
Parameter Estimation and Model Selection in
Computational Biology
Gabriele Lillacci, Mustafa Khammash*

Center for Control, Dynamical Systems and Computation, University of California at Santa Barbara, Santa Barbara, California, United States of America

Abstract

A central challenge in computational modeling of biological systems is the determination of the model parameters.
Typically, only a fraction of the parameters (such as kinetic rate constants) are experimentally measured, while the rest are
often fitted. The fitting process is usually based on experimental time course measurements of observables, which are used
to assign parameter values that minimize some measure of the error between these measurements and the corresponding
model prediction. The measurements, which can come from immunoblotting assays, fluorescent markers, etc., tend to be
very noisy and taken at a limited number of time points. In this work we present a new approach to the problem of
parameter selection of biological models. We show how one can use a dynamic recursive estimator, known as extended
Kalman filter, to arrive at estimates of the model parameters. The proposed method follows. First, we use a variation of the
Kalman filter that is particularly well suited to biological applications to obtain a first guess for the unknown parameters.
Secondly, we employ an a posteriori identifiability test to check the reliability of the estimates. Finally, we solve an
optimization problem to refine the first guess in case it should not be accurate enough. The final estimates are guaranteed
to be statistically consistent with the measurements. Furthermore, we show how the same tools can be used to discriminate
among alternate models of the same biological process. We demonstrate these ideas by applying our methods to two
examples, namely a model of the heat shock response in E. coli, and a model of a synthetic gene regulation system. The
methods presented are quite general and may be applied to a wide class of biological systems where noisy measurements
are used for parameter estimation or model selection.
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Introduction

Many biological processes are modeled using ordinary differ-

ential equations (ODEs) that describe the evolution over time of

certain quantities of interest. At the molecular level, the variables

considered in the models often represent concentrations (or

number of molecules) of chemical species, such as proteins and

mRNA. Once the pathway structure is known, the corresponding

equations are relatively easy to write down using widely accepted

kinetic laws, such as the law of mass action or the Michaelis-

Menten law.

In general the equations will depend on several parameters.

Some of them, such as reaction rates, and production and decay

coefficients have a physical meaning. Others might come from

approximations or reductions that are justified by the structure of

the system and, therefore, they might have no direct biological or

biochemical interpretation. In both cases, most of the parameters

are unknown. While sometimes it is feasible to measure them

experimentally (especially those in the first class), in many cases

this is very hard, expensive, time consuming, or even impossible.

However, it is usually possible to measure some of the other

variables involved in the models (such as abundance of chemical

species) using PCR, immunoblotting assays, fluorescent markers,

and the like.

For these reasons, the problem of parameter estimation, that is the

indirect determination of the unknown parameters from measure-

ments of other quantities, is a key issue in computational and

systems biology. The knowledge of the parameter values is crucial

whenever one wants to obtain quantitative, or even qualitative

information from the models [1,2].

In the last fifteen years a lot of attention has been given to this

problem in the systems biology community. Much research has been

conducted on the applications to computational biology models of

several optimization techniques, such as linear and nonlinear least-

squares fitting [3], simulated annealing [4], genetic algorithms [5],

and evolutionary computation [6,7]. The latter is suggested as the

method of choice for large parameter estimation problems [7].

Starting with a suitable initial guess, optimization methods search

more or less exhaustively the parameter space in the attempt to

minimize a certain cost function. This is usually defined as the error

in some sense between the output of the model and the data that

comes from the experiments. The result is the set of parameters that

produce the best fit between simulations and experimental data. One

of the main problems associated with optimization methods is that

they tend to be computationally expensive and may not perform well

if the noise in the measurements is significant.

Considerable interested has also been raised by Bayesian

methods [8], which can extract information from noisy or
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uncertain data. This includes both measurement noise and

intrinsic noise, which is well known to play an important role in

chemical kinetics when species are present in low copy numbers

[9]. The main advantage of these methods is their ability to infer

the whole probability distributions of the parameters, rather than

just a point estimate. Also, they can handle estimation of stochastic

systems with no substantial modification to the algorithms [10].

The main obstacle to their application is computational, since

analytical approaches are not feasible for non-trivial problems and

numerical solutions are also challenging due to the need to solve

high-dimensional integration problems. Nonetheless, the most

recent advancements in Bayesian computation, such as Markov

chain Monte Carlo techniques [11], ensemble methods [12,13],

and sequential Monte Carlo methods that don’t require likelihoods

[10,14] have been successfully applied to biological systems,

usually in the case of lower-dimensional problems and/or

availability of a relatively high number of data samples.

Maximum-likelihood estimation [15,16] has also been extensively

applied.

More recently, parameter estimation for computational biology

models has been tackled in the framework of control theory by

using state observers. These algorithms were originally developed

for the problem of state estimation, in which one seeks to estimate

the time evolution of the unobserved components of the state of a

dynamical system. The controls literature on this subject is vast,

but in the context of biological or biochemical systems the

classically used approaches include Luenberger-like [17], Kalman

filter based, [18–20], and high-gain observers [21]. Other methods

have been developed by exploiting the special structure of specific

problems [22]. State observers can be employed for parameter

estimation using the technique of state extension, in which

parameters are transformed into states by suitably expanding the

system under study [22–24]. In this context extended Kalman

filtering [25,26] and unscented Kalman filtering [27] methods

have been applied as well.

When the number of unknown parameters is very large, it is

often impossible to find a unique solution to this problem. In this

case, one finds several sets of parameters, or ranges of values, that

are all equally likely to give a good fit. This situation is usually

referred to as the model being non identifiable, and it is the one that’s

most commonly encountered in practice. Furthermore, it is known

that a large class of systems biology models display sensitivities to

the parameter values that are roughly evenly distributed over

many orders of magnitude. Such ‘‘sloppiness’’ has been suggested

as a factor that makes parameter estimation difficult [28]. These

and similar results indicate that the search for the exact individual

values of the parameters is a hopeless task in most cases [6].

However, it is also known that even if the estimation process is not

able to tightly constrain any of the parameter values, the models

can still be able to yield significant quantitative predictions [12].

The purpose of the present contribution is to extend the results

on parameter estimation by Kalman filtering by introducing a

procedure that can be applied to large parameter spaces, can

handle sparse and noisy data, and provides an evaluation of the

statistical significance of the computed estimates. To achieve this

goal, we introduce a constrained hybrid extended Kalman filtering

algorithm, together with a measure of accuracy of the estimation

process based on a x2 variance test. Furthermore, we show how

these techniques together can be also used to address the problem

of model selection, in which one has to pick the most plausible

model for a given process among a list of candidates. A distinctive

feature of this approach is the ability to use information about the

statistics of the measurement noise in order to ensure that the

estimated parameters are statistically consistent with the available

experimental data.

