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Abstract

Live-cell imaging by light microscopy has demonstrated that all cells are spatially and temporally organized. Quantitative,
computational image analysis is an important part of cellular imaging, providing both enriched information about individual
cell properties and the ability to analyze large datasets. However, such studies are often limited by the small size and
variable shape of objects of interest. Here, we address two outstanding problems in bacterial cell division by developing a
generally applicable, standardized, and modular software suite termed Projected System of Internal Coordinates from
Interpolated Contours (PSICIC) that solves common problems in image quantitation. PSICIC implements interpolated-
contour analysis for accurate and precise determination of cell borders and automatically generates internal coordinate
systems that are superimposable regardless of cell geometry. We have used PSICIC to establish that the cell-fate
determinant, SpoIIE, is asymmetrically localized during Bacillus subtilis sporulation, thereby demonstrating the ability of
PSICIC to discern protein localization features at sub-pixel scales. We also used PSICIC to examine the accuracy of cell
division in Esherichia coli and found a new role for the Min system in regulating division-site placement throughout the cell
length, but only prior to the initiation of cell constriction. These results extend our understanding of the regulation of both
asymmetry and accuracy in bacterial division while demonstrating the general applicability of PSICIC as a computational
approach for quantitative, high-throughput analysis of cellular images.
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Introduction

Biological light microscopy has been pushed to remarkable

limits of resolution, speed, throughput, and ease by advances in

protein-labeling methods, sample preparation, and microscopy

hardware. This imaging has revealed that the subcellular

environments of cells from all kingdoms are exquisitely organized

both spatially and temporally. Quantitative analysis of such images

to measure cell morphologies and track subcellular components in

space and time extends the power of cellular imaging by enabling

both the extraction of subtle, non-obvious information and the

automatic characterization of large datasets. The obvious power of

quantitative analysis has prompted many groups to implement ad-

hoc, often labor-intensive methods for analyzing specific aspects of

their images of interest [1,2]. However, quantitation of cellular

data from light microscopy poses two significant challenges. The

first challenge is to identify cell borders with high accuracy and

precision despite the limitations imposed by the diffraction of light

and the relatively small size of many cells of interest, particularly

bacteria. The most common method of identifying cell outlines,

thresholding, produces jagged edges that do not accurately

represent the smooth shapes of most cells [1]. Recent work has

moved beyond this method, utilizing interpolation to increase

spatial resolution and define more accurate cell borders [3–5]. We

have automated this method in a generally-applicable fashion,

using interpolated contours to define cell borders with nearly an

order of magnitude greater accuracy and precision than traditional

approaches. The second challenge is to meaningfully compare

different cells within a population despite the presence of complex

cellular geometries and natural variations in cell size and shape.

We have devised a novel computational methodology to address

this challenge, establishing an internal coordinate system for each

individual cell that can be readily superimposed to facilitate

comparisons among cells. These methodologies have been

packaged into a software suite we term Projected System of

Internal Coordinates from Interpolated Contours (PSICIC). The

modularity, generality, and high-throughput automation of the

PSICIC toolkit are such that it can be applied to virtually any type

of cell in order to measure many different parameters of shape and

localization.

Cellular imaging studies from the past decade have clearly

demonstrated that bacterial cells, like their eukaryotic counter-

parts, are spatially and temporally organized [6,7]. Bacteria afford

many experimental advantages as model cells, including ease of

experimental manipulation and the ability to image large numbers

of cells. Balancing these advantages, the power of bacterial cell

biology is limited by the small size of bacteria, which is on the

same scale as the wavelengths of light used for imaging. The
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variable shapes of many bacterial species presents an additional

complication for quantitatively analyzing images of bacterial

morphology and protein localization. PSICIC’s strengths in

extraction of highly accurate spatial data and insensitivity to

variable cell borders directly address these limitations. As a

demonstration we have applied PSICIC to two important

problems in bacterial cell biology: asymmetric protein localization

in Bacillus subtilis sporulation, and the accuracy of cell-division-site

placement in Escherichia coli cytokinesis.

