60 set the G-factor and the H-bond

energy, though not as good as for CATH, are in accordance with

what is expected for realistic proteins. Lastly, in order to check if

medium size structures generated by our sampling procedure are

representative of the PDB, the VAL60 structures were fragmented

in small 5 amino acids long structures and were compared by

backbone RMSD [22] to all the fragments of the same length

found in CATH. The minimum RMSD value was obtained for

each small fragment. The distribution of this quantity is shown in

Fig. 2-d. It is found that the VAL60 fragments have on average at

least one CATH structure within 0.6 Å of RMSD. For all the

structural descriptors we considered the VAL60 distributions are

similar but not identical to the ones of real proteins, due to the fact

that in our simulation we considered an homopolymer formed by

only one amino acid, valine. Taken together the data shown in

Fig. 2 demonstrate our first major result: finding by molecular

dynamics at an all-atom level a library of *30000 protein-like

structures.

All the known folds between 40 a.a. and 75 a.a. are
reproduced

The VAL60 structures obtained in this manner, at a first sight,

cannot be distinguished from folds adopted by proteins. In order to

understand how many independent structures are actually

explored, and if the set contains all the known folds, a measure

of the degree of similarity between two protein structures is

needed. We used the TM-align approach [23], which gives, as

three quantitative outputs, the coverage, the root mean square

distance (RMSD) between the aligned residues, and the TM-score

(see Methods). Following Ref. [15], we first checked if the set of

structures generated by molecular dynamics reproduces all the

known folds. As a target set we here considered the CATH

database [19], that is successfully used in structural studies to

classify protein folds. Other choices were also considered (see Text

S1). For each structure in the CATH database, we searched, in the

set of the 30,000 structures of VAL60 generated by molecular

dynamics, for its most similar structure as quantified by the TM-

score. In Fig. 1-b, three CATH structures with their respective

VAL60 equivalent are shown. As shown in Fig. 3-a, for almost

every CATH structure it is possible to find a VAL60 structure that

is very similar. For CATH structures of length between 55 and 65

amino acids the average coverage is 75%, and the average RMSD

is of only 2.8 Å. The VAL60 set reproduces, with even greater

success, CATH structures of shorter length. Instead, structures of

65 or more amino acids are reproduced less accurately, as the

maximum coverage that can be attained is, by definition, smaller

than their length. However, even in these cases, the RMSD

restricted to the aligned residues is small, of 3 Å or less.

Comparison of the VAL60 set with even longer chains is not

considered here: the long chains can contain extra secondary

structure elements that do not significantly affect the quality of the

alignment but change the topological details of the fold.

The excellent capability of the VAL60 set of reproducing the

known folds is confirmed by monitoring the progress of

exploration as a function of the number of structures found

during the simulation. At this purpose, we assumed that a CATH

structure is ‘‘found’’ when molecular dynamics explores a VAL60

structure whose TM-score (with respect to the CATH structure) is

higher than 0.45. Visual inspection reveals that two structures of

similar length and of relative TM-score larger than 0.45 are

structurally and topologically similar. In Fig. 3-b we plot, for

different length classes, the fraction of CATH structures that are

found as a function of the number of VAL60 structures (which is

approximately proportional to simulation time). At the end of the

Author Summary

Protein structure and biological function are determined
by their sequence, but proteins of different sequence or
function can share the same structure. To rationalize this
puzzling observation we explored by computer simula-
tions the universe of all possible folds for proteins of
relatively small length. We find that nature exploits a
relatively small corner of this universe. Evolution selected
this region under the guidance of a simple principle:
reducing the entanglement in the bundle formed by the
protein in its folded state. This makes bundles with shorter
loops preferable. The set of structures that we make
available will open a range of practical applications in
biomedical sciences.

