
Education

A Quick Guide to Organizing Computational Biology
Projects
William Stafford Noble1,2*

1 Department of Genome Sciences, School of Medicine, University of Washington, Seattle, Washington, United States of America, 2 Department of Computer Science and

Engineering, University of Washington, Seattle, Washington, United States of America

Introduction

Most bioinformatics coursework focus-

es on algorithms, with perhaps some

components devoted to learning pro-

gramming skills and learning how to

use existing bioinformatics software. Un-

fortunately, for students who are prepar-

ing for a research career, this type of

curriculum fails to address many of the

day-to-day organizational challenges as-

sociated with performing computational

experiments. In practice, the principles

behind organizing and documenting

computational experiments are often

learned on the fly, and this learning is

strongly influenced by personal predilec-

tions as well as by chance interactions

with collaborators or colleagues.

The purpose of this article is to describe

one good strategy for carrying out com-

putational experiments. I will not describe

profound issues such as how to formulate

hypotheses, design experiments, or draw

conclusions. Rather, I will focus on

relatively mundane issues such as organiz-

ing files and directories and documenting

progress. These issues are important

because poor organizational choices can

lead to significantly slower research pro-

gress. I do not claim that the strategies I

outline here are optimal. These are simply

the principles and practices that I have

developed over 12 years of bioinformatics

research, augmented with various sugges-

tions from other researchers with whom I

have discussed these issues.

Principles

The core guiding principle is simple:

Someone unfamiliar with your project

should be able to look at your computer

files and understand in detail what you did

and why. This ‘‘someone’’ could be any of a

variety of people: someone who read your

published article and wants to try to

reproduce your work, a collaborator who

wants to understand the details of your

experiments, a future student working in

your lab who wants to extend your work

after you have moved on to a new job, your

research advisor, who may be interested in

understanding your work or who may be

evaluating your research skills. Most com-

monly, however, that ‘‘someone’’ is you. A

few months from now, you may not

remember what you were up to when you

created a particular set of files, or you may

not remember what conclusions you drew.

You will either have to then spend time

reconstructing your previous experiments

or lose whatever insights you gained from

those experiments.

This leads to the second principle,

which is actually more like a version of

Murphy’s Law: Everything you do, you

will probably have to do over again.

Inevitably, you will discover some flaw in

your initial preparation of the data being

analyzed, or you will get access to new

data, or you will decide that your param-

eterization of a particular model was not

broad enough. This means that the

experiment you did last week, or even

the set of experiments you’ve been work-

ing on over the past month, will probably

need to be redone. If you have organized

and documented your work clearly, then

repeating the experiment with the new

data or the new parameterization will be

much, much easier.

To see how these two principles are

applied in practice, let’s begin by consid-

ering the organization of directories and

files with respect to a particular project.

File and Directory Organization

When you begin a new project, you

will need to decide upon some organiza-

tional structure for the relevant directo-

ries. It is generally a good idea to store

all of the files relevant to one project

under a common root directory. The

exception to this rule is source code or

scripts that are used in multiple projects.

Each such program might have a project

directory of its own.

Within a given project, I use a top-level

organization that is logical, with chrono-

logical organization at the next level, and

logical organization below that. A sample

project, called msms, is shown in Figure 1.

At the root of most of my projects, I have a

data directory for storing fixed data sets, a

results directory for tracking computa-

tional experiments peformed on that data,

a doc directory with one subdirectory per

manuscript, and directories such as src
for source code and bin for compiled

binaries or scripts.

Within the data and results directo-

ries, it is often tempting to apply a similar,

logical organization. For example, you

may have two or three data sets against

which you plan to benchmark your

algorithms, so you could create one

directory for each of them under data.

In my experience, this approach is risky,

because the logical structure of your final

set of experiments may look drastically

different from the form you initially

designed. This is particularly true under

the results directory, where you may

not even know in advance what kinds of

experiments you will need to perform. If

you try to give your directories logical

names, you may end up with a very long

list of directories with names that, six

months from now, you no longer know

how to interpret.