B. subtilis sporulation involves an asymmetric cell division event

that gives rise to a larger mother cell and a smaller forespore [8,9].

SpoIIE is a membrane-bound phosphatase that contributes to the

asymmetric differentiation of these two cells by selectively activating

the sF transcription factor in the forespore [10]. Though the

biochemical mechanism of sF activation by SpoIIE is understood,

the basis for the preferential activity of SpoIIE in the forespore

compartment remains unclear. A recent study used genetic

arguments to suggest that SpoIIE is preferentially localized to the

forespore face of the sporulation division septum [11]. However,

conventional image analysis of SpoIIE localization could not detect

this asymmetry [12]. Here, we used PSICIC to quantitate SpoIIE

localization with high accuracy and precision and directly

established that SpoIIE is asymmetrically targeted to the forespore

face of the sporulation division plane. These results establish the

ability of PSICIC to extract subtle yet biologically significant protein

localization features from conventional light microscopy at scales

that were once thought to be exclusive to far more labor-intensive

methods such as immuno-electron microscopy.

Cell division in E. coli, unlike B. subtilis sporulation, is a

symmetric process that results in two similarly-sized daughters

[13,14]. While there are two systems known to contribute to

division accuracy, the Min system and nucleoid occlusion [15,16],

where and when they act within the cell and how much each

contributes to division accuracy is not well understood. For

example, the Min system is known to block erroneous polar

divisions [16], but the extent to which it contributes to the

accuracy of symmetric division remains unclear. Experimental and

theoretical studies have given contradictory results and predictions

[13,17,18]. By exploiting the ease of large-scale automated analysis

with PSICIC, we directly measured the accuracy of midcell

division with unprecedented data density. We also quantitated the

nature of division in a mutant that lacks the Min system. Our data

demonstrate that E. coli divides with extreme accuracy, and that

the Min system contributes to this accuracy by doing more than

simply blocking polar divisions. We also find that in both wild-type

cells and cells lacking a functional Min system, the division site is

accurately chosen before the cell begins to constrict and the

accuracy of division-site placement is not significantly improved

after a division pinch appears.

In addition to contributing to the understanding of sporulation

and division, our analyses of SpoIIE localization and division-site

accuracy are intended to highlight multiple aspects of the power of

PSICIC in analyzing data from different species, extracting single-

cell and population statistics, and utilizing both morphological and

protein localization information.

Results

Rationale and Implementation of PSICIC
To achieve robust and accurate quantitation, PSICIC sequen-

tially applies two approaches to address two different imaging

problems: interpolation to more precisely identify cell borders, and

establishment of internal coordinate systems to enable direct

comparisons among cells. When analyzing a digital image, the first

task is to identify the regions of interest. In biological applications,

this often amounts to defining the cell borders. In phase microscopy,

cells appear as dark objects on a light background (Figure 1A).

Therefore, the simplest and most common way to identify cells in a

phase micrograph is by setting a binary threshold value: pixels

darker than a given threshold are flagged as being inside a cell, and

pixels lighter than that threshold are considered outside of the cell.

Regions of adjacent pixels marked as inside a cell are grouped

together and the resulting set of pixels can then be further analyzed

as a group. While this thresholding method can reliably identify

pixels that are either fully inside or fully outside a cell, it does not

deal well with pixels that span a cell border, resulting in jagged

borders. From electron microscopy we know that cell outlines are

smooth on the scale of light microscopy, and therefore the pixilated

borders produced by the thresholding method are inaccurate

representations of the cell. This limitation becomes problematic

when trying to make measurements on the scale of single pixel sizes,

as is often necessary for small cells like bacteria.

