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Abstract

High resolution structures of antibody-antigen complexes are useful for analyzing the binding interface and to make
rational choices for antibody engineering. When a crystallographic structure of a complex is unavailable, the structure must
be predicted using computational tools. In this work, we illustrate a novel approach, named SnugDock, to predict high-
resolution antibody-antigen complex structures by simultaneously structurally optimizing the antibody-antigen rigid-body
positions, the relative orientation of the antibody light and heavy chains, and the conformations of the six complementarity
determining region loops. This approach is especially useful when the crystal structure of the antibody is not available,
requiring allowances for inaccuracies in an antibody homology model which would otherwise frustrate rigid-backbone
docking predictions. Local docking using SnugDock with the lowest-energy RosettaAntibody homology model produced
more accurate predictions than standard rigid-body docking. SnugDock can be combined with ensemble docking to mimic
conformer selection and induced fit resulting in increased sampling of diverse antibody conformations. The combined
algorithm produced four medium (Critical Assessment of PRediction of Interactions-CAPRI rating) and seven acceptable
lowest-interface-energy predictions in a test set of fifteen complexes. Structural analysis shows that diverse paratope
conformations are sampled, but docked paratope backbones are not necessarily closer to the crystal structure
conformations than the starting homology models. The accuracy of SnugDock predictions suggests a new genre of general
docking algorithms with flexible binding interfaces targeted towards making homology models useful for further high-
resolution predictions.
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Introduction

High resolution structures of protein-protein complexes are

necessary for understanding mechanisms of protein-protein

interactions, analyzing mutations, and manipulating binding

affinity [1]. The large gap between the number of experimentally

determined complex structures and the available sequences of

pairs of protein complexes underscores the challenges, time

required and cost of x-ray crystallography or nuclear magnetic

resonance approaches. The paucity in complex structures can be

alleviated by computational docking, i.e., the prediction of protein-

protein complexes, which potentially provides a fast and efficient

alternative route. To predict the structure of a protein-protein

complex, computational docking requires the structures of the

interacting partners. However, sometimes even the structures of

the monomeric units are unavailable, forcing the use of a

homology modeled structure for one or both partners [2,3].

Given the inaccuracies in a homology model, current computa-

tional docking strategies can determine the gross structural

features of a complex, but find it exceedingly challenging to

successfully predict high resolution structures of such protein-

protein complexes, pointing to the need to develop new docking

algorithms which incorporate the necessary degrees of freedom to

compensate for the inaccuracies.

Antibody-antigen (Ab-Ag) complexes provide a model system

where much needed high-resolution computational docking

predictions are challenged by inaccuracies in antibody homology

models. The selection of antibodies for exploring homology

model docking simplifies the problem by isolating the various

degrees of freedom according to prior knowledge of the

uncertainties in an antibody homology model, namely the

conformation of the complementarity determining region

(CDR) loops (L1, L2, L3 in the light chain, and H1, H2, H3 in

the heavy) [4,5], the hyper-variability of the CDR-H3 loop [6–9],

and the relative orientation of the antibody light (VL) and heavy

(VH) chains [6,10–12]. A recent study by Narayanan et al found

that the VL-VH relative orientation has a significant impact on

the antigen binding properties of an antibody [10], suggesting

that simultaneous optimization of the VL-VH relative orientation

and antibody-antigen relative orientation might capture some of

the intramolecular changes undergone by an antibody upon

antigen binding.

An additional motivation for studying antibody-antigen com-

plexes is that therapeutic antibodies are revolutionizing healthcare
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[13]. Oncology, arthritis, immune and inflammatory disorder

treatments have benefitted from newly developed therapeutic

antibodies [14]. Success of several therapeutic antibody drugs has

relied on homology modeling. According to Schwede et al.,

homology modeling played an important role in the development

of 11 of the first 21 marketed antibodies including Zenapax

(humanized anti-Tac or daclizumab), Herceptin (humanized anti-

HER2 or trastuzumab), and Avastin (humanized anti-VEGF or

bevacizumab) [15]. High-resolution computational docking can

aid in the design of antibody biologics by providing insights into

the complex interactions between an antibody and an antigen

[16]. The importance of antibodies combined with the detailed

knowledge of the flexibility in the various segments of an antibody

fragment variable (FV) region make them ideal candidates for the

development of novel flexible docking algorithms.

Although there are currently no flexible docking algorithms

tailored for antibodies, there have been several efforts to incorporate

some of the relevant modes of internal flexibility during docking.

Early [17,18] and more recent approaches [19] use hinges to

account for internal flexibility. Multi-body docking, which might be

useful for optimizing assembly of VL and VH and antigen chains,

has been explored in a few case studies [20,21] including some

targets in the blind prediction challenge known as the Critical

Assessment of PRediction of Interactions (CAPRI) [22]. Another

genre of docking algorithms like HADDOCK [23] allows flexibility

in the side chains and backbones to allow for conformational

rearrangements in the interaction surface. Wang et al.’s modifica-

tions to RosettaDock allow simultaneous gradient-based minimiza-

tion of the backbone torsional angles and the protein-protein rigid-

body orientation [24]. We recently developed a RosettaDock

generalization called EnsembleDock [25] that follows the conform-

er-selection plus induced-fit model [26] to additionally enable

docking of a pre-generated ensemble of structures.

We also recently developed RosettaAntibody [27], an antibody

FV region homology modeling protocol which incorporates

refinement of VL-VH relative orientation, CDR H3 loop modeling

and minimization of all the CDR loops. RosettaAntibody

generates ten antibody homology models for each input sequence,

and this set of models can be used simultaneously with

EnsembleDock. However, errors in the CDRs of RosettaAntibody

homology models (particularly H2 and H3) can still frustrate

docking, and only the ten pre-generated backbone conformations

are sampled during ensemble docking [27].

In this paper, we discuss the development and implementation

of SnugDock, a new antibody docking algorithm built upon

RosettaDock using the sampling components of RosettaAntibody.

The new protocol performs multi-body docking by allowing

simultaneous structural optimization of the relative orientations of

antibody-antigen and VL-VH. SnugDock simulates induced fit by

additional simultaneous optimization of the binding interface by

allowing flexibility of CDR loops and interfacial side chains.