Instead, I have found that organizing

my data and results directories chro-

nologically makes the most sense. Indeed,

Citation: Noble WS (2009) A Quick Guide to Organizing Computational Biology Projects. PLoS Comput
Biol 5(7): e1000424. doi:10.1371/journal.pcbi.1000424

Editor: Fran Lewitter, Whitehead Institute, United States of America

Published July 31, 2009

Copyright: � 2009 William Stafford Noble. This is an open-access article distributed under the terms of the
Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are credited.

Funding: The author received no specific funding for writing this article.

Competing Interests: The author has declared that no competing interests exist.

* E-mail: william-noble@u.washington.edu

PLoS Computational Biology | www.ploscompbiol.org 1 July 2009 | Volume 5 | Issue 7 | e1000424

with this approach, the distinction be-

tween data and results may not be useful.

Instead, one could imagine a top-level

directory called something like experi-
ments, with subdirectories with names like

2008-12-19. Optionally, the directory

name might also include a word or two

indicating the topic of the experiment

therein. In practice, a single experiment

will often require more than one day of

work, and so you may end up working a

few days or more before creating a new

subdirectory. Later, when you or someone

else wants to know what you did, the

chronological structure of your work will

be self-evident.

Below a single experiment directory, the

organization of files and directories is

logical, and depends upon the structure

of your experiment. In many simple

experiments, you can keep all of your files

in the current directory. If you start

creating lots of files, then you should

introduce some directory structure to store

files of different types. This directory

structure will typically be generated auto-

matically from a driver script, as discussed

below.

The Lab Notebook

In parallel with this chronological

directory structure, I find it useful to

maintain a chronologically organized lab

notebook. This is a document that resides

in the root of the results directory and

that records your progress in detail.

Entries in the notebook should be dated,

and they should be relatively verbose, with

links or embedded images or tables

displaying the results of the experiments

that you performed. In addition to de-

scribing precisely what you did, the

notebook should record your observations,

conclusions, and ideas for future work.

Particularly when an experiment turns out

badly, it is tempting simply to link the final

plot or table of results and start a new

experiment. Before doing that, it is

important to document how you know

the experiment failed, since the interpre-

tation of your results may not be obvious

to someone else reading your lab note-

book.

In addition to the primary text describ-

ing your experiments, it is often valuable

to transcribe notes from conversations as

well as e-mail text into the lab notebook.

These types of entries provide a complete

picture of the development of the project

over time.

In practice, I ask members of my

research group to put their lab notebooks

online, behind password protection if

necessary. When I meet with a member

of my lab or a project team, we can refer

to the online lab notebook, focusing on

the current entry but scrolling up to

previous entries as necessary. The URL

can also be provided to remote collabo-

rators to give them status updates on the

project.

Note that if you would rather not create

your own ‘‘home-brew’’ electronic note-

book, several alternatives are available.

For example, a variety of commercial

software systems have been created to

help scientists create and maintain elec-

tronic lab notebooks [1–3]. Furthermore,

especially in the context of collaborations,

storing the lab notebook on a wiki-based

system or on a blog site may be appealing.

Figure 1. Directory structure for a sample project. Directory names are in large typeface, and filenames are in smaller typeface. Only a subset of
the files are shown here. Note that the dates are formatted ,year.-,month.-,day. so that they can be sorted in chronological order. The
source code src/ms-analysis.c is compiled to create bin/ms-analysis and is documented in doc/ms-analysis.html. The README
files in the data directories specify who downloaded the data files from what URL on what date. The driver script results/2009-01-15/runall
automatically generates the three subdirectories split1, split2, and split3, corresponding to three cross-validation splits. The bin/parse-
sqt.py script is called by both of the runall driver scripts.
doi:10.1371/journal.pcbi.1000424.g001

PLoS Computational Biology | www.ploscompbiol.org 2 July 2009 | Volume 5 | Issue 7 | e1000424

Carrying Out a Single
Experiment

You have now created your directory

structure, and you have created a directo-

ry for the current data, with the intention

of carrying out a particular experiment in

that directory. How do you proceed?