Exploring the Universe of Protein Structures
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simulation, for length L = 55–65 the fraction of found structures is

86% (85% for L = 40–55 and 78% for L = 65–75). 100% of the

structures of length L = 40–65 are reproduced within a TM-score

of 0.4. This shows that the computational setup used in this work

allows us to explore the majority of the folds in nature, at least

within the limited range of lengths considered. This is the second

main message of our study and confirms the results of Ref. [15]

obtained with a simpler potential energy function.

The universe of possible folds is much larger than the
PDB

The exploration of VAL60 structures by molecular dynamics

proceeds in an almost random manner, with no obvious

preference for a specific class of folds or secondary structure

element. Indeed we checked that it is, on average, equally likely to

find a specific CATH structure as finding a VAL60 structure for

the second time (see Methods). In other words, in our sampling

strategy there is no particular bias for generating a structure

observed in nature. However, one realizes that the two sets of

structures, CATH and VAL60, cannot be fully equivalent. Indeed,

according to a clustering procedure (see Methods), in 50 ms the

simulation explores *7,000 independent structures, much more

than the structures in CATH (*300 in a length range between 40

and 75).

One could argue that finding or not a one-to-one correspondence

might just depend on the chosen similarity threshold [24]. In order

to quantitatively investigate this issue, we addressed the following

question: Do structural descriptors exist whose distributions are

different between the two sets CATH and VAL60? If the answer is

yes, a biased search mechanism reflecting an evolutionary pressure

may be envisaged. Otherwise a random search mechanism in a

continuous structure space may be enough to account for the choice

of the observed folds out of all possible structures. While at first

sight structures belonging to the VAL60 and CATH sets look

Figure 1. Gallery of representative VAL60 structures generated by molecular dynamics. (a): A selection of 260 out of the 30,000 structures
generated by MD, visualized by VMD [39]. The structures were selected from the 50 ms molecular dynamics trajectory if they satisfied the following
conditions: (i) have more than 30% of secondary content according to DSSP [37] (ii) have a gyration radius smaller than 15 Å; (iii) be separated more
than 50 ps in simulation time. The structures obtained in this manner are further optimized by steepest decent with er~1 until a local potential
energy minimum is reached (see Methods). (b): Examples of successful alignments. The CATH structure is represented together with its VAL60
equivalent for three cases.
doi:10.1371/journal.pcbi.1000957.g001

Exploring the Universe of Protein Structures
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indistinguishable, a more detailed analysis reveals that several

VAL60 structures include a large fraction of parallel b-sheets. This

secondary structure element is much less common in the CATH set

restricted to Lv75. We quantify this observation by looking at the

distributions of normalized contact order (CO) and the contact

locality (CL) (see Methods). The distribution of CATH is

significantly restricted towards lower CO and higher CL values

with respect to VAL60 (see Fig. 4-a), consistent with the observation

that parallel b-sheets are found less frequently in CATH. We have

checked that this discrepancy is not due to the specific simulation

setup (see Methods).

We also checked that the CO distribution computed for the

subset of VAL60 that are recognized to be similar to CATH is

largely overlapping with the CO distribution for the CATH set

(see Fig. 4-b). This demonstrates the consistency of the similarity

measure provided by the TM-score. We also analyzed the

distribution of the CO restricted to the different structural classes.

The bias towards low CO is not effective for all-a structures (see

Fig. S6), whereas is active for all-b and a-b structures. All these

results suggest that, among all possible conformations physically

attainable by polypeptide chains, real protein structures were

selected under a bias towards low CO. This is the third main

message of our study: As observed with the coarse grained model

of ref. [16], there is no one-to-one correspondence between the

PDB library and the ensemble of compact structures with

significant secondary content.

Discussion

By using atomistic simulations and a powerful enhanced sampling

technique we have generated a database of *30000 structures

corresponding to energy minima of a 60 amino acids polypeptide.

