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Abstract

In allosteric regulation, an effector molecule binding a protein at one site induces conformational changes, which alter
structure and function at a distant active site. Two key challenges in the computational modeling of allostery are the
prediction of the structure of one allosteric state starting from the structure of the other, and elucidating the mechanisms
underlying the conformational coupling of the effector and active sites. Here we approach these two challenges using the
Rosetta high-resolution structure prediction methodology. We find that the method can recapitulate the relaxation of
effector-bound forms of single domain allosteric proteins into the corresponding ligand-free states, particularly when
sampling is focused on regions known to change conformation most significantly. Analysis of the coupling between
contacting pairs of residues in large ensembles of conformations spread throughout the landscape between and around the
two allosteric states suggests that the transitions are built up from blocks of tightly coupled interacting sets of residues that
are more loosely coupled to one another.
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Introduction

Allosteric transitions, in which binding of an effector molecule

to one site of a protein is coupled to a conformational change at a

distant site, are fundamental to biological regulation. Although the

first models were proposed more than 40 years ago [1,2],

developing a mechanistic understanding of allostery continues to

be an active and vigorous area of research [3,4]. For a small

number of allosteric proteins, X-ray crystal structures of ligand

bound and ligand free states have illuminated the structural

transitions underlying allostery [5–10]. However, the small

number and static nature of these structures present several

important challenges for structural biology that may be

approached using computational methods.

First, it may be possible to predict the structure of the one

allosteric state starting from the structure of the other state.

Meeting this challenge requires both an efficient method for

conformational sampling in the neighborhood of the starting state

and a sufficiently accurate energy function. Predicting the bound

state from the unbound state is more challenging because it

requires solving both the docking problem and the allosteric

conformational change problem simultaneously. Predicting the

unbound state from the bound structure is more straightforward

and hence is a natural first step toward addressing the general

prediction challenge. A successful approach would be extremely

useful for predicting the conformational changes that occur in an

allosteric protein for which only the structure of the bound state is

available.

A second challenge is to determine the mechanisms controlling

allosteric regulation by identifying how individual residues are

involved in allosteric transitions. Normal mode analysis of elastic

network models [11–13], a nonlinear elastic model [14], network

modeling of contact rearrangements [15], and statistical coupling

of local unfolding [16,17] have all been applied to protein

structures to investigate mechanisms of conformational switching.

These methods work best for identifying global motions,

geometrical differences, or residue stability. NMR and other data

suggest that most allosteric proteins are essentially two state

systems, with bound and unbound states, but not intermediate

states, populated at equilibrium [18,19]. Since states intermediate

between the observed bound and unbound states are higher in free

energy and cannot be readily observed experimentally, it is

difficult to map the free energy landscape between the two states

using experimental methods. One computational approach has

been to use a multiple basin model to map the free energy

landscape and approximate the transition between states [20,21].

However, this method only considers Ca atoms and utilizes

knowledge of the structural end points as references in the

potential function. Insight into residue couplings has come from

studies of evolutionary covariance [22–24], but this method can

only be applied to systems with a large and diverse set of

sequences. All-atom molecular dynamics simulations [25–28] can

show residue couplings in great detail, but only when conforma-

tional transitions occur in the nanosecond timescale.

The Rosetta high-resolution structure prediction methodology

[29] has shown considerable progress in the related problem of
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predicting the structure of a protein based on the structure of a

homologue [30]. The recently developed ‘‘rebuild and refine-

ment’’ sampling methodology combines complete remodeling of

the protein structure in specific regions [30] with global

optimization of the entire protein structure using the Rosetta all-

atom refinement protocol and energy function [29]. Because of the

stochastic nature of the search, and the very large number of local

minima on the rugged all-atom landscape, different models end up

in different minima and these collectively create a map of the

energy landscape in the neighborhood of the starting structure.

Previously, this high-resolution refinement has been applied with

the assumption that there is a single state to find, and it remains

unclear whether the method has sufficiently high resolution to

distinguish between two low-energy conformations in an allosteric

protein.