The rest of this paper is organized as follows. In the Methods

Section we introduce all the theory associated with our procedure,

namely the constrained hybrid extended Kalman filter, the

accuracy measure and its use in estimation refinement, and the

application to the model selection problem. In the Results Section

we demonstrate the procedure on two examples drawn from

molecular biology. Finally, in the Discussion Section we

summarize the new procedure, we give some additional remarks,

and we point out how these findings will be of immediate interest

to researchers in computational biology, who use experimental

data to construct dynamical models of biological phenomena.

Methods

Problem formulation
Throughout this paper, we will assume that the process of

interest can be modeled by a system of ordinary differential

equations of the form:

_xx~f (x,u,h)

x(t0)~x0

y~h(x):

8><
>: ð1Þ

The state vector x usually contains concentrations of certain

chemical species of interest, such as mRNA or proteins. The input

signal u represents some kind of external forcing of the process,

such as temperature changes, the addition or removal of certain

chemicals or drugs, and so forth. The output signal y represents the

quantity or quantities we can measure experimentally. These are

related to the state x through the function h, which we call the

output function. The output function is to be determined from the

design of the biological experiments that are used to get the

measurements for parameter estimation. As an example, when

measuring protein concentrations, in some biological experiments

it is harder and/or more expensive and/or more time consuming

to distinguish among different post-translational modifications of

Author Summary

Parameter estimation is a key issue in systems biology, as it
represents the crucial step to obtaining predictions from
computational models of biological systems. This issue is
usually addressed by ‘‘fitting’’ the model simulations to the
observed experimental data. Such approach does not take
the measurement noise into full consideration. We
introduce a new method built on the combination of
Kalman filtering, statistical tests, and optimization tech-
niques. The filter is well-known in control and estimation
theory and has found application in a wide range of fields,
such as inertial guidance systems, weather forecasting, and
economics. We show how the statistics of the measure-
ment noise can be optimally exploited and directly
incorporated into the design of the estimation algorithm
in order to achieve more accurate results, and to validate/
invalidate the computed estimates. We also show that a
significant advantage of our estimator is that it offers a
powerful tool for model selection, allowing rejection or
acceptance of competing models based on the available
noisy measurements. These results are of immediate
practical application in computational biology, and while
we demonstrate their use for two specific examples, they
can in fact be used to study a wide class of biological
systems.
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the same protein. This situation corresponds in our setting to

choosing h equal to the sum of two or more state variables,

representing the total amount of protein.

The vector h~ h1 . . . hk½ �T contains the unknown param-

eters that we seek to estimate. Note that, since the parameters are

constants, it is always possible to consider them as additional state

variables with a rate of change equal to zero. In this way, we treat

them as constant functions of time as opposed to constant numbers.

This technique is usually referred to as state extension. Our system (1)

then becomes:

_xx~f (x,u,h)

_hh~0

x(t0)~x0

h(t0)~h0

y~h(x):

8>>>>>><
>>>>>>:

ð2Þ

Using state extension, the problem of parameter estimation is

converted into a problem of state estimation, that is determining the

state of a system from measurements of the output. More precisely,

we are trying to determine the initial conditions that when used to

initialize the system (2) generate the observed output y. In the case

of the parameters, since _hh~0, it is obvious that h(t)~h0 for all

t§t0.

Solving this problem requires answering the following two

questions.

1. Given a system of the form (2), does the output y contain

enough information to uniquely determine a reliable estimate

of x and h?

2. If so, how can we compute such estimate?

The first question is usually referred to as the problem of

identifiability. In control theory, much work has been done in

studying this property in terms of another one called observability

[23,24]. Roughly speaking, a system is observable if every set of

initial conditions produces an output that is different from the one

generated by every other set. Identifiability can also be studied a

posteriori [6], by testing the reliability of the estimates after they have

been computed. We will make use of this second approach.

To answer the second question, we need to show how to design

an algorithm (or device) that can estimate x and h from

measurements of y, which, in general, will not be perfect, but

noisy and sparse. Such algorithms, called state observers, can be

formulated in a plethora of different ways, each of which is better

suited for different applications. The observer we are going to use

is based on extended Kalman filtering, and is described in detail in

the next Section.

Extended Kalman filtering
Extended Kalman filtering is considered to be the de-facto

standard of nonlinear state estimation [29]. It found several

applications in many different fields, such as positioning systems,

robot navigation and economics. The Kalman filter is a set of

equations that provides an efficient computational technique to

estimating the state of a process, in a way that minimizes the

covariance of the estimation error. The filter is very powerful in

several aspects: it supports estimations of past, present, and even

future states, and it can do so even when the precise nature of the

modeled system is unknown. Unlike most of the classical

parameter estimation methods, the Kalman filter is a recursive

estimator. At each time step the filter refines the previous estimate

by incorporating in it new information from the model and from

the output.

The Kalman filter works in two steps: first it estimates the

process state and covariance at some time using information from

the model only (prediction); then it employs a feedback from the

noisy measurements to improve the first estimates (correction). As

such, the equations for the Kalman filter fall into two groups: time

update equations for the prediction step and measurement update

equations for the correction step. The time update equations are

responsible for propagating forward (in time) the current state and

error covariance estimates to obtain the a priori estimates for the

next time step. The measurement update equations are responsible

for the feedback, i.e. for incorporating a new measurement into

the a priori estimate to obtain an improved a posteriori estimate. After

each time and measurement update pair, the process is repeated

with the previous a posteriori estimates used to predict the new a

priori estimates.

In order to set these ideas in a more rigorous mathematical

framework, consider the following system:

_xx~f (x,u)zw

yk~hk(x(tk))zvk:

�
ð3Þ

As we note from the structure of system (3), we are assuming that

we have a continuous-time process which we want to estimate

using discrete-time measurements of the output. This is the most

common case when dealing with deterministic models of biological

systems. These are usually of the form (1), therefore continuous-

time. However, the measurements for estimation tend to be

available only at discrete time instants. We will denote these

instants t1, . . . ,ts, with y1, . . . ,ys being the corresponding values of

the measurements. The output of the filter will then be the a

posteriori estimates of the state corresponding to instants t1, . . . ,ts,

which we will denote x̂xz
1 , . . . ,x̂xz

s . We remark that after applying

state extension as described in the previous Section, the unknown

parameters are now part of the state of the system, therefore their

estimates at time tk are components of x̂xz
k . We also note that the

output function hk in (3) is allowed to be different at different time

step: this is very important e.g. when incorporating data from

different measurements, because it allows the algorithm to use

measurements of different species at different times.