Moreover, we combine SnugDock with EnsembleDock to

synthesize a new docking algorithm that encompasses conformer

selection, multi-body docking, and a flexible paratope. We test

SnugDock using antibody homology models obtained from two

accessible public servers, namely RosettaAntibody [28] and Web

Antibody Modeling (WAM) [29]. Our goal is to achieve reliable

high-resolution antibody docking starting from only the antigen

unbound structure and the antibody sequence.

Results/Discussion

Figure 1 summarizes the SnugDock algorithm as incorporated

in RosettaDock. Like RosettaDock, SnugDock is divided into a

low-resolution and high-resolution stage. In the low-resolution

phase (shown in shades of green), SnugDock adds to RosettaDock

by additionally perturbing and minimizing the CDR H2 and H3

loops. In each iteration of the high-resolution Monte Carlo-plus-

minimization loop (shown in shades of blue), SnugDock randomly

chooses a trial move from a set including the various degrees of

freedom in both the antibody conformation space and the docking

space. Specifically, the trial move set consists of: i,ii) RosettaDock-

like rigid body transformations and minimization of either the

antibody-antigen or the VL-VH orientation; iii) gradient-based

minimization of the CDRs L1, L2, L3 and H1 backbones; and

iv,v) perturbation and minimization of the backbones of CDRs H2

or H3. The high-resolution iterations also include side-chain

rotamer packing steps before each minimization and Monte Carlo

Boltzmann acceptance decision (see Methods).

For various tests of the docking algorithm, we input either the

crystal structure of the antibody, the lowest-energy (lowest-scoring)

RosettaAntibody homology model, the ensemble of the ten lowest-

energy RosettaAntibody homology models, or the WAM model.

The antibody is docked to the unbound crystal structure of the

antigen when available. In the following sections, we first detail the

results of a case study as we build up the algorithm, then we

summarize the performance of different algorithms on the whole

set of antibodies. Next, we delve into the structural details of the

sampling. Finally we summarize the results starting from WAM

antibody models and the results of global docking.

Case study: effect of adding internal degrees of freedom
in homology model docking

Assessment criteria. A docking algorithm can be evaluated

by examining plots of a score (an approximation of free energy)

versus a measure of distance from the native co-crystal structure

for a set of candidate predicted structures. Since protein-protein

complexes are presumed to be at equilibrium, the lowest-energy

structures generated should match the native structure. Local

docking runs, which are typically used to evaluate the ability of an

algorithm to refine positions, refine a set of structures near the

native complex conformation. In this case, starting positions were

Author Summary

Antibodies are proteins that are key elements of the
immune system and increasingly used as drugs. Antibodies
bind tightly and specifically to antigens to block their
activity or to mark them for destruction. Three-dimensional
structures of the antibody-antigen complexes are useful
for understanding their mechanism and for designing
improved antibody drugs. Experimental determination of
structures is laborious and not always possible, so we have
developed tools to predict structures of antibody-antigen
complexes computationally. Computer-predicted models
of antibodies, or homology models, typically have errors
which can frustrate algorithms for prediction of protein-
protein interfaces (docking), and result in incorrect
predictions. Here, we have created and tested a new
docking algorithm which incorporates flexibility to over-
come structural errors in the antibody structural model.
The algorithm allows both intramolecular and interfacial
flexibility in the antibody during docking, resulting in
improved accuracy approaching that when using experi-
mentally determined antibody structures. Structural anal-
ysis of the predicted binding region of the complex will
enable the protein engineer to make rational choices for
better antibody drug designs.

Paratope Optimized Antibody-Antigen Docking
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created with a local random translation (,8 Å) and rotation (,8u)
and a spin around the axis of centers of the two proteins (0–360u).
Local docking is useful when epitope information is known, as is

common in many antibody applications [30–32].

Figure 2 shows plots that summarize local docking runs for

antibody 11k2 which binds human monocyte chemoattractant

protein (MCP)-1 [Protein Data Bank (PDB) ID code 2BDN [33]].

Due to difficulties in accurately capturing the energetic differences

from small backbone changes in flexible backbone docking, the

interface score (intermolecular energy) provides the best discrim-

ination of structures [24,25]. For a distance measure, we use the

ligand root mean square deviation (rmsd), defined as the rmsd of

the antigen N, Ca, C and O backbone atom coordinates in the

predicted structure relative to that in the native crystal structure of

the complex after superposition of the antibody N, Ca, C and O

backbone atom coordinates. Candidate structures, or decoys, are

rated according to the CAPRI assessment system as high quality,

medium quality, acceptable or incorrect based on a combination

of the ligand and interface rmsd and the fraction of correct

residue-residue contacts (fnat) across the interface [34]. To test the

convergence of a simulation to a correct solution, we define an

‘‘energy funnel’’ to exist when at least five of the ten lowest-energy

docking structures are of medium or high quality.

Docking with a single antibody homology model. In

Figure 2A, docking with standard RosettaDock (fixed backbones

and minimization of rotameric side chains [35,36]) using crystal

structures results in the best possible structural prediction of the

antibody-antigen complex and serves as the ‘‘gold standard’’ for

judging the docking with homology models. The lowest interface-

energy decoy is of medium quality, but since there are only four

medium quality decoys in the ten lowest interface-energy decoys, a

docking energy funnel is not formed.

We wish to compare the docking results when using an antibody

homology model. In a blind prediction, RosettaAntibody [27]

creates a lowest-energy model of the 11k2 antibody [33] with a

3.1 Å CDR H3 global rmsd-to-native, 1.3 Å rmsd-to-native for all

the CDRs, 2.5 Å rmsd-to-native for the relative VL-VH orienta-

tion, and 1.4 Å rmsd-to-native considering the entire FV.

Figures 2B–E show sample energy landscapes obtained by docking

simulations starting with the lowest-energy RosettaAntibody

homology model with the different protocols.

When the lowest-energy RosettaAntibody homology model is

docked using standard RosettaDock (Figure 2B), medium and

acceptable quality decoys are sampled, but the lowest interface-

energy decoy is incorrect, and there is only one medium quality

decoy in the ten lowest interface-energy predictions. The poor

scores of the medium quality decoys of these native-like structures

arise from steric clashes due to the fixed backbone conformation.

When clashes are relieved by moving the antigen away from the

bound configuration, docking prediction accuracy is lost.