Here we employ Rosetta to address the twin challenges of

allostery: prediction and mechanism. We apply the high-resolution

refinement method to the problem of finding an alternative

conformation of a protein, which in this case represents the

alternative allosteric state. Here we assume that multiple states

exist, e.g. bound and unbound, and then ask whether Rosetta can

identify the alternative state. We report that Rosetta can

reproduce conformational transitions for three proteins in which

significant allosteric structural changes occur, particularly when

provided information on which regions change the most in the

allosteric transition. Exploring the energy basins near each starting

structure identifies state-dependent residues that control protein

function. Mapping the energy minima suggests that energetically

coupled residue pairs switch together in groups (blocks) that are

weakly coupled to each other.

Results

Predicting the Alternative Conformation
We began by testing the extent to which the Rosetta high-

resolution structure prediction methodology can predict the ligand

free structure of an allosteric protein starting from the structure of

the ligand bound form. We focus here on three allosteric proteins

that undergo significant conformational changes upon effector

binding: CheY, Integrin aL I-domain, and Ras. We initially

selected 8 proteins (see Table 1) but restricted our efforts to these

three proteins for the following reasons. Three of the others

involved relatively small loop rearrangements induced directly by

a ligand rather than global conformational changes induced by an

allosteric effector. In the SH2 domain and FixJ, the energy

difference between conformational states was too small for the

Rosetta energy function to identify the correct conformation, while

b-lactoglobulin involved a single loop difference where the deep

energy minimum near the alternative structure wasn’t sampled.

The final two proteins, Troponin C and S100A6, involved

calcium-binding sites for which the electrostatic interactions

proved hard to model with the Rosetta energy function (Figure

S1).

In this first set of calculations, all loop regions were

stochastically rebuilt in the ‘‘rebuild’’ portion of the ‘‘rebuild and

refinement’’ protocol described in ref [30]. 100,000 independent

Monte Carlo ‘‘rebuilding and refinement’’ simulations were

initiated from the bound conformations following removal of the

ligand. Plots of energy vs root-mean-square deviation (rmsd) to the

native structure (left panel of Figure 1) show that the deep energy

minimum surrounding the native structure is sampled to some

extent for Ras and CheY, as indicated by a minimum about 1 Å

rmsd (the typical noise within a state) from the unbound state.

However, this is not seen for the I-domain because regions with

secondary structure differ in the two crystal conformations but

were not allowed to be rebuilt in our initial calculations.

To make the sampling problem more tractable while modeling

secondary structure movements, we limited the rebuilding step in

the ‘‘rebuild and refinement’’ protocol to loop and secondary

structure regions that significantly change structure in going from

the bound to the unbound state (the entire protein is allowed to

move in the following all-atom refinement step – see methods).

The 20 lowest-energy structures were clustered based on their

pairwise rmsd and the lowest-energy structure from the largest

cluster was compared to both the starting and alternative

structures. For three proteins (CheY, the aL I-domain, and Ras),

the lowest-energy structure of the largest cluster was closer to the

Table 1. Test set for predicting conformational change from bound to unbound state.

ID L Class rmsd (Å) Xtalunb:Xtalbnd rmsd (Å) Model:Xtalbnd rmsd (Å) Model:Xtalunb Protein name

1f4v, 3chy 128 a/b 1.22 1.33 0.91 CheY

1mq9, 1lfa 180 a/b 2.72 2.71 1.55 aL I-domain

6q21, 4q21 168 a/b 1.67 1.50 1.34 Ras p21

1lcj, 1bhh 104 a+b 1.53 1.17 1.59 SH2 domain

1b0o, 1beb 156 b 1.16 0.69 1.26 b-lactoglobulin

1d5w, 1dbw 123 a/b 1.25 2.24 2.15 FixJ

1avs, 1top 81 a 4.78 1.57 4.00 Troponin C

1k9k, 1k9p 82 a 4.23 2.44 3.41 S100A6

PDB IDs are given for the bound and unbound states in column 1. Protein length, SCOP classification and Ca-rmsd between crystal structures are given in columns 2 to
4. Ca-rmsd values between the lowest-energy model in the largest cluster and the bound and unbound crystal structures are given in columns 5 and 6 respectively.
doi:10.1371/journal.pcbi.1000484.t001

Author Summary

A common means of biological regulation is allostery, in
which an effector molecule binds to one site on a protein
and induces a conformational change which changes
activity at a distant active site. Frequently high resolution
structures are determined for one state of an allosteric
protein but not the other. To probe the allosteric
conformational changes in such cases, we describe a
computational method for predicting the structure of one
allosteric state of a protein starting with knowledge of
another. Our method also provides a detailed map of the
free energy landscape traversed in an allosteric transition
and reveals the coupling between interacting residue pairs
that underlies the transition.