The variable w, usually called the process noise, represents the

amount of confidence we have in our model. The process noise is

assumed to be a Gaussian random variable with zero mean and

covariance Q, where Q is a positive definite matrix. The noise that

affects the different components of the state is assumed to be

uncorrelated, so that Q is diagonal. Larger entries in Q correspond

to lower confidence in the accuracy of the model. The variable vk

is referred to as the measurement noise, and expresses the reliability of

the measurements. The measurement noise is also assumed to be

Gaussian with zero mean, and its covariance matrix will be

denoted by R. Again, R is assumed to be a positive definite,

diagonal matrix, since the noise that affects different measure-

ments is assumed to be uncorrelated. Note that while Q is usually

chosen by the user in order to tell the filter how much the model

should be trusted, R is fixed by the quality of the measurements. In

other words, the statistics of the measurements noise are assumed to be

known. This fact will be particularly important for the a posteriori

reliability test described in the next Section.

The variation of the Kalman filter we present here is the one

that is best suited for a system of the form (3), and it is usually

referred to as the hybrid extended Kalman filter (HEKF). The word

extended refers to the fact that it can deal with nonlinear systems,

Parameter Estimation in Computational Biology
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while hybrid indicates that it uses continuous-time process model

and discrete-time measurements. We next describe the time

update equations and measurement update equations of the

HEKF.

First of all, we need some initial conditions to start the filter

from. Ideally, we would like the initial conditions to be x0 (the

initial conditions of the process) but this is clearly not possible.

Since we do not have any measurements available to estimate x0,

it makes sense to take our initial estimate of x0 equal to the

expected value of the initial state x0. Therefore, we write:

x̂xz
0 ~E x0f g ð4Þ

It follows that the initial condition for the error covariance can be

set as:

Pz
0 ~E (x0{x̂xz

0 )(x0{x̂xz
0 )T

� �
ð5Þ

We can now apply the time update equations to obtain the

current a priori estimates. The current a priori state estimate,

which we denote x̂xz
k , is formed by integrating the continuous-time

process in the time interval ½tk{1,tk�, using the previous a

posteriori estimate as initial condition. The current a priori error

covariance estimate, denoted P{
k , is formed by integrating a

differential Lyapunov equation using the previous a posteriori

error covariance as initial condition [29].

_̂xx̂xx~f (x̂x,u)

x̂x(tk{1)~x̂xz
k{1

(
[x̂x{

k ~x̂x(tk) ð6aÞ

_PP~AkPzPAT
k zQ

P(tk{1)~Pz
k{1

(
[P{

k ~P(tk) ð6bÞ

The matrix Ak is the Jacobian of f evaluated at the previous a

posteriori state estimate. The structure of equations (6) shows a

very important feature of the HEKF algorithm, i.e. its ability to

deal with non-uniformly sampled data. As we will see in the

examples in the Results Section, this is useful because it allows one

to capture all the information about the evolution of a process

using a minimum number of data points.

The measurement update equations are used to form the a

posteriori estimates by incorporating information from the output of

the system into the a priori estimates. The correction is based on the

difference between the actual measurement and the predicted

measurement, that is what the measurement would be if the real

value of the state were exactly equal to its a priori estimate. Such

difference is weighed by a gain, which takes into account the fact that

the measurements are not perfect. The gain at time tk is given by:

Lk~P{
k HT

k HkP{
k HT

k zR
� �{1

, ð7Þ

where the matrix Hk is the Jacobian of h evaluated at the previous a

posteriori state estimate. Given that, the current a posteriori state

and error covariance estimates, denoted x̂xz
k and Pz

k respectively,

are formed using the following equations:

x̂xz
k ~x̂x{

k zLk(yk{hk(x̂x{
k )) ð8aÞ

Pz
k ~(I{LkHk)P{

k (I{LkHk)TzLkRkLT
k ð8bÞ

We refer to [29] for a rigorous derivation of the equations we

presented so far.

We remark that the algorithm we just introduced, as well as the

ones employed in other works [25–27], provides unconstrained

estimates. In some cases it is necessary to take into account

equality or inequality constraints that prevent x̂xz from assuming

certain values. This can be important for the following reasons.

1. To incorporate into the estimation process prior knowledge

that might be available on some of the quantities in the model.

2. To keep the estimates biologically meaningful. Depending on

how the model is formulated, certain quantities may be sign-

definite. In many cases, for example, both the states and the

parameters must be positive.

3. To ensure that the evaluation of the functions f and h and of

their Jacobians Ak and Hk are well-posed. The algorithm will

not work if at any given step x̂xz lays outside the domain of

definition of f and h or of their partial derivatives.

To cope with these issues, we apply the constrained estimation

technique developed in [30,31]. This is derived using the fact that

the estimate x̂xz
kz1 is the value that maximizes the conditional

probability of x given the measurements fy1, . . . ,ykg up to time k.

Furthermore, x̂xz
kz1 and fy1, . . . ,ykg are jointly Gaussian, which

means that x̂xz
kz1 is conditionally Gaussian given fy1, . . . ,ykg.

Finally, if x0, w and vk are jointly Gaussian, then x̂xz
kz1 is the

conditional mean of xkz1 given the measurements fy1, . . . ,ykg.
These three properties, which are derived in [32], imply that the

conditional probability of xkz1 given fy1, . . . ,ykg can be written as:

p(xkz1jy1, . . . ,yk)

~

exp {
1

2
(xkz1{x̂xz

kz1)T (Pz
k ){1(xkz1{x̂xz

kz1)

� �

(2p)
n
2EPz

k E
1
2

:

Now, suppose we have a set of linear constraints of the form

Dxkz1ƒdkz1, where D is a constant matrix of suitable dimensions.

If x̂xz
kz1 does not satisfy the constraints, we need to replace it with a

constrained estimate ~xxz
kz1. This can be obtained by maximizing

p(xkz1Dy1, . . . ,yk) subject to the constraints, or equivalently, by

maximizing its natural logarithm. Therefore, the problem we need

to solve can be cast as:

~xxz
kz1~ arg min xkz1{x̂xz

kz1

� �T
(Pz

k ){1 xkz1{x̂xz
kz1

� �
subject to Dxkz1ƒdkz1

ð9Þ

Since Pz
k is a covariance matrix, and it is therefore strictly

positive definite, this is a strictly convex quadratic programming

problem that can be easily solved using standard algorithms, such

as reflective Newton methods [33] and active set methods [34].

Constrained HEKF algorithm summary.

1. Set the initial conditions according to (4) and (5).

2. Compute the Jacobians of f and h around the previous a

posteriori state estimate.