The general principle is that you should

record every operation that you perform,

and make those operations as transparent

and reproducible as possible. In practice,

this means that I create either a README
file, in which I store every command line

that I used while performing the experi-

ment, or a driver script (I usually call this

runall) that carries out the entire exper-

iment automatically. The choices that you

make at this point will depend strongly

upon what development environment you

prefer. If you are working in a language

such as Matlab or R, you may be able to

store everything as a script in that

language. If you are using compiled code,

then you will need to store the command

lines separately. Personally, I work in a

combination of shell scripts, Python, and

C. The appropriate mix of these three

languages depends upon the complexity of

the experiment. Whatever you decide, you

should end up with a file that is parallel to

the lab notebook entry. The lab notebook

contains a prose description of the exper-

iment, whereas the driver script contains

all the gory details.

Here are some rules of thumb that I try

to follow when developing the driver

script:

1. Record every operation that you per-

form.

2. Comment generously. The driver

script typically involves little in the

way of complicated logic, but often

invokes various scripts that you have

written, as well as a possibly eclectic

collection of Unix utilities. Hence, for

this type of script, a reasonable rule of

thumb is that someone should be able

to understand what you are doing

solely from reading the comments.

Note that I am refraining from advo-

cating a particular mode of comment-

ing for compiled code or more complex

scripts—there are many schools of

thought on the correct way to write

such comments.

3. Avoid editing intermediate files by

hand. Doing so means that your script

will only be semi-automatic, because

the next time you run the experiment,

you will have to redo the editing

operation. Many simple editing opera-

tions can be performed using standard

Unix utilities such as sed, awk, grep,

head, tail, sort, cut, and paste.

4. Store all file and directory names in

this script. If the driver script calls other

scripts or functions, then files and

directory names should be passed from

the driver script to these auxiliary

scripts. Forcing all of the file and

directory names to reside in one place

makes it much easier to keep track of

and modify the organization of your

output files.

5. Use relative pathnames to access other

files within the same project. If you use

absolute pathnames, then your script

will not work for people who check out

a copy of your project in their local

directories (see ‘‘The Value of Version

Control’’ below).

6. Make the script restartable. I find it

useful to embed long-running steps of

the experiment in a loop of the form if
(,output file does not exist.)
then ,perform operation.. If I

want to rerun selected parts of the

experiment, then I can delete the

corresponding output files.

For experiments that take a long time to

run, I find it useful to be able to obtain a

summary of the experiment’s progress thus

far. In these cases, I create two driver

scripts, one to run the experiment (ru-
nall) and one to summarize the results

(summarize). The final line of runall
calls summarize, which in turn creates a

plot, table, or HTML page that summa-

rizes the results of the experiment. The

summarize script is written in such a way

that it can interpret a partially completed

experiment, showing how much of the

computation has been performed thus far.

Handling and Preventing Errors

During the development of a compli-

cated set of experiments, you will intro-

duce errors into your code. Such errors are

inevitable, but they are particularly prob-

lematic if they are difficult to track down

or, worse, if you don’t know about them

and hence draw invalid conclusions from

your experiment. Here are three sugges-

tions for error handling.

First, write robust code to detect errors.

Even in a simple script, you should check

for bogus parameters, invalid input, etc.

Whenever possible, use robust library

functions to read standard file formats

rather than writing ad hoc parsers.

Second, when an error does occur,

abort. I typically have my program print

a message to standard error and then exit

with a non-zero exit status. Such behavior

might seem like it makes your program

brittle; however, if you try to skip over the

problematic case and continue on to the

next step in the experiment, you run the

risk that you will never notice the error. A

corollary of this rule is that your code

should always check the return codes of

commands executed and functions called,

and abort when a failure is observed.

Third, whenever possible, create each

output file using a temporary name, and

then rename the file after it is complete.

This allows you to easily make your scripts

restartable and, more importantly, pre-

vents partial results from being mistaken

for full results.

Command Lines versus Scripts
versus Programs

The design question that you will face

most often as you formulate and execute a

series of computational experiments is how

much effort to put into software engineer-

ing. Depending upon your temperament,

you may be tempted to execute a quick

series of commands in order to test your

hypothesis immediately, or you may be

tempted to over-engineer your programs

to carry out your experiment in a

pleasingly automatic fashion. In practice,

I find that a happy medium between these

two often involves iterative improvement

of scripts. An initial script is designed with

minimal functionality and without the

ability to restart in the middle of partially

completed experiments. As the functional-

ity of the script expands and the script is

used more often, it may need to be broken

into several scripts, or it may get ‘‘upgrad-

ed’’ from a simple shell script to Python,

or, if memory or computational demands

are too high, from Python to C or a mix

thereof.