Allosteric Coupling
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alternative conformation than the initial structure, and energy

versus rmsd plots reveal an energy minimum at the unbound

conformation (center panel of Figure 1). Additionally, the largest

cluster of the 20 lowest-energy structures contained at least 4

models, suggesting that sampling is converging toward the

alternative conformation. That is, with the specification of the

regions in which major conformational changes take place, the

rebuild and refinement protocol can sample the alternative state

and the energy function has sufficient accuracy to distinguish the

unbound state based on its lower energy.

In addition to identifying low-energy structures that are near the

crystal conformation of the unbound state, subregions with the

largest conformational difference between states were predicted to

within an accuracy of between 0.3–3.4 Å (Ca-rmsd) to the

alternative state (indicated by black arrows in Figure 1, and Table

S1). The structural changes in CheY involve a shift of helix a1 and

rearrangements of the loops L7 & L9 near the FliM binding pocket

(indicated by **). Removal of a disulfide bond (allosteric effector

indicated by *) in the aL I-domain that mimics the activated state

allows the a7 helix to shift upward more than 6.5 Å and the loop

Figure 1. Rosetta predictions of conformational change in the allosteric proteins CheY, the aL I-domain, and Ras. The Rosetta all-atom
energy is plotted against Ca-rmsd for models generated by simulations starting from the native conformation in the bound state with the allosteric
effector removed from the crystal structure. Left panel shows the rmsd comparison to the alternative crystal structure when all loops have been
remodeled, the center panel, the rmsd comparison to the alternative crystal structure with remodeling of loop or secondary structure regions that
differ between the states. Arrows indicate the locations of the starting structure (gray) and lowest-energy model from the cluster with the largest
number of structures (cyan). Right panel shows the superposition of the lowest-energy model taken from the largest cluster in the center panel (cyan)
to the starting (gray) and alternative (magenta) crystal structures. The allosteric effector and protein binding site are indicated by * and **
respectively. The bright regions indicate regions that differ the most between the two crystal structures and were remodeled, while remaining
regions are faded. Black arrows indicate the regions in the lowest-energy model that have moved toward the alternative state.
doi:10.1371/journal.pcbi.1000484.g001

Allosteric Coupling
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between strand b5 and helix a6 to move toward the active

conformation of the ICAM-1 binding site (indicated by **). In Ras,

loop L4 moves away from the allosteric effector (located at *) and

toward the alternative state, and the helix a2 near the protein-

binding site (indicated by **) is formed, although it has not fully

moved into position.

Because of high intrinsic variability in loop regions, we

independently measured the RMSD only over the regular

secondary structure elements, as described in Supplemental Table

S2 and the accompanying description of the methods. In all three

cases, the secondary structure elements were predicted on average

even better than the overall structures, and the only regions of the

secondary structure which remained closer to the starting structure

than the alternative structure were those that differed very little

between the states to begin with. Thus, Rosetta is most successful

in predicting structural changes in secondary structure elements.

Structural Differences
The crystal conformations of both states show a number of

structural differences. Although many individual residues change

conformation or contacts when an allosteric protein switches

between states, only a small number of these changes may be

critical to conformational switching [26]. To identify critical

changes, we generated a set of 500 structures near each crystal

structure by using Monte Carlo methods to perturb the backbone

angles slightly and optimize side chain rotamer conformations,

followed by energy minimization of each structure.

We first identified pairs of residues for which the mean

difference in pairwise interaction energy (prE) was greater than

1 Rosetta energy unit between the 500 structures in the two

ensembles surrounding each state. Since these contacts differ

consistently between conformations in the two states, we call them

‘‘state dependent’’. Averaging interaction energies over confor-

mations in the two states eliminates the set of contacts that differ

between the two structures not because of the change in

conformational state but because of differences in crystal packing

interactions. The left panel of Figure 2 shows the state dependent

prE differences (orange) and the remaining (non state dependent)

differences (blue) mapped on to the three-dimensional structure of

CheY, the I-domain, and Ras.