To test the relative importance of the various degrees of

freedom in an antibody homology model, we built the SnugDock

Figure 1. SnugDock flowchart. The low and high resolution stages are shown in shades of green and blue respectively. The Move Set box
illustrates five different trial perturbations which are chosen randomly with indicated frequencies. *Rigid body positions are minimized corresponding
to the rigid body perturbation move selected. If all the CDRs are selected (see Move Set), they are minimized. If CDRs H3 or H2 are selected for
perturbation, they are not subjected to additional minimization since they are already minimized.
doi:10.1371/journal.pcbi.1000644.g001

Paratope Optimized Antibody-Antigen Docking
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protocol progressively with increasing degrees of freedom.

Figure 2C shows the effect of docking the lowest-energy

RosettaAntibody model with a docking algorithm that perturbs

and minimizes the relative orientation of both the VL-VH and the

antibody-antigen pairs. Although the lowest interface-energy

decoy is still incorrect, the score difference between the lowest-

interface-energy incorrect decoys and lowest-interface-energy

acceptable quality decoys has been reduced. There are one

medium and two acceptable quality decoys in the ten lowest

interface-energy decoys. The interface scores produced by this run

are higher than those in the standard RosettaDock run. The

additional degrees of freedom allow lower total scores to be

accessed, but those lower scores are achieved at the expense of the

interface. That is, VH-VL interactions and some intra-chain

energies are improved, but the Ab-Ag interaction suffers.

Additional types of sampling are necessary to recover a low-

energy interface.

Following the incorporation of the VL-VH optimization, we

added CDR minimization along with explicit perturbations to the

CDR H3 loop conformation (Figure 2D). The lowest interface-

energy decoy is now a medium quality prediction, but since there

are only two medium quality predictions in the ten lowest

interface-energy decoys, an energy funnel is still absent.

Based on findings in our previous work in antibody-antigen

binding [27], that in some cases CDR H2 played a key role and had

the highest deviation from crystal structures amongst the grafted

CDRs, in the final step we added explicit perturbations to the CDR

H2 loop. The explicit perturbation of the CDR loops H2 and H3

combined with the minimization of all CDR loops, rigid body

optimization of the relative VL-VH orientation, and simultaneous

docking of the antigen results in the synthesis of a docking algorithm

with complete paratope optimization. With the full set of antibody

degrees of freedom, we call this implementation SnugDock. With

SnugDock the lowest interface-energy structure is of acceptable

quality (Figure 2E). This structure has a high ligand rmsd of 8.9 Å

and an interface rmsd of 4.2 Å but still meets the CAPRI acceptable

criteria because the fraction of native residue-residue contacts (fnat) is

39%, greater than the threshold of 30%. The fourth decoy is of

medium quality, with ligand rmsd of 6.6 Å, interface rmsd of 3.5 Å

and fnat of 55%, surpassing the stringent cutoff of 50%. There is one

additional medium and acceptable quality prediction in the ten

lowest interface-energy decoys.

Ensemble methods. Our previous work demonstrated that

using EnsembleDock with ten RosettaAntibody homology FV

models results in more accurate docking predictions than possible

by standard RosettaDock [27]. For a docking run with

EnsembleDock, the lowest interface-energy decoy is acceptable

quality (Figure 2F). In the ten lowest interface-energy decoys there

are four medium quality predictions.

Finally, we have combined SnugDock and EnsembleDock by

using all of the previous antibody sampling steps in addition to a

conformer-selection step that samples from ten pre-generated

RosettaAntibody models (Figure 2G). With the combined

algorithm, the lowest interface-energy decoy is of medium

accuracy and is better than the lowest interface-energy decoys of

both the independent SnugDock (Figure 2E) and EnsembleDock

(Figure 2F) simulations. The EnsembleDock-plus-SnugDock

approach results in five medium quality decoys in the ten lowest

interface-energy decoys, giving rise to a docking energy funnel and

suggesting that the combined algorithm is more robust. The lowest

interface-energy decoy generated by the combined protocol scores

lower than the lowest-energy decoy of the independent simula-

tions. The synergy demonstrated by the combined algorithm arises

from EnsembleDock sampling the backbone space more broadly

and SnugDock refining the antibody-antigen interface.

Benchmark set comparison of algorithms. While the

2BDN case demonstrates the type of analysis we use to evaluate

differing algorithms, it is necessary to consider a broader set of

targets to draw general conclusions. We identified 15 antibodies

with known complex structures and H3 loop lengths between 7

and 11 residues, the range where loop structure prediction is of

medium accuracy [27,37]. The full set of local docking plots for all

algorithm variants and all fifteen targets is in Supporting

Information Figure S1. Table 1 shows the CAPRI rating of the

lowest interface-energy model for each of the fifteen targets and

presents the three metrics of docking accuracy as each additional

degree of freedom is incorporated into the algorithm. The statistics

are summarized in a histogram in Figure 3.

Figure 2. Docking perturbation plots for blocking antibody 11k2 complexed with human monocyte chemoattractant protein
(MCP)-1 (2BDN [33]). (A) Standard rigid-body docking using RosettaDock starting with the antibody crystal structure. The red point represents the
native crystal structure. (B) Standard rigid-body docking using RosettaDock with the lowest-energy RosettaAntibody model. (C) Docking with VL-VH

optimization using the lowest-energy RosettaAntibody model. (D) Docking with VL-VH optimization with CDR minimization and CDR H3 perturbation
using the lowest-energy RosettaAntibody model. (E) Docking with SnugDock (VL-VH optimization with CDR minimization and CDR H3+H2
perturbations) using the lowest-energy RosettaAntibody model. (F) Rigid-body docking using EnsembleDock with the ten lowest-energy
RosettaAntibody models. (G) Docking using a combined protocol incorporating EnsembleDock and SnugDock with the ten lowest-energy
RosettaAntibody models.
doi:10.1371/journal.pcbi.1000644.g002

Paratope Optimized Antibody-Antigen Docking
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The gold standard of docking crystal structures with standard

RosettaDock results in three and eight targets with lowest

interface-energy structures of high and medium quality, respec-

tively, and seven targets with funnels. However, when antibody

homology models are used as inputs to standard RosettaDock, the

successes fall to one medium and one acceptable quality result and

no funnels. As the degrees of freedom are added towards building

the SnugDock protocol, the number of successful predictions

increases. Homology model docking using the combination

EnsembleDock-plus-SnugDock protocol has similar number of

targets with acceptable or better predictions as the use of crystal

docking with standard RosettaDock, but the quality of docking

predictions is still much better for simulations starting with the

antibody crystal structure. Evaluation of docking protocols by a

looser criterion involving analysis of the most native-like decoy in

the ten lowest interface-energy predictions (Table 1; Figure 3B)

shows that, irrespective of the chosen protocol, a prediction of at

least an acceptable quality is obtained for most targets. The

number of docking funnels produced by each protocol also

increases steadily with the incorporation of additional degrees of

freedom (Table 1; Figure 3C), indicating that for local docking

with homology models any flexible docking protocol is better than

standard rigid-body docking.