Clearly, the length of 60 amino acids used in the simulation does not

provide a complete representation of the full protein universe, which

includes a very large amount of much longer proteins. However, our

results indicate that, within the limited length range we considered,

the VAL60 set is indeed representative of the space inhabited by real

proteins. In fact, this set includes all the folds existing in nature for

proteins of similar size, confirming that the observed protein folds

are selected based on geometry and symmetry and not on the

Figure 2. Structural quality assessment for the VAL60 set. (a) Ramachandran plot for the VAL60 structures. (b) G-factor [21] distribution and
(c) H-bond energy distributions [21] for the VAL60 and CATH (40vLv75) sets. (d) Minimum RMSD distribution for a set of 150000 5 amino acids long
fragments of the VAL60 set, and 1000 fragments of the CATH set. Inset: an example of an alignment between two fragments with a RMSD of 0.7 Å.
doi:10.1371/journal.pcbi.1000957.g002

Exploring the Universe of Protein Structures
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chemistry of the aminoacid sequence [5–15]. However, we find that

the known folds form only a small fraction of the full database.

Natural folds are indistinguishable in terms of secondary content

and compactness from non-natural folds, but are characterized by a

relatively small contact order and a relatively high contact locality.

Why has nature made this choice? One can argue that, due to a

higher b-structure content, large CO structure could have a higher

tendency to aggregate. Another possible explanation relies on

kinetic accessibility, as the contact order is known to correlate with

the folding time of two-state globular proteins [25]. Evolution might

have selected the folds under the guidance of a simple principle:

reducing the entanglement in the bundle formed by the protein in its

folded state. Bundles with shorter loops might be preferable, as they

are explored more easily starting from a random coil.

How has nature been able to select low contact order structures?

In order to address this issue, we investigated the role of specific

amino acids in selecting a fold among the possible structures. At

this scope, we compared the correlation between potential energy

and CO of the structures obtained by energy minimization of

VAL60 and ALA60 (see Methods). Fig. 5 vividly demonstrates that

different low energy structures may be discriminated when

different sequences are mounted on all the possible ‘‘presculpted’’

structures [12]. Whereas energetically VAL60 prefers structures

with high CO and a large content of strands, ALA60 promotes

conformations with low CO and which are rich in helices.

Evolution, possibly also guided by the kinetic bias hypothesized

above, can then proceed by using a repertoire of 20 types of amino

acids, to select and design the sequences which minimize the free

energy of a desired structure against other competing structures.

As a final remark, we believe that the VAL60 structures and the

computational procedure to generate them, also with different

types of amino acids and with different lengths, may play a key

role in future developments. The availability of a rich library of

possible folds and realistic decoys could allow for major advances

Figure 3. Similarity between the VAL60 set and the PDB structures from the CATH database. (a) Coverage vs RMSD (see Methods) for the
CATH proteins divided in different length classes with respect to their most similar VAL60 structure. (b) Percentage of CATH structures that are
reproduced by a structure in the VAL60 set (TM{scorew0:45) as a function of the number of the VAL60 structures obtained in the simulation.
doi:10.1371/journal.pcbi.1000957.g003

Exploring the Universe of Protein Structures
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in the two main applicative challenges in protein physics: the

prediction of the native state of any given sequence and the design

of the sequence folding into a desired fold. They might be also

used to check predictions in synthetic biology [26,27]. Further-

more the library could be exploited to obtain models of misfolded

protein structures related to neurodegenerative diseases [28]. We

have shown that generating a huge set of realistic structures is

feasible with a computational analysis based only on ab-initio

physico-chemical information, with no need of using knowledge-

based potentials as in state-of-the-art approaches to protein

structure prediction and design [29].

Materials and Methods

Setup of the simulation
Molecular dynamics (MD) simulations are performed using the

AMBER03 [20] force field and the molecular dynamics package

GROMACS [30]. Simulations are mainly performed in vacuum,

but tests have been performed also in water solution (see below).