CheY, the I-domain and Ras contain 128 to 180 residues, 27 to

82 of which formed pairwise interactions that had different

energies in the two crystal structures. However, of these, only 10 to

20 formed state dependent interactions according to analysis of the

ensemble of states (Table 2). Random mutagenesis [31–37] and

mutations found in clinical samples [38–41] have identified a

number of residues that alter protein function in the three proteins.

Mutations identified by site-directed mutagenesis studies were not

included since they are designed to target regions believed by the

researchers to be important, which would cause an undesirable

bias for our purpose. As shown in Table 2, there are a higher

fraction of residues important for function among the residues with

state dependent energy differences than in the protein as a whole.

On average, using ensembles to identify state-dependent residues

provided a 1.9-fold enrichment in the number of function-altering

residues. A lesser (1.4-fold) enrichment was observed if the crystal

structure differences were used to identify function-altering

residues.

We also identified state dependent side chain x1 angles (dihedral

angle rotation around the Ca–Cb bond) based on mean

differences in the x1 angle between ensembles (right panel of

Figure 2). Ensemble calculations identified 5, 19, and 11 residues

(CheY, the I-domain, and Ras) with mean side-chain angle (x1)

differences greater than 46u between states (Table 2). Comparison

between the calculated x1 differences and the experimental data

showed the state dependent residues contain a higher fraction of

function-altering residues than in the protein overall (Table 2).

Coupled Pairwise Changes
To examine how pairwise interactions are coupled during

switching between the states, we generated models starting from

the unbound state to map the neighboring landscape more

thoroughly. Maps of the energy landscapes for CheY, the I-

domain and Ras were created by combining the ‘‘rebuild and

refinement’’ calculations starting from the bound and unbound

structures (left panel of Figure 3). Each point on this landscape

represents a single model, the axes are the rmsd values to the

starting and alternative structures, and the colors represent the all-

atom energy, graded on a continuum from lowest (blue) to highest

(red). A clear minimum is evident in the vicinity of the unbound

state in all three cases, as indicated by a cluster of low-energy

structures near 1 Å rmsd from the unbound state and over 1 Å

rmsd from the bound state. Each structure on this landscape

represents a distinct local minimum—the lowest energy structure

sampled in an individual simulation.

Figure 2. Contacts with large interaction energy differences or
residues with large differences in their side chain dihedral
angles. Differences between the crystal structures and the ensembles
are mapped on to the three-dimensional structures of CheY, the aL I-
domain, and Ras. Orange colored sticks indicate residues that make a
state dependent contact (or have a state dependent side chain angle).
Blue colored sticks reflect a contact (side chain) that differs between the
two structures, but are not state dependent.
doi:10.1371/journal.pcbi.1000484.g002

Allosteric Coupling
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The two-dimensional view of the energy landscape suggests we

have sampled the conformational space of both states and have

reasonable coverage of intermediate conformations. To determine

what residues switch conformational states together, we evaluated

the association between pairwise contacts (see methods). Some

residues are strongly correlated and evidently switch states

together whereas others switch independently. The correlated

pairwise interactions appear as blocks when grouped using

hierarchical clustering (middle panel of Figure 3). Within a block,

the pairwise interactions show a stronger association than between

blocks. In the context of the three-dimensional protein structure,

the blocks comprise collections of residues that are often physically

close to one another (right panel of Figure 3).

Different blocks are often associated with different functions. In

CheY, the cyan block includes highly conserved amino acids (D12,

D57, and K109) involved in phosphorylation and regulation of this

receiver domain [42,43]. The magenta block contains residues

E89 and Y106, which play critical roles in conformational

switching through CheZ-mediated dephosphorylation [44] and

binding to the flagellar motor switch, FliM [45,46]. These two

blocks are also related to functional regions observed in a previous

study of internal dynamics with NMR [47].

In the aL I-domain, the blocks of coupled residues divide into

three groups, which roughly map out a connection path between

helix a7 (cyan) and the ICAM-1 binding site (residues within the

magenta block such as D127 & L205). The yellow block that

connects these regions includes residues from the b6-a7 loop and

the hydrophobic pocket proposed to be responsible for the ratchet-

like conformational switching [48].