In general, the results demonstrate that targeted flexibility in the

antibody can overcome the inaccuracies inherent in a homology

model and result in higher docking accuracy. The five energy

funnels produced by the full SnugDock algorithm and the seven

funnels produced by the EnsembleDock-plus-SnugDock protocol

suggest more confident and robust predictions since more low-

interface-energy decoys are native-like. Despite the general trends,

results vary by individual target. For example, for 2BDN or 2B2X,

accuracy improves as more degrees of freedom are used. But in

other targets, such as 1MLC or 2AEP, some steps result in

decreased performance.

The improvements in the prediction accuracy of antibody-antigen

complex structures are achieved at a computational cost. The

penultimate row of Table 1 shows the average total time required by

a single-core 2.33 GHz CPU to generate a result for one target. The

last row of Table 1 shows the effective simulation time, relative to

standard RosettaDock, required for each algorithm to create a single

candidate structure. The full EnsembleDock-plus-SnugDock protocol

requires 300 CPU-hours per prediction, roughly three times more

expensive than standard rigid-body RosettaDock.

High-resolution analysis of SnugDock decoys
Structural diversity generated by SnugDock. A major

objective of this study was to generate structural diversity in the

backbone to compensate for errors in the antibody homology

model. Figures 4A–B show side and top views of a set of models for

a representative target to show the structural diversity generated

by SnugDock or the EnsembleDock-SnugDock combination. The

diversity of the light chain framework (yellow) arises from the

SnugDock VL-VH rigid-body perturbation. With SnugDock alone,

the CDR loops (other than H2 and H3) have small variations from

the minimization steps. The structural diversity of the CDR H3

(grey) and H2 (cyan) is significantly broader, reflecting the

additional sampling by explicit w-y perturbations. Note the

discrepancy between the native CDR H3 conformation (red)

and the models (grey). With EnsembleDock-plus-SnugDock, CDR

H3 structures (green) spread more broadly, thus the combined

algorithm samples more diverse conformations than possible by

SnugDock alone. The gap between the native CDR H3

conformation and the SnugDock generated CDR H3

conformations is partially bridged by the EnsembleDock-plus-

SnugDock generated CDR H3 conformations.

The generated diversity is summarized quantitatively in

Figure 4C. CDRs that have been subjected to minimization only,

viz. CDRs L1, L2, L3 and H1, exhibit a mean divergence of less

than 0.1 Å rmsd from the starting structure. CDRs H2 and H3,

which are subjected to explicit perturbation, sample a larger

conformational space and show a mean fluctuation of about 0.3 Å

rmsd from the starting structure. The relative VL-VH orientation,

which is subjected to rigid body moves followed by minimization,

also exhibits a similar divergence. The paratope as a whole,

Figure 3. Summary of docking performance. The bar plots show the number of correctly docked targets out of fifteen targets for different
docking algorithms. (A) Docking performance considering the lowest-energy decoy. (B) Docking performance considering the most native-like
prediction in the ten lowest-energy decoys. (C) Docking performance based on the presence of docking energy funnels. Crystal indicates standard
rigid-body docking using crystal structures. RosettaAntibody indicates standard rigid-body docking using RosettaDock starting with the lowest-energy
RosettaAntibody homology model. VL-VH indicates docking with VL-VH optimization. VL-VH+CDR H3 indicates docking with VL-VH optimization with
CDR minimization and CDR H3 perturbation. SnugDock indicates docking using SnugDock. Rigid Body Ensemble indicates rigid-body docking using
EnsembleDock with the ten lowest-energy RosettaAntibody homology models. Snug+Ensemble indicates docking using the EnsembleDock-plus-
SnugDock combined protocol with the ten lowest-energy RosettaAntibody homology models.
doi:10.1371/journal.pcbi.1000644.g003
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influenced by both the loop conformations and the relative

orientation of the heavy and the light chains, has a mean rmsd of

0.3 Å to the starting structure. These deviations enable the antibody

to sample lower energy conformations, but are not typically large

enough to capture the full transition from the homology model to

the bound conformation. Homology modeled CDR H3s, for

example are typically 1–3 Å away from the bound conformation,

and this range is similar to the diversity of conformations of low-

energy antibody models used in EnsembleDock.

Successes: paratope optimization can help recover native-

like decoys. Figure 5 shows the interface of the complex

structure formed by Fab D44.1 and lysozyme (1MLC [38]).

Aligning the lowest-energy RosettaAntibody FV homology model

with the bound crystal conformation of the antibody in the crystal

complex gives rise to clashes with the bound conformation of the

antigen (Figure 5A). Specifically, antigen residues Arg-45, Thr-47

and Arg-68 clash with antibody residues Tyr-58H (in CDR H2),

Asn-92L (L3) and Asp-96H (H3) respectively. The clashes arise from

the structural deviation in the loops: global rmsd-to-native of CDRs

L3, H2 and H3 of the FV homology model is 0.7 Å, 1.0 Å and 1.9 Å

respectively. After docking with standard RosettaDock, the most

native-like decoy in the ten lowest interface-energy docking

solutions does not have any clashes (Figure 5B), but the antigen

(red) is displaced from its bound orientation (green) resulting in an

acceptable quality model. After the paratope is altered by

SnugDock, the CDRs H3 and L3 have similar global rmsd, and

CDR H2 moves slightly closer to the native. SnugDock relieves the

clashes while keeping the antigen (grey) close to the bound

conformation (green), resulting in a medium quality model

(Figure 5C). The paratope, comprising all the CDR loops in the

SnugDock generated model (Figure 5C), is 0.1 Å rmsd closer to the

bound crystal conformation than that of the starting structure. A

superposition of the structures predicted by standard RosettaDock

and SnugDock (Figure 5D) shows that the antigen orientation

predicted by standard RosettaDock is rotated by ,25u compared to

the crystal structure, whereas the antigen orientation predicted by

SnugDock is very close to the native orientation. This example is

typical of those for which SnugDock improves docking. SnugDock

allows the antibody to find a way to fit without clashes, but does not

necessarily move the antibody’s internal conformation closer to its

native bound backbone structure.