The temperature is controlled by the Nose-Hoover thermostat,

and the integration time step is 0:002 fs. In order to explore the

conformational space we use bias-exchange metadynamics (BE-

META) [18,31] with 6 replicas. BE-META is a combination of

replica exchange [32] and metadynamics [33], in which multiple

metadynamics simulations are performed at the same tempera-

ture. Each replica of the system is biased with a one-dimensional

metadynamics potential acting on a single collective variable (CV).

The CVs are described in detail in [34] and are designed in order

to evaluate by a differentiable function of the coordinates the

fraction of a secondary structure element (a-helix, parallel b-sheet

and antiparallel b-sheet). For instance, for the antiparallel b-sheet

the variable counts how many pairs of 3-residue fragments in a

given protein structure adopt the correct b-conformation,

measured by the RMSD from an ideal block of antiparallel b
formed by a pair of three residues. We use six CVs: 3 a-CVs each

biasing one third of the protein, 1 anti-b CV, and 2 para-b CV.

The Gaussians entering in the metadynamics potential are added

every 10 ps. Their height and width are 5 Kcal=mol and 0.3.

Exchanges between the biasing potentials are allowed every 25 ps.

The exchanges greatly enhance the capability of the dynamics of

Figure 4. Contact order and Contact Locality distributions of CATH and VAL60. (a) CO vs CL (see Methods) represented for the CATH set of
length 40vLv75, and the VAL60 set. (b) CO distributions for the CATH set of length 55vLv65, VAL60 set and for the subset of independent VAL60
structures that have TM{scorew0:45 with a structure in the same CATH set. Independent structures are obtained as described in Methods.
doi:10.1371/journal.pcbi.1000957.g004
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exploring new structures [18,35]. These parameters have been

optimized according to the criteria of Ref. [36].

The main scope of this work is exploring exhaustively the

conformational space of an average length polypeptide described

by a realistic potential energy function. The final choice of

simulating VAL60 in vacuum with er~80 at 400 K, and then

optimizing the configurations with er~1 was taken after

considering several alternatives. We first considered performing

the simulation on a 60-alanine in vacuum (ALA60), as alanine is

used in Ref. [11]. This system was evolved using the BE-META

setup described above for 1:5 ms generating *1200 structures

with a high secondary content. However, the structures generated

in this manner are too compact to be comparable with

experimental structures. Indeed, the histogram of the radius of

gyration for ALA60 is peaked approximately 1 Å too low with

respect to what observed for real proteins of similar length (see Fig.

S1). This is due to the relatively low steric hindrance of the side

chain of ALA. The same histogram computed for VAL60 is

instead fully consistent with the distribution observed in real

proteins. We also performed test simulations of VAL60 solvated in

TIP3P water at 350 K. This system was evolved for 0:8 ms with

the same BE-META setup. In this case *1400 structures with a

high secondary content are found, but most of these structures are

not independent, as the correlation time in water is much larger

than in vacuum. More importantly, the structures generated in

water have on average a large radius of gyration (see Fig. S1). This

is an indication that at 350 K the system explores mainly non-

compact structures. Of course, one could perform the simulation

at lower temperature, but this would lead to an even larger

correlation time, making an exhaustive exploration of the

configuration space too time consuming with existing computa-

tional resources. Performing the exploration with er~80 is not

strictly necessary, as test simulations performed with er~1 are also

able to explore structures with a high secondary content. However,

VAL60 with er~1 has a relatively high preference for b structures

(see Fig. 5). With er~80 a and b structures become approximately

isoenergetic for VAL60, removing a possible bias in the

exploration (see also Fig. S5).