In Ras, the magenta and yellow colored blocks contain residues

in the helical-loop segment known as switch II [49], which is

directly involved in conformational switching between the active

and inactive states. The cyan colored block contains contact pairs

within the hydrophobic core that is highly conserved among Ras

family proteins. This block is comprised of a set of coupled pairs

that span the core b-sheet, connecting one side of the protein to

the other.

Discussion

Predicting the Unbound/Inactive Conformation
Using the Rosetta rebuild and refinement sampling methods,

the bound states of three allosteric proteins were observed to relax

to the lower energy unbound states. Accurate prediction of the

unbound state is facilitated by focusing sampling on the loops and

secondary structure regions that differ between states. The Rosetta

energy function is able to identify the correct structure; the need to

focus the rebuilding protocol on regions known to differ is

consistent with previous observations that conformational sam-

pling is the primary limiting factor in high-resolution prediction.

Nevertheless, our successes provide evidence of useful progress

toward predicting conformational changes in allosteric proteins

when only the bound structure is available. These successes are

indicated by a decrease in the overall Ca-rmsd between the low-

energy model and the alternative state, as well as a substantial

improvement in the Ca-rmsd between the low-energy model and

the alternative state for the subregions that differ most between

states (Table S1).

The sampling strategy failed to explore conformational space

near the alternative state in proteins with large conformational

changes that involved the hinge motion of multiple helices. The

Rosetta energy function is insufficiently accurate to identify the

correct structure for proteins with subtle loop changes where the

energy difference between states is likely quite small, or those with

electrostatic interactions with divalent cations. These challenges

emphasize the need for improvements in both the Rosetta energy

function and sampling strategies for exploring conformational

space. However, since predicting the unknown conformation of an

alternative state remains an unsolved problem, even partial success

in this direction is encouraging and suggests that this approach

warrants further development.

Structural Differences
We calculated the mean differences between pairwise interac-

tions and side chain x1 angles in ensembles of low-energy models

near each state. These calculations provide a way to screen in silico

a large number of conformational differences to identify a smaller

set of promising residues to target for further experimental

investigation. As indicated by random mutagenesis and mutations

found in clinical samples, the state-dependent residues are

enriched in amino acids known to control function (Table 2).

The positive correlation between predictions and experiments

suggests that ensembles could be used to predict state-dependent

residues to mutate in order to alter the regulation of conforma-

tional switching. For example, it may be possible to change the

overall activity but not the specificity of a protein by mutating

state-dependent residues that are not in either effector or active

sites, but rather in the pathway between them.

Coupled Pairwise Changes
The state dependent contact pairs group into clusters (blocks)

that are often nearby on the three-dimensional structure and

correlated with specific functions. These clusters of residue pairs

tend to switch together in conformations spread throughout the

Table 2. Fraction of residues involved in pairwise interactions or side chain differences that are known to alter function.

Pairwise Interaction Side Chain x1

Whole Domain Different in Crystal
State-Dependent in
Ensemble Whole Domain Different in Crystal

State-Dependent in
Ensemble

CheY 25/128 (20%) 7/27 (26%) 3/10 (30%) 22/102 (22%) 1/12 (8%) 1/5 (20%)

aL I-domain 44/180 (24%) 16/48 (33%) 10/17 (59%) 44/161 (27%) 11/39 (28%) 7/19 (37%)

Ras 51/168 (30%) 37/82 (45%) 11/20 (55%) 43/146 (29%) 12/29 (41%) 6/11 (55%)

Average 25 +/2 5% 35 +/2 10% 48 +/2 16% 25 +/2 4% 26 +/2 17% 37 +/2 17%

Enrichment NA 1.4 +/2 0.1-fold 1.9 +/2 0.4-fold NA 0.5 +/2 0.5-fold 1.4 +/2 0.5-fold

Columns 2 and 5 show this calculation for all residues, columns 3 and 6 for residues with significant differences in the crystal structures, and columns 4 and 7 for the
residues with state-dependent differences in the ensembles.
doi:10.1371/journal.pcbi.1000484.t002