Failures: dangers of over-optimizing the binding

interface. The docking accuracy of EnsembleDock-plus-

SnugDock is typically equal or better than using EnsembleDock

alone. One exception is the complex of west Nile virus envelope

protein DIII with neutralizing E16 antibody Fab (1ZTX [39]).

EnsembleDock produces a high-quality top-ranked structure

whereas EnsembleDock-plus-SnugDock produces only an

acceptable accuracy structure. Interestingly, if the EnsembleDock-

plus-SnugDock decoys for target 1ZTX are sorted by the score of

the entire complex instead of the interface score, the lowest energy

decoy is of medium quality and a docking funnel is formed. The

lowest total-energy decoy has a CDR H3 global rmsd of 1.7 Å,

whereas the lowest interface-energy decoy has a CDR H3 global

rmsd of 2.7 Å. The 1.7 Å CDR H3 loop model has a poorly packed

interface with voids, penalizing the interface score (Figure 6A).

Surprisingly, the 2.7 Å CDR H3 model shows a more compact

interface (Figure 6B) resulting in a better interface score. In this case,

the native crystal structure shows interfacial water molecules which

are poorly captured by Rosetta’s implicit solvation model.

A second failure case is the complex between neuraminidase

from influenza virus and the monoclonal antibody NC41 (1NCA

[40]). Docking with crystal structures produced a docking energy

funnel, however, none of the other methods were capable of

Figure 4. SnugDock conformational diversity. (A) The diversity in
conformation generated by SnugDock during docking of anti-HEL Fab
fragment (1BQL) to bobwhite quail lysozyme (1DKJ). (B) View facing the
paratope. Crystal structure, red; heavy and the light chains, blue and yellow,
respectively; light and heavy chain CDRs, orange and cyan, respectively;
SnugDock sampled CDR H3, grey; EnsembleDock-plus-SnugDock sampled
CDR H3, light chain CDRs and light chain framework, green, light orange
and yellow-green, respectively. Structures are all superposed onto the
heavy chain framework residues of the crystal structure. (C) Mean rmsd
from the starting structure of the ten lowest-energy docking decoys for
fifteen targets. For light and heavy chain CDRs, the corresponding
framework chain is superposed and the rmsd is queried over the respective
CDR residues. VL-VH denotes the rigid-body rmsd divergence of the heavy
chain framework when the light chain framework is superposed. The
paratope comprises all CDRs, and the rmsd was computed by superposing
the paratope and querying over the same residues. The colors of the bar
correspond to the colors of the different antibody segments in (A) and (B).
The error bars denote one standard deviation.
doi:10.1371/journal.pcbi.1000644.g004
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producing even an acceptable prediction in the ten lowest-

interface-energy decoys. The failure may be due to loop modeling

errors in regions critical for binding. The 1NCA CDR H3 loop

prediction is one of the poorest ones in our dataset: the lowest-

total-energy RosettaAntibody homology model has 3.4 Å global

rmsd, and even the most native-like CDR H3 loop in the ten

lowest-total-energy homology models has a global rmsd of 2.2 Å.

1NCA has the longest H3 loop in our dataset (11 residues), and the

H3 loop makes key contacts with the antigen. Notably, other cases

with poor loop models dock successfully (e.g. 1VFB, 2B2X), but

typically those cases have interfaces which do not involve as many

CDR H3 contacts.

SnugDock applied to WAM antibody homology models
A longstanding source of homology models is the Web Antibody

Modeling server (WAM) created by Whitelegg and Rees [29]. The

WAM server grafts antibody components together and models the

H3 loop de novo. SnugDock may be able to compensate for the

model errors during docking. Ensemble docking is not possible

since WAM returns only one model for a given sequence. Table 2

presents the accuracy of docking predictions obtained by using

WAM antibody homology models using both standard Rosetta-

Dock and using SnugDock. The lowest-interface-energy docking

decoy generated by standard rigid-body docking simulations using

WAM homology models are almost all incorrect. Subjecting the

WAM models to SnugDock resulted in six medium quality lowest-

interface-energy docking decoys. Thus SnugDock recovers more

accurate docking predictions. The original WAM homology

models showed strain in the molecule reflected in high Rosetta

scores. By subjecting the homology model to minimization on the

paratope degrees of freedom, SnugDock was able to relieve

intramolecular and inter-chain steric clashes. Interestingly, the

Figure 5. Structural details of the monoclonal antibody Fab D44.1 complexed with lysozyme (1MLC [38]). (A) The interface region of
the lowest-energy RosettaAntibody homology model for target 1MLB complexed with the crystal structure of lysozyme (1LZA). (B) The interface
region of the most native-like prediction in the ten lowest-energy docking predictions on docking with standard rigid-body RosettaDock. (C) The
interface region of the most native-like prediction in the ten lowest-energy docking predictions on docking with SnugDock. (D) Superposition of the
structures shown in (B) and (C) viewed facing the binding region from the antigen’s side. Conformations of the antigen in the crystal structure, green;
predicted by standard rigid-body RosettaDock, red; and that predicted by SnugDock, grey; heavy and light chains, shades of blue and yellow
respectively. Sticks indicate the labeled residues that have relieved the steric clash present in the starting structure due to the flexibility allowed by
SnugDock. Transparent spheres indicate the interface region of the predicted conformation of the antigen. The light and heavy chain frameworks of
the predicted complexes are superposed on the corresponding residues of the antibody in the crystal structure.
doi:10.1371/journal.pcbi.1000644.g005
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SnugDock results with WAM models are comparable to those with

RosettaAntibody models, while the use of EnsembleDock-plus-

SnugDock with the RosettaAntibody models achieves higher

accuracy.