To overcome the problem of jagged borders caused by

thresholding, our method uses interpolated contours to define

the outline of a cell (Figure 1A and 1B). Generating smooth

contours from a grid of values is a standard problem in which the

interpolation of values between the grid positions is used to define

where the image crosses a given intensity threshold [19]. In our

implementation, the initial choice of the intensity threshold at

which to draw the cell outline is arbitrary, but the threshold value

is then optimized to yield the contour for which the intensity

change between the cell and the background is most drastic. This

is accomplished by finding the threshold where the total area

enclosed by the contour is the least sensitive to small changes in the

threshold value. The contours chosen in this manner agree well

with methods that require calibration of the images against a

membrane dye [3,4], and have the added advantage that they do

not require system-specific calibration. This method for choosing

the intensity threshold at which to draw the contour has the

Author Summary

Recent studies have shown that all cells, including bacteria,
are highly spatially organized. However, many questions
about bacterial organization remain unanswered, often
due to difficulties associated with visualizing and analyzing
structures within such small and variably shaped cells. We
have overcome these limitations by developing a generally
applicable computational method for quantitatively ana-
lyzing cellular images at subpixel resolution. Our method
uses interpolation to find cell borders accurately and
precisely. Using these contours as a starting point, we
automated the construction of a general-purpose internal
coordinate system for each cell to facilitate comparisons
between differently shaped cells. We applied this new
method to two unsolved problems in bacterial cell biology.
We first showed that a Bacillus subtilis asymmetric-division
regulator is itself asymmetrically localized, thereby dem-
onstrating our ability to extract information previously
thought inaccessible by light microscopy. We also
demonstrated our newfound ability to study characteris-
tics of large populations by studying the accuracy of the
symmetric division of Escherichia coli. We discovered a new
role for the Min system, which inhibits polar division, in
regulating division throughout the cell length. These
results deepen our understanding of two important
problems in bacterial cell biology while demonstrating
the utility of our approach to studying subcellular
structure in a wide range of biological systems.

Sub-Pixel Quantitative Image Analysis
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additional advantages of not relying on any global parameters of

the image and of being insensitive to the contrast between the cell

and the background. However, for applications for which a

specific threshold is desired, PSICIC can use any given value as

the threshold.

At this stage in the analysis, having identified the regions of interest

in the image, objects can optionally be filtered out by any number of

criteria to remove false positives (such as dirt on the slide) or other

undesirable objects (such as cells clumped together). This filtering can

be done on the basis of size, shape, or more sophisticated metrics such

as the smoothness or curvature of the cell outline.

In order to measure the location of objects within the cell, and

to be able to compare these measurements between cells that may

vary in shape and size, we use the interpolated contours that define

the cell outlines to create an internal coordinate system for each

cell. This allows measurement of the location, size, and shape of

subcellular features, such as the localization of fluorescently-

labeled proteins, relative to the geometry of each specific cell. The

cells that we study are generally rod-shaped or variants on a rod

shape, which suggests the length of the cell as a natural axis from

which to begin measurements. PSICIC therefore establishes a

projected internal coordinate system by finding a midline

connecting the poles of the cell as the long axis, and non-

intersecting lines through this midline that locally define the other

axis (Figure 1C–1G). The first step in this process is the

identification of the poles of the cell, which are initially

approximated by the two points on the border of the cell most

distant from each other (Figure 1C). An equal number of points

are then evenly distributed between the two poles along both the

left and right halves of the cell contour (Figure 1D). These points

help generate a cell midline: we connect each pair of left and right

points to establish width lines, find the midpoints of each width

line, and define the midline as a line that connects all of those

midpoints (Figure 1E and 1F). By iteratively applying this

procedure, the cell poles are redefined as the pair of points

separated by the longest midline, thereby accommodating cell

shapes for which the poles are not the two most distant points,

such as crescents (Figure 1G). The final midline and width lines

uniquely identify the projected position of any point in or on the

cell, and therefore represent an internal coordinate system. Once

generated using a phase image, this internal coordinate system acts

as a digital representation of the cell, which can be overlaid on

other channels of a micrograph to measure the intensity and

location of a fluorescent marker or other properties of the cell,

such as the position and magnitude of the division invagination

(Figure 1H). The length and shape of the midline, as well as the

lengths of the width lines, can also be used to further quantify the

shape of the cell.

PSICIC Measurements Are Accurate and Precise
In order to validate the measurements generated by PSICIC,

we tested both its precision and accuracy. Precision was tested

computationally by performing measurements on simulated

images of known dimensions. Accuracy was tested using

micrographs of beads whose dimensions had been independently

verified by electron microscopy.