Parameter Estimation in Computational Biology
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Ak~
Lf

Lx x~x̂xz
k{1

Hk~
Lhk

Lx

				
				
x~x̂xz

k{1

ð10Þ

3. Advance to the next time step using (6).

4. Compute the gain using (7)

5. Incorporate the current measurement using (8).

6. Check if the estimate satisfies the constraints. If not, replace it

with the solution of (9).

7. Repeat steps 2–6 for all the time instants t1, . . . ,ts.

An a posteriori identifiability test
While for linear models the Kalman filter has nice convergence

properties, in the case of the extended Kalman filter for nonlinear

systems no such properties have been proven yet. As it is well-

known in the literature [29], sometimes the filter may diverge, or

may give biased estimates. While the first situation is easily

detected in any implementation, the second one is dangerous,

because the algorithm appears to run normally but produces

severely wrong results. It is therefore extremely important to have

a test that allows us to assess the reliability of the estimates.

The test we present here is based on a simple estimation of the

variance of a random variable. Consider again a continuous-time

process which is measured at discrete time instants. Assuming we

are able to measure p different quantities, we can rewrite our

model expanding the p components of the output:

_xx~f (x,h,u)zw

_hh~0

x(t0)~x0

h(t0)~h0

y
(1)
k ~h

(1)
k x(tk)ð Þzv

(1)
k

..

.

y
(p)
k ~h

(p)
k x(tk)ð Þzv

(p)
k :

8>>>>>>>>>>>><
>>>>>>>>>>>>:

ð11Þ

As in the previous Section, we assume that v is a Gaussian random

variable with zero mean and diagonal covariance matrix R. This

means that R is a p|p matrix, whose diagonal entries s2
1, . . . ,s2

p

are the variances of each component of v. What (11) says is that

each output is a sampled version of the corresponding function of

the state, with an additive noise superimposed to it.

Now, suppose that by running the HEKF we find an estimate ĥh0

of h0. Let xĥh0
(t) be the solution of (11) corresponding to h(t0)~ĥh0.

If we accept xĥh0
(t) as a good approximation of the real solution

x(t), then we can write estimates of each component of the noise

as:

v̂v
(i)
k ~y

(i)
k {h

(i)
k xĥh0

(tk)

 �

: ð12Þ

This equation, for k~1, . . . ,s, gives s samples of p Gaussian

random variables with zero mean. The main idea behind the test is

that if ĥh0 is close to h0, and consequently xĥh0
(t) is close to x(t),

then the variance of v̂v(i) will be close to the variance of v(i).

Let ŝs2
i be the variance of v̂v(i). We can use the samples (12) to

build a point estimate of ŝs2
i in the following way:

ŝs2
i &j i~

1

s

Xs

k~1

v̂v
(i)
k


 �2

ð13Þ

The random variable j i has a probability density function equal to

the x2 distribution with s degrees of freedom [35].

Using this fact, we can form interval estimates of ŝs2
i corresponding

to different confidence coefficients c~1{d. The confidence

coefficient is a probability, so it takes values between 0 and 1.

Common values for c include 0.9, 0.95 and 0.997. Denote by xs,d

the 100d-th percentile of the x2 distribution with s degrees of

freedom. Then, ŝs2
i is in the interval

sj i

xs,1{d=2

ƒŝs2
i ƒ

sj i

xs,d=2

ð14Þ

with a probability of 100c%.

It is then clear that if the real variance s2
i ~Rii of v(i) does not lie

in the interval indicated by (14), it is extremely unlikely that the

measurements y
(i)
k were generated by the set of parameters ĥh0,

given the fact that the noise v(i) has a variance of s2
i . Therefore, we

can reject the estimate ĥh0 as wrong with a confidence of 100c%.

We remark that this test can be also used independently of the

HEKF to validate/invalidate the estimates computed by any other

parameter estimation method.

Estimate refinement
Although the HEKF can be applied to fairly large extended

systems, when the parameter space is very large (and the extended

system is therefore not observable) a single run of the filter will

generally yield estimates that do not satisfy the x2 identifiability test

described in the previous Section. Also, the estimates will be

characterized by large uncertainties, as one can see by inspecting

the entries of the Pz
k matrices. In this situation, the solution to the

parameter estimation problem is not unique, therefore there will

be infinite sets of parameters that are all equally likely to be

correct. The best that one can do in this case is to find one or more

values of ĥh0 such that the corresponding solutions are consistent

with the experimental observations in the sense of the x2 test.

In order to do that, we can make use of the probabilistic

information we have about the measurement noise vk. In

particular, we know that vk is a Gaussian random variable with

zero mean and covariance R. As we saw in the previous Section,

given a certain estimated parameter set ĥh0, we can construct s

samples of an estimate v̂vk of vk through (12). It makes sense, then,

to ask for which values of ĥh0 the mean and variance of v̂vk will be

close to zero and R respectively. In other words, one can minimize

the expected value E v̂vkf g and the difference between ŝs2
i and Rii by

solving the following problem:

min
ĥh0

Xp

i~1

ai

E y
(i)
k

n o
{E h

(i)
k xĥh0

(tk)

 �n o

E y
(i)
k

n o
0
@

1
A

2

zbi

ŝs2
i {Rii

Rii

� �2

2
64

3
75ð15Þ

The weights ai and bi can be chosen by the user to attribute

different relative importances to the mean matching and to the

variance matching parts of the cost function. The most

appropriate choice can be different for different problems. Note

the scaling that is introduced in the function, which ensures that all

the measurements are equally weighted in the minimization

process, regardless of their size. This problem will not have any

special properties in general, so it can be solved with any general

purpose minimization algorithm. The Broyden-Fletcher-Goldfarb-

Shanno (BFGS) algorithm [36] has proven to be a good practical

choice.
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We argue that this moment matching optimization is a better

alternative than directly fitting the data points, as it guarantees

that the result of the optimization process will be a statistically

valid parameter set in the sense of the x2 test (see the examples in

the Results section).

To summarize, the proposed algorithm is a three-stage process.

In the first stage, we run the constrained HEKF algorithm on the

model to get a first estimate of the unknown parameters. In the

second stage we study a posteriori the identifiabilty problem, by

running the x2 test. If the test is passed, the HEKF was able to

recover the unique solution to the problem and the first estimate

can be considered valid. If not, most likely no unique solution

exists, and the first estimate needs to be refined by running the

third stage, i.e. the moment matching optimization. The whole

procedure is visualized in the flowchart of Figure 1.

Model selection
One of the most interesting features of approaching the

parameter estimation problem using state extension is that it

allows for a simultaneous estimation of both the state and the

parameters of the process under investigation. Therefore, the

Kalman filter, together with the x2 variance test we described, can

also be used to address the problem of model selection.