In practice, therefore, the scripts that I

write tend to fall into these four categories:

1. Driver script. This is a top-level

script; hence, each directory contains

only one or two scripts of this type.

2. Single-use script. This is a simple

script designed for a single use. For

example, the script might convert an

arbitrarily formatted file associated

with this project into a format used

by some of your existing scripts. This

type of script resides in the same

directory as the driver script that calls

it.

3. Project-specific script. This type of

script provides a generic functionality

used by multiple experiments within

the given project. I typically store such

scripts in a directory immediately

PLoS Computational Biology | www.ploscompbiol.org 3 July 2009 | Volume 5 | Issue 7 | e1000424

below the project root directory (e.g.,

the msms/bin/parse-sqt.py file in

Figure 1).

4. Multi-project script. Some func-

tionality is generic enough to be useful

across many projects. I maintain a set

of these generic scripts, which perform

functions such as extracting specified

sequences from a FASTA file, gener-

ating an ROC curve, splitting a file for

n-fold cross-validation, etc.

Regardless of how general a script is

supposed to be, it should have a clearly

documented interface. In particular, every

script or program, no matter how simple,

should be able to produce a fairly detailed

usage statement that makes it clear what

the inputs and outputs are and what

options are available.

The Value of Version Control

Version control software was originally

developed to maintain and coordinate the

development of complex software engi-

neering projects. Modern version control

systems such as Subversion are based on a

central repository that stores all versions of

a given collection of related files. Multiple

individuals can ‘‘check out’’ a working

copy of these files into their local directo-

ries, make changes, and then check the

changes back into the central repository.

I find version control software to be

invaluable for managing computational

experiments, for three reasons. First, the

software provides a form of backup.

Although our university computer systems

are automatically backed up on a nightly

basis, my laptop’s backup schedule is more

erratic. Furthermore, after mistakenly

overwriting a file, it is often easier to

retrieve yesterday’s version from Subver-

sion than to send an e-mail to the system

administator. Indeed, one of my graduate

students told me he would breathe a sigh

of relief after typing svn commit, because

that command stores a snapshot of his

working directory in the central repository.

Second, version control provides a

historical record that can be useful for

tracking down bugs or understanding old

results. Typically, a script or program will

evolve throughout the course of a project.

Rather than storing many copies of the

script with slightly different names, I rely

upon the version control system to keep

track of those versions. If I need to

reproduce exactly an experiment that I

performed three months ago, I can use the

version control software to check out a

copy of the state of my project at that time.

Note that most version control software

can also assign a logical ‘‘tag’’ to a

particular state of the repository, allowing

you to easily retrieve that state later.

Third, and perhaps most significantly,

version control is invaluable for collabo-

rative projects. The repository allows

collaborators to work simultaneously on a

collection of files, including scripts, docu-

mentation, or a draft manuscript. If two

individuals edit the same file in parallel,

then the version control software will

automatically merge the two versions and

flag lines that were edited by both people.

It is not uncommon, in the hours before a

looming deadline, for me to talk by phone

with a remote collaborator while we both

edit the same document, checking in

changes every few minutes.

Although the basic idea of version

control software seems straightforward,

using a system such as Subversion effec-

tively requires some discipline. First,

version control software is most useful

when it is used regularly. A good rule of

thumb is that changes should be checked

in at least once a day. This ensures that

your historical record is complete and that

a recent backup is always available if you

mistakenly overwrite a file. If you are in

the midst of editing code, and you have

caused a once-compilable program to no

longer work, it is possible to check in your

changes on a ‘‘branch’’ of the project,

effectively stating that this is a work in

progress. Once the new functionality is

implemented, then the branch can be

merged back into the ‘‘trunk’’ of the

project. Only then will your changes be

propagated to other members of the

project team.

Second, version control should only be

used for files that you edit by hand.