To test that the measurements used by PSICIC to generate a

digital representation of a cell are precise, and that no systematic

bias is introduced in the measurement process, we used PSICIC to

analyze a set of simulated cells of exact known dimensions

(Figure 2). In this in silico experiment, the digital representation of

various cells was manipulated to reflect the process of digital

imaging: cells were rotated to several different angles to simulate

different orientations with respect to a fixed pixel grid, and then

blurred to simulate light scattering using a point-spread function

similar to that of the imaging apparatus used for the subsequent

experiments in this study. Each resulting object was then pixilated

by overlaying it with a grid with spacing equivalent to the pixel size

used for subsequent data acquisition and assigning each pixel the

value of the sum of the intensities of the points within the

corresponding grid square (Figure 2A). PSICIC was used to

analyze the resulting simulated image, and measurements of cell

width, length, and area were compared to those of the original

unprocessed image. Using this in silico approach, we examined

80 cells, each rotated 16 times. We found that the difference

between the expected and measured length had a standard

deviation of 0.0617 pixels, which is the equivalent of 8 nanometers

in an image taken from our 1006 phase objective (Figure 2B).

Figure 1. Schematic view of the implementation of PSICIC. (A) The original image, prior to analysis. (B) The set of points (red dots) at which
the image intensity crosses a given threshold is calculated, defining a contour for that cell. The given points are unevenly distributed. (C) The pair of
points (stars) on the contour that are the greatest Euclidean distance apart are chosen as a first approximation of the poles. The choice of poles
divides the contour into two curves (called ‘‘left’’ and ‘‘right’’ for simplicity). (D) An equal number of points (blue triangles) are evenly distributed
along the left and the right curves, such that the distances between points on the left curve are all equal, but not necessarily equal to the distances
between points on the right curve. (E) Each point on the left curve is paired with the corresponding point on the right curve, and a straight line, called
a ‘‘width line’’ (blue lines) is drawn connecting the pair. (F) The midline (dotted green line) is drawn through the midpoint of each of the width lines.
(G) Each pole is moved stepwise and the process described above iterated until the longest midline is identified (solid green line). (H) Using the
resulting internal coordinate system of midline and width lines, measurements, such as cell width (dashed line) or fluorescence intensity (solid line),
can be quantified.
doi:10.1371/journal.pcbi.1000233.g001
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PSICIC thus provides a greater than 15-fold improvement in

precision relative to traditional single-pixel-limited approaches.

Though PSICIC can produce an intensity value at arbitrary

image resolution, the measurements will only be valid up to a

certain level of accuracy, determined as a fraction of the pixel size

of the image. To assess the accuracy of PSICIC in measuring real-

world objects, we used the software to measure the diameters of

beads of tightly controlled size (Figure 3). The manufacturer’s

measurement, performed by electron microscopy, for the specific

batch of beads analyzed gave a distribution of diameters with

mean 1.1 mm and standard deviation (S.D.) 0.035 mm. We imaged

these beads by light microscopy using a 1006 1.4 NA phase oil

objective. PSICIC measurements of these light microscopy images

yielded an average bead diameter of 1.08 mm and S.D. 0.030 mm

(Figure 3B). The images have a pixel size of 0.13 mm, so the

0.02 mm difference in estimated mean diameter suggests that

PSICIC is able to achieve a more than six-fold gain in spatial

accuracy over pixel-limited methods. The ability of PSICIC to

accurately measure the bead size, despite the fact that the beads

differ significantly in size and refractive index from cells, validates

the robustness of the choice of contour, and the adaptability of

PSICIC to a wide variety of data types. Together, these results

validate the use of PSICIC to extract sub-pixel high-resolution

data on cells from light microscopy images.

PSICIC Detects Asymmetries in Protein Localization
during B. subtilis Sporulation

The accuracy obtainable using PSICIC can reveal phenotypes

that are not obvious by visual inspection. To illustrate this ability,

we examined the localization of the membrane phosphatase

SpoIIE during B. subtilis sporulation. SpoIIE asymmetrically

activates the sporulation sigma factor sF in the forespore, thereby

contributing to the establishment of polarity in sporulation [10].