Global docking
Local docking is often of interest in antibody applications since

epitope information can be obtained by a variety of other

methods. However, global docking is a computational alternative

for producing epitope information when it is unknown. Global

docking can be significantly more challenging because of the larger

conformational space to search. Further, flexible docking creates

additional danger of creating an unrealistic induced fit at a non-

native docking location, resulting in a false positive prediction

[41,42]. Global docking is considerably more computationally

demanding, and thus we restricted our tests of global docking to

five targets, and to simulate a practical docking application, chose

only those targets for which unbound crystal structures were

available for both the antibody and the antigen: 1MLC, 1AHW,

1JPS, 1WEJ and 1VFB. The starting structures consisted of the

unbound crystal structure of the antigen and the lowest-interface-

energy RosettaAntibody homology model. The EnsembleDock

and the EnsembleDock-plus-SnugDock protocols used the ten

lowest-interface-energy RosettaAntibody homology models. For

each target, we generated 5000 candidate structures, with each

prediction run beginning from a random global rotation of the

antigen and a small perturbation of the antibody (to keep the

paratope generally directed toward the antigen).

Global docking using standard rigid-body RosettaDock gener-

ated no acceptable quality lowest-interface-energy decoys for any

targets, and a top-ten ranked acceptable decoy for only one target

(Table 3). Using EnsembleDock or SnugDock independently

produced marginal improvement with a few acceptable quality

predictions. The combination algorithm of EnsembleDock-plus-

SnugDock generated two medium quality lowest-interface-energy

predictions exhibiting the synergy already established in the local

docking simulations. Additionally, the most native-like decoy in

the ten lowest-interface-energy decoys was of medium quality for

three of the five targets and acceptable for one target. The results

are comparable to global docking using standard rigid-body

RosettaDock with unbound crystal starting structures of the

antibodies, where one structure had a high quality (1JPS), two had

Figure 6. Predicted models of the complex of west Nile virus envelope protein DIII with neutralizing E16 antibody Fab (1ZTX [39]).
(A) Lowest-energy prediction (medium accuracy) generated by EnsembleDock-plus-SnugDock simulations ranked by all-atom score of the entire
complex. (B) Lowest-energy prediction (acceptable accuracy) generated by EnsembleDock-plus-SnugDock simulations ranked by the intermolecular
components of the all-atom score. The light (deep blue) and heavy (yellow) chain framework of the docked antibody is superposed on the
corresponding residues of the crystal complex. Predicted orientation of the antigen, green; light and heavy chain CDRs, orange and cyan respectively;
CDR H3 loop and antigen in the crystal structure, red; residues at the interface, transparent spheres.
doi:10.1371/journal.pcbi.1000644.g006

Table 2. Accuracy of lowest-energy docking decoy, using
WAM homology models.

Co-Crystal PDB ID
Standard
RosettaDock SnugDock

1mlc 0 **f

1ahw **f *

1jps * **

1wej 0 **

1vfb 0 **f

1bql 0 *

1k4c 0 *

2jel 0 0

1jhl 0 0

1nca 0 0

2bdn 0 *

1ynt ** **

2aep 0 **f

2b2x * *

1ztx 0 0

CAPRI Summary for Top Decoy 2**/2* 6**/5*

CAPRI Summary for Top 10 Decoys 4**/7* 1***/9**/4*

Number of Funnels 1 3

Refer to Table 1 key for explanation. Full quantitative measurements underlying
the CAPRI ratings, of the predicted models are available in Supporting
Information Table S2.
doi:10.1371/journal.pcbi.1000644.t002
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medium quality, and the others had acceptable quality prediction

for the most native-like decoy in the ten lowest-interface-energy

decoys. The results can also be compared with local docking using

EnsembleDock-plus-SnugDock around the known epitope

(Table 1), where four of the five targets had at least a medium

quality prediction for the most native like decoy in the ten lowest-

interface-energy decoys, and the fifth target (1VFB) had an

acceptable prediction. Thus one target (1VFB) which had

succeeded in local docking failed in global docking due to low-

scoring non-native decoys (see docking energy landscapes,

Supporting Information Figure S2). In general, addition of

SnugDock increases sampling of more native-like decoys, enabling

near-natives to be energetically more favorable.

Discussion
SnugDock is the first docking algorithm with targeted antibody

flexibility. SnugDock models flexible loop conformations, back-

bone motions, and inter-chain (VH-VL) adjustments. The

introduction of flexibility during docking is critical to overcome

the inaccuracies inherent in a homology modeled antibody

structure. Comparison of algorithms shows that increasing the

degrees of freedom in local docking gradually increases the quality

of predictions. Ultimately, EnsembleDock-plus-SnugDock with

homology models achieves accuracy comparable to docking crystal

structures with standard RosettaDock. While the algorithm is

limited to antibody-antigen interactions, the results suggest that it

is possible for computational predictions to use homology models

to bridge the gap between the number of experimentally

determined complex structures and the available sequences of

pairs of interacting proteins.

In CAPRI rounds 1–18, eleven of the forty targets involved

docking of at least one homology modeled partner (both partners

were homology models for Target 35) [43–45]. For six of the

eleven targets, none of the participating groups could predict any

medium or higher accuracy structures. When the sequence

identity was under 40%, the solutions were of acceptable quality

at best (Targets 20, 24). High quality predictions were obtained

only for two cases (Targets 14, 19) and in both cases the binding

region of the template structure was structurally similar to the co-

crystal structure [44], and the other docking partner was in the

bound conformation. The poor performance of homology

modeled docking partners in CAPRI highlights the need of

docking algorithms like SnugDock which are robust to inaccura-

cies in a homology model. Targets 20 and 24 with only acceptable

predictions had poorly modeled loop and C-terminal regions

which were responsible for key contacts in the native binding

interface [45], showing that using homology models with loops

at the binding region makes docking with homology models

even harder. SnugDock with its loop relaxations at the binding

interface addresses the challenge toward accurate high-resolution

predictions.

The CDR H3 loop of antibodies provides the most diversity and

is thus a focus of the conformational sampling in the SnugDock

algorithm. In our experience with the RosettaAntibody Server

[28], there are antibodies with non-H3 loops which elude the

traditional Chothia classification system [4] and may not fit into

canonical CDR templates. The SnugDock algorithm is easily

generalizable to include perturbations of loop conformations for

any of the six CDR loops. Extra sampling however should be

restricted to special cases for efficiency and to avoid issues with

over-optimized, non-native induced-fit structures. For approach-

ing non-antibody targets, the SnugDock methods would need to

be adapted requiring knowledge of a binding site and appropriate

choices of loops to target flexibility. The multi-chain docking

methods can be applied to any multi-chain docking partner.