Automatically generated files, whether

they are compiled programs or the results

of a computational experiment, do not

belong under version control. These files

tend to be large, so checking them into the

project wastes disk space, both because

they will be duplicated in the repository

and in every working copy of the project,

and also because these files will tend to

change as you redo your experiment

multiple times. Binary files are particularly

wasteful: Because version control software

operates on a line-by-line basis, the version

history of a binary file is simply a complete

copy of all versions of that file. There are

exceptions to this rule, such as relatively

small data files that will not change

through the experiment, but these excep-

tions are rare.

One practical difficulty with not check-

ing in automatically generated files is that

each time you issue an update command,

the version control software is likely to

complain about all of these files in your

working directory that have not been

checked in. To avoid scrolling through

multiple screens of filenames at each

update, Subversion and CVS provide

functionality to tell the system to ignore

certain files or types of files.

Conclusion

Many of the ideas outlined above have

been described previously either in the

context of computational biology or in

general scientific computation. In particu-

lar, much has been written about the need

to adopt sound software engineering

principles and practices in the context of

scientific software development. For ex-

ample, Baxter et al. [4] propose a set of

five ‘‘best practices’’ for scientific software

projects, and Wilson [5] describes a variety

of standard software engineering tools that

can be used to make a computational

scientist’s life easier.

Although many practical issues de-

scribed above apply generally to any type

of scientific computational research, work-

ing with biologists and biological data does

present some of its own issues. For

example, many biological data sets are

stored in central data repositories. Basic

record keeping—recording in the lab

notebook the URL as well as the version

number and download date for a given

data set—may be sufficient to track

simpler data sets. But for very large or

dynamic data, it may be necessary to use a

more sophisticated approach. For exam-

ple, Boyle et al. [6] discuss how best to

manage complex data repositories in the

context of a scientific research program.

In addition, the need to make results

accessible to and understandable by wet

lab biologists may have practical impli-

cations for how a project is managed.

For example, to make the results more

understandable, significant effort may

need to go into the prose descriptions

of experiments in the lab notebook,

rather than simply including a figure or

table with a few lines of text summariz-

ing the major conclusion. More practi-

cally, differences in operating systems

and software may cause logistical diffi-

culties. For example, computer scientists

may prefer to write their documents in

the LaTeX typesetting language, whereas

biologists may prefer Microsoft Word.

As I mentioned in the Introduction, I

intend this article to be more descriptive

than prescriptive. Although I hope that

some of the practices I describe above will

prove useful for many readers, the most

PLoS Computational Biology | www.ploscompbiol.org 4 July 2009 | Volume 5 | Issue 7 | e1000424

important take-home message is that the

logistics of efficiently performing accurate,

reproducible computational experiments is

a subject worthy of consideration and

discussion. Many relevant topics have not

been covered here, including good coding

practices, methods for automation of

experiments, the logistics of writing a

manuscript based on your experimental

results, etc. I therefore encourage interest-

ed readers to post comments, suggestions,

and critiques via the PLoS Computational

Biology Web site.

Acknowledgments

I am grateful for helpful input from Zafer

Aydin, Mark Diekhans, and Michael Hoffman.

References

1. Butler D (2005) A new leaf. Nature 436: 20–21.
2. Schwab M, Karrenbach M, Claerbout J (2000)

Making scientific computations reproducible.
Computing in Science and Engineering 2: 61–67.

3. Drake DD (2007) ELN implementation challeng-

es. Drug Discov Today 12: 647–649.

4. Baxter SM, Day SW, Fetrow JS, Reisinger SJ
(2006) Scientific software development is not an

oxymoron. PLoS Comput Biol 2: e87.
doi:10.1371/journal.pcbi.0020087.

5. Wilson GV (2006) Where’s the real bottleneck in

scientific computing? Am Sci 94: 5–6.

6. Boyle J, Rovira H, Cavnor C, Burdick D,

Killcoyne S, et al. (2009) Adaptable data

management for systems biology investigations.

BMC Bioinformatics 10: 79.

PLoS Computational Biology | www.ploscompbiol.org 5 July 2009 | Volume 5 | Issue 7 | e1000424