Frequently, the structure of biochemical pathways is not

completely known. One has an idea of the genes and proteins

that play a role in a certain process, but the exact interconnections

among such components are not fully elucidated. It may not be

clear, for example, whether a certain gene is regulated using a

positive feedback loop or a negative feedback loop, or if a certain

reaction takes place with or without intermediate steps. In these

scenarios, it is possible to write down different models corre-

sponding to the different hypotheses and then use the Kalman

filter to assess which one is the most likely to have generated the

measurements that are observed in the experiments.

In order to simplify the presentation, suppose we have two

different models of the form (3) for the same process. We can write

them as:

S1 :
_xx1~f1(x1,u1)zw1

yk~h1(x1(tk))zvk

�
, S2 :

_xx2~f2(x2,u2)zw2

yk~h2(x2(tk))zvk

�
: ð16Þ

The two models differ in everything except the measured data

points yk and the statistics of the noise vk that is superimposed to

them.

Running the HEKF for these models will give estimates of their

states, which we will denote x̂xz
1 and x̂xz

2 . In analogy to what we did

for the x2 test, we can plug the estimates into h1 and h2

respectively. This will give two different estimates of the

measurement noise vk:

v̂v1,k~yk{h1(x̂xz
1 ) ð17aÞ

v̂v2,k~yk{h2(x̂xz
2 ): ð17bÞ

We can now form point estimates and interval estimates of the

variance of each component of v̂v1 and v̂v2 using (13) and (14)

respectively. Again, the main idea behind this test is that the

estimated variances that are closer to the real variances of the

measurement noise vk must come from the model that is more

likely to have generated the measurements observed in the

experiments. Moreover, if the real variances of vk do not lie in the

interval estimates computed for a certain model, we can reject that

model as wrong with a probability of 100c%, where c is the

confidence coefficient that was used for the test.

Note that the two estimates of the measurement noise (17) can

also be formed by using the model solution. However, using the

Kalman filter estimates of the states allows the procedure to be

carried out even if the initial conditions are unknown.

Model selection algorithm summary.

1. Run the constrained HEKF on the models S1,S2, . . . ,Sn to get

their state estimates x̂xz
1 ,x̂xz

2 , . . . ,x̂xz
n .

2. Compute the estimates of the measurement noise v̂v1,v̂v2, . . . ,v̂vn

using (17).

3. Form point and interval estimates of the variance of each

component of v̂v1,v̂v2, . . . ,v̂vn using (13) and (14).

Figure 1. Flowchart of the proposed method. The algorithm is a
three-stage process, which involves Kalman filtering, a statistical
accuracy test and an optimization problem.
doi:10.1371/journal.pcbi.1000696.g001
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4. Discard the models for which the interval estimates do not

contain the real variances of vk.

5. Select the model whose variances match the best with the real

variances of vk.

Results

A model of the heat shock response in E. coli
The model. Exposure to high temperatures cause proteins to

unfold from their functional three-dimensional structure.

Misfolding can eventually result in the death of the cell. To

mitigate the deleterious effects of heat, cells express heat-shock

proteins whose role is to refold unfolded or misfolded proteins.

In E. coli, the heat shock response is implemented through an

intricate architecture of feedback loops centered on the sigma-

factor that regulates the transcription of the heat shock proteins

under normal and stress conditions. The enzyme RNA polymerase

(RNAP) bound to this regulatory sigma-factor, s32, recognizes the

heat shock gene promoters and transcribes specific heat shock

genes. The heat shock genes encode predominantly molecular

chaperones (i.e. enzymes that are involved in refolding denatured

proteins), and proteases that degrade unfolded proteins. At

physiological temperatures (300C to 370C), there is very little s32

present and, hence, the levels of the heat shock genes are very low.

When bacteria are exposed to high temperatures, s32 first rapidly

accumulates, allowing increased transcription of the heat shock

genes and then declines to a new steady state level, characteristic of

the new temperature. The accumulation of high levels of heat

shock proteins leads to the efficient refolding of the denatured

proteins, thereby decreasing the pool of unfolded protein.

The following reduced order model of this process has been

developed by El-Samad et al. [37].

_DDt~Kd
St

1z
KsDt

1zKuUf

{adDt

_SSt~g(t){a0St{as

KsDt

1zKuUf

1z
KsDt

1zKuUf

St

_UUf ~K(t) Pt{Uf

� 

{ K(t)zKfold

� 

Dt

8>>>>>>>>>>>><
>>>>>>>>>>>>:

ð18Þ

In this model Dt represents the number of molecules of chaperones,

St the number of molecules of the factor s32, and Uf the total

number of unfolded proteins. For further details on the model and

the value of the parameters, see [37] and the references therein.

Small parameter space case. To demonstrate the use of the

ideas we described in the Methods Section, suppose we want to

estimate the parameters as and Kd in (18). We assume that

measurements of the variables Dt and St are available. The

measurements are assumed to be very noisy and sparse.

As soon as the temperature is increased, we observe a rapid

accumulation of the chaperones and of the s32 factor. After

approximately 50 minutes, the system reaches a new steady state,

characterized by elevated levels of these proteins. Given this kind of

behavior, it makes sense to take measurements very frequently soon

after the heat shock is applied. The sampling interval can then be

increased, since the system doesn’t evolve as quickly any more. We

choose to sample at t~10, 11, 12, 15, 16, 20 and 40 minutes. From

t~50 to t~400 we choose a constant sampling period of 25 minutes.

This choice requires the collection of 22 total data points.

Once the time vector has been determined, we can run the

experiments and collect our measurements. In this example, the

data for the measurements are generated in silico. First we simulate

the model and evaluate the solution at the given time instants, and

then we add white Gaussian noise to it to simulate measurement

noise. Typical measurement signals are shown in Figure 2. The

components of the noise have variances equal to s2
1~1:24|105

and s2
2~737:94. The red dotted lines represent the noise-free

solutions obtained from the run of the model. The green squares

represent the actual information known to the filter. The data

points are collected at the sampling instants described above.

Figure 3 shows the results of a typical run of the hybrid

extended Kalman filter applied to this problem. The filter is

started from initial conditions equal to 0. The dotted line

represents the true value of the parameter. The red triangles

show how the filter updates the estimate based on the information

that comes from the measurements. After a transient, the estimates

keep oscillating around the true values of the parameters. From

this time-varying signal, a single number is extracted by averaging

over the last ten samples (marked by the green line), when the filter

has converged to a steady state. The final estimates for this

simulation are

âas~3:1306, K̂Kd~3:1379,

while the true value is 3 for both parameters. Even in presence of

such high levels of noise, the estimation is very accurate, with less

than 5% error. The ideal and reconstructed solutions are almost

indistinguishable.