Initially, SpoIIE is expressed pre-divisionally and then localizes to

the division septum that separates the mother cell and the

forespore. Though SpoIIE activity is asymmetric, conventional

image analysis failed to detect any asymmetry in SpoIIE

localization at the sporulation septum [12].

To directly examine whether SpoIIE is asymmetrically localized

during sporulation, we used PSICIC to extract sub-pixel

information and determine the distribution of SpoIIE-GFP with

respect to the early asymmetric septum (Figure 4). Specifically, we

imaged cells bearing a functional SpoIIE-GFP fusion that is driven

by the endogenous SpoIIE promoter and that replaces the wild-

type copy of the protein [20]. These cells were also stained with

the red membrane dye FM4-64 to visualize the sporulation

septum. The locations of the peaks in each fluorescent channel

were obtained for each analyzed cell by summing the fluorescence

intensity along each width line of the cell’s internal coordinate

system to generate a single-dimensional intensity projection onto

the midline. Reducing the data to one dimension aids in analysis,

and summing the data rather than examining a slice of the cell

helps improve the signal-to-noise ratio. To identify the peaks of

these intensity projections, local maxima were identified and the

first moment of the intensity in a region around each maximum

was calculated. This first-moment method gives a result that is

more robust to noise than simply recording the location of the

peak, and has the further advantage of appropriately weighting

any asymmetries in the distribution of fluorescence. Because B.

Figure 2. In silico tests of PSICIC precision. (A) Symmetrical cell shapes were generated (first cell from left), rotated to different angles (not
shown), blurred to simulate the point-spread function of our microscope (second cell), pixilated at a spatial density similar to that of the microscope
(third cell), and measured by PSICIC (fourth cell). (B) Distribution of the difference between actual ‘‘cell’’ length and length measured by PSICIC,
measured in pixels. The dashed line shows the mean deviation (+0.049 pixels, equivalent to 6.3 nm for the imaging apparatus used for the
subsequent E. coli division experiments) and the two dotted lines show plus and minus one standard deviation (60.094 pixels, equivalent to
12.2 nm). (C) The deviation of measured division-site location from midcell in symmetrically pinched ‘‘cell’’ images, as a percentage of cell length.
Colored bars represent different pinch depths, measured by the thickness at the pinch as a fraction of cell thickness away from the pinch. Inset shows
detailed data for the 5% of cell length closest to midcell.
doi:10.1371/journal.pcbi.1000233.g002
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subtilis forms chains of unseparated cells, the location of

measurable division septa was used to delineate individual cells

and to distinguish sporulation septa from vegetative septa.

The peaks of the SpoIIE-GFP and FM4-64 intensities were

measured and compared in 46 sporulating cells. In 38 of the

46 cells (83%), the SpoIIE-GFP peak was shifted towards the

forespore daughter cell, while 6 cells (13%) had a SpoIIE-GFP

peak shifted towards the mother cell, and two cells (4%) had

SpoIIE and FM4-64 peaks that colocalized to within the limits of

PSICIC’s measurement capabilities (Figure 4C). The mean

distance between the septum and SpoIIE signal was shifted

63654 nm towards the forespore. As a control for systematic

measurement errors, we examined cells whose membranes were

co-stained with red FM4-64 and a green nonyl acridine orange

(NAO) dye that binds negatively charged lipids [21]. Relative to

the FM4-64 peaks, these cells exhibited an average NAO peak

displacement of 0.1655 away from the forespore. The statistically

significant difference between the SpoIIE displacement and the

dual-membrane labeling displacement (P = 0.016) indicates that

SpoIIE-GFP localization is indeed asymmetric and biased towards

the forespore side of the septum. It is unclear whether the 6 (out of

46) cells displaced towards the mother cell were due to

measurement error or biological variability. Our dataset included

several chains of cells with multiple sporulation septa that

exhibited displacement in opposite absolute directions, but with

both being displaced towards the forespore, further supporting the

conclusion that the measured forespore-oriented asymmetry of

SpoIIE-GFP localization is not due to error in our data or analysis.