The flexible docking methods help in identifying the correct

docked complex structure, but unfortunately they do not yet help

in refining the monomer homology structures themselves closer to

the crystal backbone conformations. This limitation likely arises

from the vast conformational space of the backbone and the

difficulties with high-resolution refinement of protein structures

[46,47]. In docking, some of the energetic issues are avoided

through the use of the interface energy instead of the total energy.

Further advancements in refinement techniques will be needed to

address this shortcoming. SnugDock’s advancements in the

sampling problem also reveal continuing issues with the knowledge

of nature’s energy function. Missing water molecules affected the

prediction of targets 1ZTX and 1VFB. Antibody interfaces in

general are polar [48], and several targets with the most polar

interfacial CDRs (1VFB, 1JHL, 1NCA) failed perhaps due to the

challenges in modeling electrostatics [49].

Experimental techniques for epitope mapping like hydrogen-

deuterium mass spectroscopy [50] can help to pre-orient an

antigen for local docking. However, when such data are not

available, one must resort to global docking where the docking

simulations are started with random orientations of the docking

partners. Our limited testing of global docking encouragingly

suggests that the EnsembleDock-plus-SnugDock approach can

Table 3. Accuracy of global docking decoys.

Unbound
Crystal
Structures

RosettaAntibody
Homology
Model

Standard
RosettaDock

Standard
RosettaDock EnsembleDock SnugDock

EnsembleDock-
plus-SnugDock

Co-Crystal
PDB ID Top Decoy

Top 10
Decoys Top Decoy

Top 10
Decoys Top Decoy

Top 10
Decoys Top Decoy

Top 10
Decoys Top Decoy

Top 10
Decoys

1mlc 0 ** 0 0 0 0 0 0 0 *

1ahw ** ** 0 0 * * * * ** **

1jps ** *** 0 * 0 * 0 * ** **

1wej 0 * 0 0 0 0 * * 0 **

1vfb 0 * 0 0 0 0 0 0 0 0

Refer to Table 1 key for explanation. Full quantitative measurements underlying the CAPRI ratings, of the predicted models are available in Supporting Information Table S3.
doi:10.1371/journal.pcbi.1000644.t003
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successfully find epitopes. Global searches should still be

performed with care as the large conformation space can frustrate

the ability to find the native binding interface or obscure it through

false positive non-native interaction.

One could envision a complete computational antibody

engineering pipeline starting from the antibody sequence and

ending with accurate predictions for optimized antibody-antigen

interactions. In this paper we have been successful in reaching the

second step by computational docking using computational models

of the monomer antibody. The next stages may be additionally

challenging. High-resolution complex structures might next be

used for computational alanine scanning [51], computational

affinity maturation [52] or alteration of binding specificity [53].

For antibody therapeutics, structures will help define drug

mechanisms for regulatory approval [15], enable epitope mapping

[54] and humanize constructs [55]. These applications require

varying amounts of resolution and further testing will reveal the

full utility of the SnugDock predictions.

Methods

Antibody-antigen benchmark
To compare with prior work, we use the set of fifteen antibody-

antigen complexes as tested in the original RosettaAntibody

publication [27]. The antibody-antigen complex dataset was

compiled to ensure: 1) a fair representation of unbound-unbound,

unbound-bound and bound-bound antibody-antigen docking

targets, 2) a spectrum of CDR H3 loop lengths (7 to 11 residues)

and 3) both old and newly released crystal complexes (PDB release

dates 1992–2006). The RosettaAntibody and the WAM structures

are as reported previously [27].

SnugDock Protocol
SnugDock is implemented in the Rosetta biomolecular

modeling suite. Fold trees objects [24] are used to guide the

propagation of structural changes during docking with backbone

flexibility. One fold tree uses flexible jumps for moving the VL-VH

and antibody-antigen pairs relative to each other. A second fold

tree for CDR loop relaxation had fixed jumps joining the loop

stems, and cuts at the middle of the loops. Move map objects are

used to select particular sets of residues for backbone and/or side-

chain torsion angle flexibility.

Figure 1 depicts the flowchart for the steps in the SnugDock

protocol, implemented as follows. Steps 1 and 2 describe the initial

setup, Steps 3–6 describe the low resolution stage and steps 7–13

describe the high resolution stage.

1. Orient the antigen randomly:

i. Local perturbations: From a superposition of the antibody

in the bound orientation, spin antigen randomly around

the axis connecting the center of masses of the antibody

and the antigen, tilt (8u) away from the same axis and

translate (8 Å), similar to earlier treatments [35].

ii. Global perturbations: Randomly orient the antigen

without using any information of the antigen’s orientation

in the crystal structure. Point antibody paratope towards

antigen.

2. Slide into glancing contact as defined by at least one antibody-

antigen atomic contact within 1 Å of van der Waals contact

distances.

3. Perturb the antibody by rigid-body transformations following

the low resolution phase in RosettaDock [35].

4. Optional for input comprising of an ensemble of antibody

structures: Select a structure from the ensemble of input

antibody structures by Monte Carlo swapping as described

previously [25].

5. Repeat steps 3 and 4, fifty times.

6. Optimize the CDR H2 & H3 loop conformations by small

[56], shear [56], and cyclic coordinate descent (CCD) [57]

moves and gradient-based minimization in low resolution as

detailed previously [27] except with the side chains represented

as one pseudo-atom (no side-chain packing). The fold tree [27]

is modified here to prevent the relative VL-VH movement at

coarse resolution.

7. Change representation of the protein from the low resolution to

full atomistic detail by using the side-chain conformations from

the starting antibody homology model and the unbound

antigen crystal. If the unbound crystal structure of the antigen

is not available, the antigen is packed with side-chains from a

rotamer library.

8. Optimize the side-chain conformations of the residues at the

VL-VH interface, antibody-antigen interface and all CDR loops

and neighboring residues (within 8 Å) by rotamer packing and

minimization including the unbound side chain conformations

as described previously [36,58].