A posteriori identifiability test. To check the estimation

results we just obtained, we compute the point and interval

estimates of the variances of the two components of the

measurement noise according to (13) and (15) respectively. We

fix a confidence coefficient of 0.95.

For the first component of the noise we get

ŝs2
1&1:42|105,

and

0:85|105
ƒŝs2

1ƒ2:85|105:

The error between the real variance s2
1~1:24|105 and the point

estimate is only 21:04%. Moreover, s2
1 lies in the interval estimate.

For the second component of the noise we get

ŝs2
2&936:97,

and

560:44ƒŝs2
2ƒ1876:96:

The error between the real variance s2
2~737:94 and the point

estimate is only 11:24%. Moreover, s2
2 lies in the interval estimate.

These results confirm that the estimates we obtained using the

hybrid extended Kalman filter can be considered valid.

Model selection. To illustrate the use of the Kalman filter for

model selection, consider again the measurements signals shown in

Figure 2. In this case, the problem is not the estimation of the

parameters (which are assumed to be known), but the comparison

of two different models for the process. Following the notation

introduced earlier, let S1 be (18) and S2 be the model:
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Figure 2. Estimation of 2 parameters in the heat shock model. The data points (green squares) are obtained by evaluating the true model
solution (red dashed curve) at the chosen time points, and then adding white Gaussian noise. The blue solid line shows the reconstructed solution
corresponding to the HEKF estimates for the parameters as and Kd . Both the reconstructed measurement signal for Dt (top) and the one for St

(bottom) are very close to the respective true solutions. The graphs are zoomed to highlight the transient response of the heat shock system after a
temperature increase.
doi:10.1371/journal.pcbi.1000696.g002
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Figure 3. Time evolution of the Kalman filter parameter estimates in the heat shock model. After an initial transient, the estimates of the
two parameters as (top) and Kd (bottom), represented by the triangles, keep oscillating around the respective true values (blue dashed line). The last
10 samples (connected by the green line) are averaged to extract a single number from this time-varying signal.
doi:10.1371/journal.pcbi.1000696.g003
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Figure 4. Discrimination between competing heat shock models. The models (18) (blue) and (19) (red) are compared in terms of their Dt

(top) and St (bottom) outputs. Both signals evolve to the same steady state, but with different transient behavior. The dashed lines represent the
ideal model solutions, the triangles are the corresponding Kalman filter estimates.
doi:10.1371/journal.pcbi.1000696.g004
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_DDt~Kd
St

1z
KsDt

1zKuUf

{adDt

_SSt~g(t){a0St{asSt

_UUf ~K(t) Pt{Uf

� 

{ K(t)zKfold

� 

Dt

8>>>>><
>>>>>:

ð19Þ

The key difference between S1 and S2 is the presence or absence

of the spike in the s32 factor following the heat shock. This

corresponds to turning off one of the feedback loops in the heat

shock response system. The two solutions are compared in

Figure 4. The thick dotted lines in the plots represent the ideal

time evolutions of chaperones and s32 factor simulated using S1

(red) and S2 (blue). The triangles represent the relative estimated

temporal evolutions using the HEKF.

We now obtain the estimates of the measurement noise using

(17) and compute the point and interval estimates of the variances

of their components using (13) and (14). The results are

summarized in Table 1. It is clear that only S1 produces results

that are compatible with the measurements. Therefore, we can

reject S2 as an inaccurate model with a probability of 95%.

Large parameter space case. Suppose now we seek to

estimate 6 of the parameters in (18), namely as, Kd , Ks, ad , a0 and

Ku. We are going to use the same type of measurements as in the

previous case, with as many data points and as much noise.

In this new example, a single run of the HEKF produces values

that do not satisfy the x2 identifiability test. The interval estimates

generated by the test do not contain the real variances that were

used to generate the measurements, thereby indicating that the

parameter values inferred by the HEKF can not be considered

valid (Figure 5). Therefore, we apply the estimate refinement

Table 1. Discrimination of the heat shock models.

Model Component 1 Component 2

Point Interval Point Interval

S1 1:28|105 0:77|105,2:57|105
� 


953:75 570:5,1910:6½ �

S2 4:62|106 2:76|106,9:25|106
� 


8692:3 5199,17413½ �

Real variances R11~1:24|105 R22~737:94

The table shows the point estimates (13) and interval estimates (14) of the measurement noise variances corresponding to the models S1 and S2 . We note that the real
variances encoded in the matrix R lie inside the interval estimates for S1 , but not inside the ones for S2 . The x2 test indicates that only S1 is consistent with the data.
doi:10.1371/journal.pcbi.1000696.t001

Figure 5. x2 interval estimates in the case of valid and invalid parameter sets. The red set of interval estimates corresponds to a parameter
set computed with the HEKF only (invalid). The green set corresponds to a parameter set that was obtained with the combination of HEKF and
moment matching optimization (valid). The real variances (blue triangles) only lie inside the intervals corresponding to a valid estimation. The top
panel is relative to the Dt measurement signal, the bottom panel to the St measurement signal.
doi:10.1371/journal.pcbi.1000696.g005
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Figure 6. Estimation of 6 parameters in the heat shock model. The data points (green squares) are obtained by evaluating the true model
solution (red dashed curve) at the chosen time points, and then adding white Gaussian noise. The blue solid line shows the reconstructed solution
corresponding to the parameters estimates. Both the reconstructed measurement signal for Dt (top) and the one for St (bottom) are very close to the
respective true solutions. The graphs are zoomed to highlight the transient response of the heat shock system after a temperature increase.
doi:10.1371/journal.pcbi.1000696.g006
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technique introduced in the Methods Section. We minimize (15)

with a1~a2~1000 and b1~b2~1. For the minimization we use

the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm, as

described in [36] and as implemented in the GNU Scientific

Library [38].

The results are presented in Figure 6. A minimum was found

after 1560 iterations of the BFGS algorithm, with a cost value of

0.14 (note that the optimal value of the cost is zero). The

minimization took about 3 hours to run on a MacBook Pro with a

single 2.6 GHz processor. Figure 5 shows how the interval

estimates of the variances for the refined estimates now contain the

real variances.

We also compared the results of our method with a nonlinear

Levenberg-Marquardt least-squares fitting and a genetic algo-

rithm fitting directly on the data points. The results are

summarized in Tables 2, 3 and 4. If we compare the three

tables, it is clear that only our method was capable of estimating a

parameter set that was consistent with the simulated data in the

sense of the x2 test.