VAL60 and ALA60 minimization
The VAL60 set was generated by molecular dynamics in

vacuum at 400 K, biasing the system by metadynamics potentials

aimed at producing secondary structure elements. One wonders if

the structures that are explored in this manner have protein-like

topologies only because of the bias, and would fall apart in normal

conditions. In order to address this issue, for all the structures

generated by molecular dynamics we performed a steepest decent

(SD) simulation with er~1, aimed at localizing the closest

potential energy surface minimum. For the last configuration the

Ca RMSD was calculated with respect to the initial structure. The

distribution of this quantity is shown in Fig. S2. Most of the

structures do not drift significantly apart from the initial

configuration, and the Ca RMSD remains relatively small, within

2 Å in most cases. Thus, we conclude that the VAL60 structures

generated by molecular dynamics are close to local energy

minima. The set of structures generated in this manner form the

database on which we perform the analysis.

We also checked if the structures that are generated in this

manner are stable if the homopolymer chain is formed by another

amino acid. At this purpose, *1500 VAL60 structures were

chosen randomly. For each of these structure the valines were

replaced by alanines (ALA60). Following the same procedure

described above, a SD simulation was run until the closest local

minimum is reached. The Ca RMSD from the initial ALA60

Figure 5. Correlation between potential energy and contact order for VAL60 and ALA60 structures. For a subset of *1500 structures
from the VAL60 set we generated a corresponding set of ALA60 structures by finding the local potential energy minima after conversion of valine
into alanine residues (see Methods). We then sorted all the structures according to their CO. Each point in the figure corresponds to a structure. We
also represent the running average of the energy over a window of 50 structures.
doi:10.1371/journal.pcbi.1000957.g005

Exploring the Universe of Protein Structures
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configuration was calculated. The distribution of this quantity is

shown in Fig. S2. Quite remarkably, even if one changes the

amino acid sequence from VAL60 to ALA60 the structures do not

change significantly, remaining within 2{3 Å of Ca RMSD from

the initial structure. This confirms the prediction of Ref. [11].

TM-align algorithm
The similarity between two different structures is assessed using

the TM-align algorithm [23]. This method, regardless of the

primary sequence of the two proteins, attempts to align their

secondary structure elements allowing insertions and deletions of

residues. The fraction of aligned residues is called coverage, and is

the first measure of similarity. Afterward, the algorithm finds the

rotation and translation that minimizes the relative distance

between pairs of aligned residues (RMSD). The optimal coverage

and RMSD are then combined into a single similarity measure,

the TM-score. The original version of the TM-align algorithm has

been modified in order to assign the secondary structure elements

with more accuracy. Instead of considering only the Ca

coordinates as in Ref. [23], our modified version reads for each

protein the secondary structure assignment given by DSSP [37].

When the proteins have different lengths, the length of the target

protein is used in the TM-score definition [23]. The TM-score is

equal to one for two identical structures. Two structures are

considered to represent the same fold if their TM-score is greater

than 0.45, while for two randomly chosen structures the TM-score

is approximately equal to 0.25.

Finding the independent structures
In order to find the independent structures we proceeded as

follows: first we selected the structure with the largest number of

neighbors, namely with the largest number of structures at a TM-

score larger than 0.45. We assign it as the first independent

structure and remove it, together with all its neighbors, from the

list of structures. We iterate this procedure until the list is empty.

In Fig. S3 we plot the number of independent structures found as a

function of the number of structures explored by MD. This data

can be accurately reproduced with a double exponential fit

(RMS~0:0128), which allows estimating as *10,000 the number

of independent structures that would be explored in an infinitely

long MD run.

CATH and VAL60 structures are explored with equal
probability

We consider a small fraction of the MD trajectory used for

generating the VAL60 dataset. In this fraction of the trajectory

*2000 independent structures are generated. Using the rest of the

trajectory, we compute the number of times n that each of these

structures is observed (namely, the number of times a structure

with relative TM-score larger than 0.45 is visited). The histogram

of n is calculated for 20 different sets, each including 100 VAL60

structures. Its average and standard deviation (error bars) are

plotted in Fig. S4. This is compared to the same histogram

computed for the CATH set with 55vLv65 (*80 structures).