Allosteric Coupling
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energy landscape between the starting and alternative states. Each

switching group maintains a weak association to other blocks of

residue pairs, and these blocks form a weakly coupled system that

could pass information between more distance regions of a

protein. We propose a new ‘‘block’’ model (Figure 4C) for

allosteric transitions that is intermediate between a concerted

model, where all structural changes are tightly coupled and

conformational switching is completely cooperative (Figure 4A),

and a sequential or domino model, where binding of a molecule at

one site causes a sequential propagation of changes across the

protein in a defined pathway (Figure 4B). This suggestion is

conceptually similar to the previous suggestion, based on dynamics

simulations, that protein conformational changes [20], including

those the occur due to ligand binding [21], can occur via a

pathway that involves multiple basins. Because the two methods

have been applied to different proteins, and because the data that

Figure 3. Residue-residue correlations in ensembles spanning the bound and unbound states. Left panel shows a two-dimensional map
of the energy landscape showing the Ca-rmsd to the starting and alternative crystal conformations (locations are indicated by black dots on the
axes). Each point represents a single low-energy model on the landscape colored by energy from low (blue) to high (red). The central panel shows a
hierarchical clustering of the association (Q coefficient) between pairwise interactions. The white to black coloring reflects the association between
residue pairs, where white represents no association (Q= 0) and black represents a strong association (Q= 1). A colored square has been added
around strongly associated clusters of pairwise interactions. The right panel maps the residue pairs with the strongest associations onto the three-
dimensional protein structure. Residues are colored based on the hierarchical clustering.
doi:10.1371/journal.pcbi.1000484.g003

Allosteric Coupling
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suggests multiple intermediates is of a different nature, however, it

is difficult to compare the details of the proposed inter-

mediates.

The high-energy states of all three models in Figure 4 are not

readily observed experimentally. However, our model suggests

that stabilizing the energetically coupled residues in one

conformational state would lower the energy of that intermediate

state to the point where it might be observed. The block model is

physically plausible in that sets of residues that pack together

would be expected to be highly correlated and switch states

cooperatively, while more weakly coupled to residue clusters at

distant sites. Allostery in this model is a result of the (weak)

coupling between clusters of tightly interacting residues: a switch in

state at a first cluster alters the energetic balance between

alternative states at other clusters.

Our approach differs in both methodology and conclusions

from previous computational methods of studying allostery [11–

13,22,23,50]. It is particularly instructive to compare our

approach to previous work using all-atom molecular dynamics.

A clear disadvantage of our method is that since we do not

simulate dynamics, we can obtain no explicit information about

trajectories, dynamics, or kinetics. We cannot observe pathways

directly. On the other hand, our approach has two clear

advantages. First, each data point is from a completely

independent Monte Carlo Minimization simulation, hence

observed correlations between contacts and other properties

cannot be attributed to lack of independence in sampling (as

might be the case for different snapshots from a long MD

trajectory). Second, each data point represents a relatively deep

local minimum (the lowest energy point found in the MCM

simulation), and hence associations between residues may be

stronger than in higher energy states—the higher the energy, the

larger the noise due to energy fluctuations. Our approach focuses

on the energetic coupling between interactions in allosteric

transitions rather than the dynamic coupling.

Methods

Test Set Selection and Starting Model Preparation
To test whether it is possible to predict a ligand-induced

conformational change in allosteric and non-allosteric proteins, we

selected a set of 8 pairs of ligand bound and ligand free protein

structures from the Protein Data Bank [51] (Table 1). Coordinates for

the starting structure of the aL I-domain were modified according to

[52]. The selection criteria were the availability of structures of ligand

bound and ligand free forms, a significant structural rearrangement

(Ca-Ca differences .3.5 Å) between the two forms, and size less than

200 amino acids to ensure the tractability of the search problem. All

crystal structures had a resolution # 2.5 Å, and with the exception of

three bound structures (PDB ID: 1b0o, 1f4v, 1d5w) the structures

were # 2.0 Å resolution.

Test cases were grouped into categories based on their

conformational change and their structural classification (all-a,

all-b, mixed a/b or a+b) [53]. These categories allowed us to

evaluate the method’s ability to predict both localized and

allosteric conformational changes with high-resolution accuracy,

as well as to consider how a protein’s fold affected the

conformational sampling and prediction accuracy. Starting models

were created from the crystal structures by fixing the bond lengths

and angles at chemically ideal values, and representing all atoms

explicitly using internal coordinates (Q, y, v, x1, x2, x3, & x4).