The repressilator
The repressilator is a synthetic gene regulatory network, whose

model is frequently used as an example for numerical algorithms

[10,27]. It consists of three genes connected in a feedback loop,

where each gene transcribes the repressor protein for the next gene

in the loop. The original model of Elowitz and Leibler [39] consists

of six equations with four parameters, where all the three genes have

the same production and degradation rates, and are affected in the

same way by the corresponding repressor. Likewise, the three

proteins have the same production and degradation rates.

In this example we consider a more general version of the

repressilator, where each component is allowed to have different

parameters. The model equations are as follows

_mmi~{cimiz
ai

1zp
ni
i{1

za0i

_ppi~bimi{mipi,

8<
: ð20Þ

for i~1,2,3, with the convention that p0~p3. The interactions of

each gene/protein pair are characterized by 6 rates, therefore the

total number of parameters to be estimated is 18.

We are assuming that we are able to measure the mRNA

concentrations (mi), but not the protein concentrations (pi). We

collect 30 equally spaced data points for each mRNA species. The

noise in the measurements is assumed to have a power (i.e.

variance) of 100% of the mean of the signal. The parameters and

the initial conditions to generate the simulated data are chosen so

that the system displays a limit cycle behavior.

As in the large parameter space case for the heat shock model, a

single run of the HEKF produces estimates that do not satisfy the

x2 identifiability test. Therefore, we apply the estimate refinement

technique by minimizing (15) with ai~bi~1. The results are

presented in Figure 7. For the sake of brevity, we only show the m1

and m2 measurements. The m3 measurement is presented in the

supporting Figure S1.

We also compared the results of our method with a nonlinear

Levenberg-Marquardt least-squares fitting and a genetic algorithm

fitting directly on the data points. The results are summarized in

Tables 5, 6 and 7. Only our method was capable of estimating a

parameter set that was consistent with the simulated data in the

sense of the x2 test.

Table 2. x2 test results for the estimation of 6 parameters in
the heat shock model (moment matching).

Method BFGS moments

Component 1 Component 2

Mean error 0:5% 0:1%

Var v̂v
(i)
k

n o
point 1:56|105 890.6

Var v̂v
(i)
k

n o
interval 0:99|105,2:78|105

� 

568:7,1591:2½ �

Real variances R11~1:24|105 R22~737:94

x2 test result pass

The table shows the point estimates (13) and interval estimates (14) of the
measurement noise variances corresponding to the parameter set computed
using the BFGS moment matching optimization described in the Methods
Section. The optimization took 1560 iterations (about 3 hours running time). All
the interval estimates contain the corresponding real variances, indicating that
the parameter set can be considered valid in the sense of the x2 test.
doi:10.1371/journal.pcbi.1000696.t002

Table 3. x2 test results for the estimation of 6 parameters in
the heat shock model (nonlinear least-squares).

Method LM data

Component 1 Component 2

Mean error 3:2% 44:3%

Var v̂v
(i)
k

n o
point 6:36|106 9:99|103

Var v̂v
(i)
k

n o
interval 4:06|106,11:37|106

� 

6:38|103,17:85|103
� 


Real variances R11~1:24|105 R22~737:94

x2 test result fail

The table shows the point estimates (13) and interval estimates (14) of the
measurement noise variances corresponding to the parameter set computed
using a nonlinear least-squares fitting directly on the data points. The fitting
was carried out with the Levenberg-Marquardt algorithm (LM). The
optimization took 115 iterations (about 21 minutes running time). The interval
estimates do not contain the corresponding real variances, indicating that the
parameter set is invalidated by the x2 test.
doi:10.1371/journal.pcbi.1000696.t003

Table 4. x2 test results for the estimation of 6 parameters in
the heat shock model (genetic algorithm).

Method GA data

Component 1 Component 2

Mean error 0:3% 16:42%

Var v̂v
(i)
k

n o
point 1:62|105 4:47|103

Var v̂v
(i)
k

n o
interval 1:04|105,2:90|105

� 

2:85|103,7:98|103
� 


Real variances R11~1:24|105 R22~737:94

x2 test result fail

The table shows the point estimates (13) and interval estimates (14) of the
measurement noise variances corresponding to the parameter set computed
using a genetic algorithm (GA) fitting directly on the data points. The
optimization took 106 iterations (about 5 minutes running time). The interval
estimate for component 2 does not contain the corresponding real variance,
indicating that the parameter set is invalidated by the x2 test.
doi:10.1371/journal.pcbi.1000696.t004
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Figure 7. Estimation of 18 parameters in the repressilator model. The data points (green squares) are obtained by evaluating the true model
solution (red dashed curve) at the chosen time points, and then adding white Gaussian noise. The blue solid line shows the reconstructed solution
corresponding to the estimated parameters. Both the reconstructed measurement signal for m1 (top) and the one for m2 (bottom) are very close to
the respective true solutions. The graph for the measurement m3 is presented in the supporting Figure S1.
doi:10.1371/journal.pcbi.1000696.g007
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Discussion

We have presented a novel approach for parameter estimation

and model selection in computational biology. We have used this

approach as a basis for a new algorithm for estimating parameters

in models of biological systems from noisy and sparse experimental

measurements. The approach is based on the combination of an

extended Kalman filter algorithm, a statistical accuracy test, and a

moment matching procedure. Furthermore, we have showed how

the same tools can be used to discriminate among different

candidate models of the same biological process. We have

demonstrated the application of these ideas through two examples,

a reduced order model of the heat shock response in E. coli and a

generalized model of the repressilator (an additional example is

available in the supporting file Text S1).

Parameter estimation using state observers in general, and the

Kalman filter in particular, confers the significant advantage of

fully exploiting the prior knowledge on the process that is encoded

into the model. Observers are designed using the system’s

equations themselves, thus taking into account the system’s

dynamics. The Kalman filter has nice properties that are

guaranteed to hold when the underlying dynamical system is

linear and the noise statistics are Gaussian. In this case, the

Kalman filter is the optimal state estimator, meaning that it

produces the estimates with the smallest standard deviation of the

estimation error. Even if the noise is not Gaussian, the Kalman

filter is the optimal linear estimator. When the filter is extended for

use with nonlinear dynamical systems through the time-varying

linearization (10), such properties only hold in an approximate

way, and one loses many of the theoretical guarantees that apply

when the model is linear. However, in practice the extended

Kalman filter has proven to be a successful choice in a wide range

of applications, becoming the de-facto standard in nonlinear state

estimation [29].

The Kalman filter approach to parameter estimation displays

some features that make it particularly well suited to biological

applications. For example, the hybrid Extended Kalman Filter

(HEKF) is capable of estimating the parameters of continuous-

time models with discrete-time measurements. This is important

because most deterministic models of biological systems are

continuous-time. However, most experimental techniques produce

discrete-time data, often with large and non-uniform sampling

intervals. The presented algorithm accommodates such situations

without introducing any additional error due to a discretization of

the system equations.