9. Choose and apply a move from the move set. The move set

consists of five kinds of moves (the probability of each move is

indicated in percentages):

i. Rigid body perturbation of the antigen relative to the

antibody using the parameters from rigid-body pertur-

bation in the standard RosettaDock algorithm. (40%)

ii. Rigid body perturbation of the relative VL-VH orienta-

tion using the parameters from rigid-body perturbation in

the standard RosettaDock algorithm. (40%)

iii. Minimization of the backbone residues of all the CDR

loops. (10%)

iv. Relaxation of CDR H3 by small, shear and CCD moves

followed by minimization as detailed previously [27] with

the fold tree modified to prevent the relative VL-VH

movement. (5%)

v. Relaxation of CDR H2 by small, shear and CCD moves

followed by minimization as in Step 9iv. (5%)

10. Optimize selected side-chains as described in Step 8: For

rigid body perturbations (following moves 9i and 9ii), the

relevant interfacial side chains are selected for optimization.

For loop optimizations (following move 9iii), side chains of

the loop and neighboring residues are selected for

optimization.

11. Minimize selected region: Rigid body positions (following

move 9i or 9ii) or all the CDRs (following move 9iii). CDRs

H3 (move 9iv) or H2 (move 9v) are not subjected to

additional minimization.

12. Steps 9–11 are repeated fifty times and each iteration is

accepted or rejected based on a Monte Carlo criterion

(temperature, kT = 0.8).

13. The lowest interface-energy structure observed during the

course of the simulation is selected as the output of the

simulation.

Each decoy of an independent docking simulation begins from a

different random starting position. In local docking, the set of

starting positions comprises a diffuse cloud that covers a

Paratope Optimized Antibody-Antigen Docking
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reasonable area (,20 Å rmsd) with moderate density around the

native ligand position. In local and global docking, 1,000 and

5,000 candidate docking structures are generated for each target

respectively. In our empirical tests, 5,000 decoys were sufficient

and results were similar for test runs of 10,000 decoys in a subset of

targets. The energy function used during the course of the

simulation is as described previously [35] with (i) the interfacial

terms of the scoring function including both the antibody-antigen

interface and the VL-VH interface, and (ii) chain break penalties

for six CDR loops. Interface energy [24] is used to rank and

discriminate the structures produced by the docking simulations.
Variation in methods. Two algorithm variations we tested

require brief mention. First, incorporation of CDR H2 and H3

relaxation in low resolution generated a threefold increase in the

diversity of loop conformations than that generated by the

relaxations in full atom representation of the high resolution

alone, and improved docking accuracy. Second, early attempts at

simultaneous gradient-based minimization over all degrees of

freedom (antibody-antigen, VL-VH, non H2 & non H3 CDRs,

CDR H2, CDR H3) resulted in only small perturbations to the

relative orientation of the antibody and the antigen, while all the

other degrees of freedom remained unaltered. Better sampling was

achieved by isolating the various degrees of freedom and carrying

out multiple rounds of minimization over one randomly selected

degree of freedom while fixing the other degrees. Isolating the

degrees of freedom increased computational efficiency, and

required about one-third the time required for simultaneous

minimization.

Docking Metrics
Ligand rmsd is the deviation of the N, Ca, C and O backbone

atoms of the antigen after superposition of the antibody backbone

atoms. Interface rmsd is the deviation of the backbone atoms at

the interface after optimal superposition of those same atoms,

where the interface is defined as all residues within 10 Å of a non-

hydrogen atom of the other docking partner. Interface energy is

the component of the total docking score that arises from inter-

molecular residue-residue interactions at the antibody-antigen

interface. For fnat calculations, residue-residue contacts are defined

when a residue is within 5 Å of a non-hydrogen atom from the

other docking partner. The docking models are assigned CAPRI

[22]-style ‘‘high’’, ‘‘medium’’, ‘‘acceptable’’ or ‘‘incorrect’’ rank-

ings that depend on the rmsd-to-native of the ligand position, the

interface rmsd to native and the fraction of native residue-residue

contacts (fnat) that are recovered in the docked model [59].

Convergence of a docking simulation is indicated by the presence

of a docking funnel, which is defined to exist if there are at least

five medium quality predictions in the ten lowest-energy docking

decoys.

Algorithm availability
The SnugDock method presented here is freely available for

academic and non-profit use as part of the Rosetta structure

prediction suite at www.rosettacommons.org. The distribution

includes documentation and full source code. The Rosetta version

numbers and command lines used to generate the data are

provided in Supporting Information Text S1.

Supporting Information

Figure S1 Docking perturbation plots. Each row shows the

simulation for one target denoted by the four letter PDB code at

the top of the first plot in the respective row. The columns

correspond to the different docking algorithms used: 1) Standard

rigid-body docking using RosettaDock starting with the antibody

crystal structure. 2) Standard rigid-body docking using Rosetta-

Dock. 3) Docking with VL-VH optimization. 4) Docking with VL-

VH optimization with CDR minimization and CDR H3

perturbation. 5) Docking with SnugDock (VL-VH optimization

with CDR minimization and CDR H3+H2 perturbations). 6)

Rigid-body docking using EnsembleDock with the ten lowest-

energy RosettaAntibody models. 7) Docking using a combined

protocol incorporating EnsembleDock and SnugDock with the ten

lowest-energy RosettaAntibody models. Refer to Figure 2 legend

for explanation of colored points.

Found at: doi:10.1371/journal.pcbi.1000644.s001 (6.97 MB EPS)

Figure S2 Global docking plots. The four letter PDB code at the

top of each column indicates the target for which simulations were

executed for the respective column. The rows correspond to the

different docking algorithms used: 1) Standard rigid body docking

using RosettaDock. 2) EnsembleDock 3) SnugDock 4) Ensem-

bleDock-plus-SnugDock. Refer to Figure 2 legend for explanation

of colored points.

Found at: doi:10.1371/journal.pcbi.1000644.s002 (1.35 MB TIF)

Table S1 Quantitative accuracy measures of lowest-energy

docking decoy for different docking protocols. Refer to Table 1

key for explanation.

Found at: doi:10.1371/journal.pcbi.1000644.s003 (0.03 MB XLS)

Table S2 Quantitative accuracy measures of lowest-energy

docking decoy, using WAM homology models. Refer to Table 1

key for explanation.

Found at: doi:10.1371/journal.pcbi.1000644.s004 (0.03 MB XLS)

Table S3 Quantitative accuracy measures of global docking

decoys. Refer to Table 1 key for explanation.

Found at: doi:10.1371/journal.pcbi.1000644.s005 (0.03 MB XLS)

Text S1 Rosetta Version Numbers and Command Lines

Found at: doi:10.1371/journal.pcbi.1000644.s006 (0.03 MB

DOC)
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