Following idealization, all models were minimized as a function of

all backbone and side chain angles using the Davidon-Fletcher-

Powell (DFP) algorithm [54].

Prediction Protocol
The structure prediction protocol is based on the ‘‘rebuild and

refinement’’ method that is outlined in detail elsewhere [30].

Briefly, the overall approach consisted of three parts, (1)

generating structural diversity, (2) optimizing the side chain

position for every residue, and (3) minimizing all atoms in the

protein. In the rebuild step, structural diversity was created by

replacing backbone torsion angles of the loops with one or three or

nine consecutive residues ‘‘fragments’’ from non-homologous

structures in the Protein Data Bank. Initially, all loop regions

were remodeled. Based on insufficient sampling of the conforma-

tional space near the alternative structure, we then chose to

rebuild continuous sequences of 4 or more residues where the

pairwise Ca-Ca difference was greater than 1 Å (.1.5 Å for

Figure 4. Conformational switching models in allosteric
proteins. Schematic energy profile plotted as a function of the
number of residues that change between states on a one-dimensional
energy landscape. (A) All-or-nothing model in which all residues switch
together and the conformational change between states happens in a
concerted manner. (B) Domino model in which one residue interacts
with its neighbor and so on as the conformational change between
states proceeds along a specific propagation pathway. (C) Block model
in which groups of tightly coupled interactions switch together and
each block is loosely coupled to other blocks such that conformational
change between states happens through interacting blocks. All of these
models would appear as two-state transitions experimentally, however,
the domino and block models transition through multiple intermediate
states.
doi:10.1371/journal.pcbi.1000484.g004
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Troponin C and S100A6). These chosen regions were randomly

selected during a simulation to be remodeled using the fragment

insertion protocol as described in [55]. Briefly, a chain break

(‘‘cut’’) was made to the remodeled segment at a randomly chosen

position within the region. Randomly chosen nine-residue, three-

residue, or one-residue fragments were inserted into randomly

chosen positions in the region being rebuilt, and the Metropolis

Monte Carlo criterion was used to accept or reject the newly

inserted fragment. To maintain the connectivity of the protein

chain, cyclic coordinate descent [56] was used to close the chain

break at a stochastically selected position of the region rebuilt.

In the refinement protocol, all of the backbone and side chain

atoms in the protein are explicitly represented. The entire protein is

allowed to move through a series of steps that introduce a random

perturbation to the backbone atoms, and then optimize the backbone

and side chain coordinates for the new backbone position (see [30] for

a detailed description of the types of random perturbations and the

move sequences). Optimal side chain conformations for each residue

were selected from the Dunbrack rotamer library [57]. After the

backbone perturbation and side chain optimization, the energy of the

entire structure was minimized as a function of all backbone and side

chain dihedral angles using the DFP algorithm. The new angles were

accepted or rejected using the standard Metropolis criterion between

the energy of the minimized structure and the initial conformation

prior to the random perturbation. This entire cycle of rebuild and

refinement was repeated ,100,0006, generating ,100,000 low-

energy conformations of each protein in the test set, and exploring a

broad set of local minima within the energy landscape that are both

near and far from the starting conformation.

Clustering Algorithm
The top 20 low-energy models were selected from the set of

,100,000 simulations and clustered based on a structural similarity

using an algorithm that has been described previously [58]. Briefly,

pairwise Ca-rmsd comparisons were made between all 20 models

using a threshold of 1.0 Å to define neighboring structures. The

structure with the largest number of neighbors within this threshold

was considered to be the center of the first, largest cluster. This

cluster center and its neighbors were removed from the population

and the pairwise comparison was repeated until all structures in the

set were examined. The lowest-energy structure in the cluster with

the largest number of neighbors was selected for comparison to the

starting and alternative crystal structures.

Near-Native Ensemble Generation
The crystal structure was taken as the starting template for

creating an ensemble of near-native models. Bond lengths and

angles were fixed at ideal values and each structure was

minimized. Following idealization and minimization, all proteins

within the test set were subjected to the Monte Carlo plus

minimization (MCM) protocol to generate 500 models in the

vicinity of the crystal conformation. The MCM strategy uses the

all-atom, high-resolution refinement protocol that has been

described previously [29,59]. Briefly, the MCM strategy consists

of small, random perturbations to the backbone torsion angles,

optimization of the side-chain rotamer conformations for the new

backbone angles, and minimization of the backbone and side

chain degrees of freedom using the DFP algorithm.