Together, these results indicate that SpoIIE is preferentially

localized to the forespore side of the sporulation septum and that

this previously undescribed asymmetry can be detected by using

PSICIC to analyze conventional light microscopy images.

Figure 3. Measurement of beads of known size. (A) Phase contrast image of 1 mm diameter beads (1006 magnification) with PSICIC
identification of outlines overlaid (blue lines). (B) Comparison of the size in microns of: a pixel in these images, mean bead size measured by PSICIC,
mean bead size measured by electron microscopy, typical E. coli width, and typical E. coli length. (C) The distribution of bead sizes as measured by
PSICIC (gray bars) compared to the expected distribution obtained from electron microscopy data (dashed curve).
doi:10.1371/journal.pcbi.1000233.g003

Figure 4. SpoIIE-GFP is preferentially localized to the forespore in B. subtilis. (A) Schematic showing the displacement of SpoIIE-GFP (green)
from FM4-64 (red), and the displacement measured by PSICIC (arrow). (B) A typical B. subtilis image, showing the GFP channel (top), FM4-64 channel
(bottom), and merged image (middle). Highlighted are a SpoIIE-GFP peak (arrow) and an FM4-64 peak (arrowhead). (C) Histogram showing the
magnitude and direction of SpoIIE-GFP displacement towards (positive) or away from (negative) the forespore.
doi:10.1371/journal.pcbi.1000233.g004

Sub-Pixel Quantitative Image Analysis
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Probing the Function of the Min System through PSICIC
Analysis of the Accuracy of Cell Division in E. coli

The automated nature of PSICIC lends itself to the analysis of

large numbers of cells to measure distributions of morphological

characteristics as well as noise and accuracy of subcellular processes.

One such process whose accuracy is actively regulated is division-

site placement in E. coli, which is highly symmetric in wild-type cells

[13,14]. The active regulation of division accuracy suggests that

equal division has a significant impact on cellular fitness. E. coli cells

have evolved at least two distinct mechanisms that improve the

accuracy of division-site placement: the Min system, which prevents

division near the cell poles, and nucleoid occlusion, which prevents

division from occurring over the nucleoid [15,16]. The Min system

is the better-characterized of these mechanisms [22]. MinC is a

negative regulator of the assembly of the cell-division protein FtsZ

[23]. MinC binds to the MinD ATPase on the membrane [24], and

MinE regulates the ATP hydrolysis and cooperative assembly of

MinD to produce a stable pole-to-pole oscillation [25,26]. The

result of this oscillation is that the time-averaged concentration of

MinC is highest at the cell poles [27], thereby biasing FtsZ assembly

away from the cell ends and preventing polar divisions that would

produce inviable minicells. While the role of the Min system in

preventing minicelling is clear, whether Min acts throughout the cell

length or merely in the polar regions and whether Min acts solely

before division begins or throughout cytokinesis has remained

unclear [13,17,18].

To determine the accuracy with which E. coli divides and the

role of the Min system in achieving this accuracy, we used PSICIC

to analyze the pinch position of over 3,000 wild-type and minC

mutant cells (Figure 5). We found that wild-type cells divide with

high accuracy with a S.D. of only 2.9% of cell length. This result is

validated by its strong similarity to that of a previous study that

used the far more labor-intensive approach of electron microscopy

to analyze fixed cells and yielded 2.5% S.D. [14]. To determine

the accuracy limits of our measurements we used the in silico

approach described above to examine simulated cells with exactly

symmetric pinch positions of different depths (Figure 2C). We

found that PSICIC could identify the location of even extremely

subtle, 8% pinch depths with better accuracy than we observed in

any experiments (0.64% S.D.), indicating that the observed noise

in Figure 5 is dominated by biological variability rather than

measurement noise.