Strikingly, the two histograms are very similar, indicating that the

probability of finding a CATH structure in this length range is

similar to the probability of finding a VAL60 structure a second

time.

Contact order and contact locality
Two residues are considered to be in contact when at least one

pair of their heavy atoms is found at a distance smaller than 3.5 Å.

The contact order (CO) [25] is defined as the average sequence

separation between contacting residues divided by the chain

length. The contact locality (CL), is a structural descriptor that

counts the fraction of contacting residue pairs which are formed

within the same half of the chain [38]. The total number n of

pairwise contacts is n~nNznCznNC, where nN and nC are the

contacts between residues both belonging to the half of the chain

towards the N-terminus and the C-terminus, respectively, and nNC

are the contacts between residues belonging to different halves of

the chain. CL is then defined as CL~ nNznCð Þ=n.

VAL60 structures with high or low CO are explored with
approximately equal probability

One of the main results described in the work is that, on

average, the VAL60 structures have higher CO than CATH

structures. In order to find out if the biasing procedure favors high

CO structures we separate the *2000 VAL60 structures in two

classes: low CO (v0:3) and large CO (w0:38), and we calculate

the probability to find a structure n times in the simulation (same

procedure as above). The two distributions with the respective

error bars are shown in Fig. S5. From the graph, it can be

concluded that the two distributions are similar but it is marginally

easier for VAL60 to re-generate more times low CO structures

rather than high CO ones. Thus, the VAL60 system is able to

sample low CO structures with a marginally higher efficiency. This

is possibly due to the fact that low CO structures are kinetically

encountered more often in a random search guided only by a bias

towards high secondary structure content. This allows concluding

that the large number of high CO structures that is obtained by

molecular dynamics is not due to a bias in the sampling procedure.

Contact order for different secondary structure classes
The results found in Fig. 4 show that there is a bias towards low

CO structures for the CATH set. In order to find out how this bias

acts for different structural classes, the CO distributions was

calculated for all-a structures and all-b structures of CATH and

VAL60. The results are shown in Fig. S6. While the bias towards

low CO is present for all-b structures, for all-a structures it is not

effective. It is also remarkable that the CO distribution for b
structures in the VAL60 set that are similar to a CATH structure is

very similar to the probability distribution for the all-b CATH

structures.

Supporting Information

Figure S1 Distribution of the radius of gyration for the VAL60,

VAL60+WATER,ALA60 and CATH 55–65 sets of structures.

Found at: doi:10.1371/journal.pcbi.1000957.s001 (0.02 MB EPS)

Figure S2 Ca RMSD distributions for the 30,000 VAL60 and

the 1500 ALA60 minimized through SD. The RMSD is measured

with respect to the initial configuration.

Found at: doi:10.1371/journal.pcbi.1000957.s002 (0.02 MB EPS)

Figure S3 Number of independent VAL60 structures as a

function of the number of structures obtained in the MD

trajectory.

Found at: doi:10.1371/journal.pcbi.1000957.s003 (0.02 MB

EPS)

Figure S4 Probability of finding n times a CATH structure and a

VAL60 structure.

Found at: doi:10.1371/journal.pcbi.1000957.s004 (0.02 MB EPS)

Figure S5 Probability of finding a structure in the VAL60

trajectory for different CO classes.

Found at: doi:10.1371/journal.pcbi.1000957.s005 (0.02 MB EPS)
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Figure S6 Contact order for different structural classes. The

CATH and VAL60 sets divided in two structural classes: all-a
structures, or all-b structures.

Found at: doi:10.1371/journal.pcbi.1000957.s006 (0.02 MB EPS)

Text S1 Library of protein structures.

Found at: doi:10.1371/journal.pcbi.1000957.s007 (0.04 MB PDF)

Video S1 A short movie of VAL60 trajectory during the biased

molecular dynamics simulation.

Found at: doi:10.1371/journal.pcbi.1000957.s008 (2.73 MB

MPG)
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