Pairwise Interaction Energy Changes and Side Chain
Differences

The pairwise interaction energy (prE) was computed from a

subset of terms in the Rosetta energy function including the

Lennard-Jones attractive and repulsive, hydrogen bonding,

solvation, and a statistical term (‘‘pair’’) that approximates

electrostatics and disulfide bonds, prE~EatrzErepzEhbz
EsolvzEpair. Mean prE differences greater than 1 Rosetta energy

unit between the ensembles of 500 near-native models were

considered to be state dependent.

The x1 side-chain angle (dihedral rotation about Ca–Cb bond)

was computed for all residues except alanine and glycine. Mean x1

differences [60] greater than 46u [61] between the ensembles of

500 near-native models were considered to be state dependent.

State-dependent predictions were compared against residues

that have been experimentally found to alter protein function by

random mutagenesis, or mutations found in clinical samples.

Function-altering mutations identified by site-directed mutagenesis

studies were excluded since they are designed to target regions

believed by the researchers to be important, which would cause an

undesirable bias for our purpose. The fraction of residues involved

in either pairwise interactions or side chain differences that are

known to alter protein function was computed for the whole

protein (ftot), the differences in the crystal structures (fxtal), and the

state-dependent residues in the ensembles (fens). The ratio of

fractions (fxtal/ftot and fens/ftot) was calculated to determine the

enrichment of function-altering residues present in the computed

differences versus the whole protein.

Evaluation of Pairwise Energy Coupling
The pairwise interaction energy (as described above) was

computed for all residue pairs in both states of CheY, the aL I-

domain, and Ras. Pairwise coupling was evaluated by examining

the pairs that changed contact between states. These changes were

considered to be binary and involved going from interacting (prE

,–1.25 Rosetta energy units) to non-interacting (prE .20.5

Rosetta energy units). Calculations were performed on all models

from the two sets generated by starting from the bound and

unbound states and running the ‘‘rebuild and refinement’’

protocol to explore the neighboring energy landscape.

Associations between pairwise interactions were computed from

the w coefficient, where w~
ffiffiffiffiffiffiffiffiffiffiffi
x2=N

p
. x2 is the chi-square statistic

for testing independence (x2~
P

Oi{Eið Þ2
.

Ei, where O and E

are the observed and expected frequency) and N is the number of

observations. Associations were clustered using the complete-

linkage, hierarchical clustering algorithm implemented in the R

statistical package (http://www.r-project.org/).

Software
All plots were made with gnuplot (http://www.gnuplot.info/) or

the R statistical package (http://www.r-project.org/). Images of

protein structures were generated using PyMOL [62]. The Rosetta

source code is available without charge for academic users from

http://depts.washington.edu/ventures/UW_Technology/Express_

Licenses/rosetta.php

Supporting Information

Figure S1 Rosetta Calculations of Conformational Change for

Remaining Proteins in Test Set. All-atom energy is plotted against

Ca-rmsd for models generated by simulations starting from the

native conformation in the bound state with the ligand removed

from the crystal structure. Left panel shows the rmsd comparison

to the alternative crystal structure when all loops have been

remodeled, whereas the center panel shows the rmsd comparison

to the alternative crystal structure with only remodeling regions

that differ between the states. Right panel shows the superimpo-

sition of the starting (gray) and alternative (magenta) crystal
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structures. Corresponding plots for CheY, the aL I-domain, and

Ras are presented in Figure 1.

Found at: doi:10.1371/journal.pcbi.1000484.s001 (2.27 MB TIF)

Table S1 Comparison between subregions that change most

between conformational states

Found at: doi:10.1371/journal.pcbi.1000484.s002 (0.03 MB

DOC)

Table S2 Description of rmsd calculations on secondary

structure elements-sheets and helices-for CheY, aL I-domain,

and Ras.

Found at: doi:10.1371/journal.pcbi.1000484.s003 (0.06 MB PDF)
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