In spite of the above advantages, several challenges arise when

using the Kalman filter for parameter estimation in a general

nonlinear model. First, in the nonlinear setting, the Kalman Filter is

not in general the optimal estimator. Moreover, if the initial

estimates are too far off the filter may diverge, or converge to an

estimate whose mean is different from the true mean. Additional

factors can also be a source of error. State observers, as the name

implies, were originally developed to estimate the state of a system –

not its parameters. The state extension that becomes necessary to

include the parameters into the estimation variables can introduce

non-uniqueness of the solution (loss of observability), which can be

problematic for the algorithms [29]. Furthermore, the covariance

propagation equation in (6) is subject to numerical ill-conditioning,

which can make the estimated error covariance matrices unreliable.

These are some of the key reasons why the extended Kalman filter

can produce unreliable estimates, and consequently, why a refined

algorithm is needed for parameter estimation.

Table 5. x2 test results for the estimation of 18 parameters in
the repressilator model (moment matching).

Method BFGS moments

Component 1 Component 2 Component 3

Mean error 0:3% 0:7% 0:4%

Var v̂v
(i)
k

n o
point 21:11 21:36 22:28

Var v̂v
(i)
k

n o
interval 13:57,37:31½ � 13:73,37:76½ � 14:32,39:38½ �

Real variances R11~21:11 R22~20:18 R33~21:73

x2 test result pass

The table shows the point estimates (13) and interval estimates (14) of the
measurement noise variances corresponding to the parameter set computed
using the BFGS moment matching optimization described in the Methods
Section. The optimization took 720 iterations (about 26 minutes running time).
All the interval estimates contain the corresponding real variances, indicating
that the parameter set can be considered valid in the sense of the x2 test.
doi:10.1371/journal.pcbi.1000696.t005

Table 7. x2 test results for the estimation of 18 parameters in
the repressilator model (genetic algorithm).

Method GA data

Component 1 Component 2 Component 3

Mean error 0:6% 0:9% 2:5%

Var v̂v
(i)
k

n o
point 356:84 319:89 392:46

Var v̂v
(i)
k

n o
interval 229:35,630:72:60½ � 205:60,565:42½ � 252:24,693:68½ �

Real variances R11~21:11 R22~20:18 R33~21:73

x2 test result fail

The table shows the point estimates (13) and interval estimates (14) of the
measurement noise variances corresponding to the parameter set computed
using a genetic algorithm (GA) fitting directly on the data points. The
optimization took 101 iterations (about 4 minutes running time). The interval
estimates do not contain the real variances, indicating that the parameter set is
invalidated by the x2 test.
doi:10.1371/journal.pcbi.1000696.t007

Table 6. x2 test results for the estimation of 18 parameters in
the repressilator model (least-squares).

Method LM data

Component 1 Component 2 Component 3

Mean error 1:7% 2:7% 3:5%

Var v̂v
(i)
k

n o
point 16:44 15:36 11:67

Var v̂v
(i)
k

n o
interval 10:57,29:06½ � 9:87,27:15½ � 7:50,20:63½ �

Real variances R11~21:11 R22~20:18 R33~21:73

x2 test result fail

The table shows the point estimates (13) and interval estimates (14) of the
measurement noise variances corresponding to the parameter set computed
using a nonlinear least-squares fitting directly on the data points. The fitting
was carried out with the Levenberg-Marquardt algorithm (LM). The
optimization took 129 iterations (about 3 minutes running time). The interval
estimate for component 3 does not contain the corresponding real variance,
indicating that the parameter set is invalidated by the x2 test.
doi:10.1371/journal.pcbi.1000696.t006
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To alleviate some of the shortcomings of the HEKF in parameter

estimation, we have proposed to augment the HEKF with an a

posteriori x2 statistical test and a subsequent optimization stage,

both of which explicitly incorporate the information about

measurement noise statistics into the estimation process. The test

serves as a tool for the statistical reliability assessment of computed

estimates, which validates the consistency of these estimates with

respect to noise statistics. It also inspires a new technique for the

discrimination between different candidate models for the same

process. When the x2 test shows that filter parameter estimates are

inconsistent with the noise model, which can happen for any of the

reasons mentioned in the previous paragraph, an estimate

refinement step can become necessary. This takes the form of an

optimization stage that begins where the HEKF left off. This

proceeds until an estimate that satisfies the x2 test is reached.

If the x2 test for parameter estimates is the sole measure for

accepting or rejecting a parameter estimate, then why not use it

solely for parameter estimation by optimizing that measure

directly, bypassing the Kalman Filter altogether? In the small

parameter space case, numerical evidence suggests that if a unique

solution to the parameter estimation problem exists, the HEKF is

able to infer it with great speed and accuracy. This was seen in

both the heat shock model and in the gene expression model,

available in the supporting file Text S1. If the number of

parameters is large and a good initial guess is not available, the

HEKF is still able to run and provide a suitable initial guess for the

subsequent refinement step, which can be expected to significantly

reduce the running time of the moment matching optimization.

Furthermore, the HEKF provides a computationally cheap

algorithm, which scales much better than e.g. Bayesian methods

and the particle filter. For these reasons, we believe that the HEKF

represents a good choice as a first stage followed by moment

matching optimization.

Coupling the Kalman filter with the statistical moment

matching minimization presents a new way of thinking about

optimization in parameter estimation. Classically, optimization is

performed by trying to fit the model solution with the

experimental data. While this is successful in some cases, it gives

no guarantee that the parameters will produce a solution that is

statistically consistent with the data. In the repressilator example,

for instance, the classical least squares fitting produces for the state

m3 a variance that is too small compared to the one that was used

to generated the simulated measurements (Table 6). In this

situation, one runs into the issue of overfitting, in which the fitted

model seems to replicate very well the behavior suggested by the

data but fails to be robust to perturbations, so whenever it is used

for further investigation, its behavior exhibits large inaccuracies. In

contrast, the approach proposed here aims to match the mean and

the variance of the measurement noise instead of the data points

themselves, and is therefore able to ‘‘look beyond the noise’’ to

recover the model parameters.

Supporting Information

Text S1 Text supporting information file, with additional

examples and discussion.

Found at: doi:10.1371/journal.pcbi.1000696.s001 (0.29 MB PDF)

Figure S1 Estimation of 18 parameters in the repressilator

model (measurement m3). The data points (green squares) are

obtained by evaluating the true model solution (red dashed curve)

at the chosen time points, and then adding white Gaussian noise.

The blue solid line shows the reconstructed solution corresponding

to the estimated parameters.

Found at: doi:10.1371/journal.pcbi.1000696.s002 (0.42 MB EPS)
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