In light of their frequent polar divisions, it was not surprising to

find that minC mutants had significantly reduced division-site-

placement accuracy (11.5% S.D.). Interestingly, however, when

we limited the analysis to cells that divided within the central half

of the cell, minC mutants still exhibited significantly (P = 1.3e-53)

worse division-site-placement accuracy (8.2% S.D.) compared to

wild type (2.9% S.D.) (Figure 4B). These results suggest that in

addition to its role in preventing polar divisions, the E. coli Min

system regulates division-site placement throughout the cell length,

including near midcell.

By examining cells with different extents of division-plane

constriction (pinch depth), we were also able to analyze the nature

of the division process itself. We found that in both wild-type and

minC cells, the accuracy of cell division does not significantly

correlate with pinch depth (Figure 4C). This result indicates that

division-site placement is fixed before or soon after constriction

Figure 5. Pinch position measurements in E. coli. (A) Schematic showing an asymmetrically dividing cell, indicating the geometric midpoint of
the cell (solid line), the pinch position and width, the distance of the pinch position from midcell (double-headed solid arrow), and the maximal cell
width. (B) Distribution of the distance of the pinch position from midcell, as a percentage of cell length, shown for wild-type (black line) and DminC
(gray shading) strains. (C) Scatter plot of pinch position versus the depth of the pinch for wild type (green dots) and DminC (blue circles). Standard
deviation is shown for wild type (solid green curve), DminC (solid blue curve), and the theoretical limits of PSICIC (dashed black curve, see also
Figure 2C).
doi:10.1371/journal.pcbi.1000233.g005

Sub-Pixel Quantitative Image Analysis

PLoS Computational Biology | www.ploscompbiol.org 6 November 2008 | Volume 4 | Issue 11 | e1000233



begins, and that once division initiates, the accuracy of the division

site is not further refined. We also examined the shape of each cell

constriction by measuring the ratio of the pinch depth to the pinch

width. The pinch shapes of wild-type and minC mutants were

similar and remained relatively unchanged over a wide range of

pinch depths (data not shown). This result is consistent with the

conclusion that the Min system does not function during the

division process and supports a model wherein the division site is

fixed before constriction begins. These findings thus suggest that

the Min system acts throughout the cell length to regulate division-

site accuracy prior to the initiation of cell constriction but does not

participate in the division process itself.

Discussion

Advances in fluorescent protein labeling, sample preparation,

and image acquisition have pushed light microscopy to its physical

limits. Techniques such as deconvolution, photo-activated local-

ization microscopy (PALM), and stochastic optical reconstruction

microscopy (STORM) have increased spatial resolution further

still [28,29]. However, analysis of light microscopy images has

rarely taken advantage of the knowledge that cell boundaries are

smooth well below the wavelength resolution of light or

implemented approaches for comparing cells of variable and

irregular morphologies. Here we introduced PSICIC as a robust

and generally-applicable computational method for automating

the high-resolution quantitative analysis of cellular image data. We

demonstrated that PSICIC can identify cell borders with accuracy

and precision nearly an order of magnitude greater than

conventional pixel-limited thresholding approaches, bringing the

information content of light microscopy images towards the

nanometer-scale regime once thought to be exclusive to electron

microscopy. While techniques such as PALM and STORM

increase the effective resolution of fluorescent microscopy, they

require multiple images of fixed cells [28,29]; PSICIC can be used

on any images, including live cell cultures, and can be combined

with deconvolution techniques for even greater gains in analytical

power. In addition to creating reproducible measurements and

increasing spatial precision, the automated nature of PSICIC

enables rapid gathering of large quantities of data. Measuring

more cells allows the use of powerful statistical tools to analyze the

data. Furthermore, the establishment of an internal coordinate

system by PSICIC enables direct comparison of the localization of

subcellular features between cells that may differ in size and shape.

Recent work has shown that even rod-shape bacteria, such as E.

coli, exhibit asymmetrical shapes, supporting the usefulness of an

internal coordinate system which takes this asymmetry into

account for studies of cell shape and localization [3]. The internal

coordinate system generated by PSICIC facilitates studying both

the variation within a population of cells, and the variation

between different populations of cells. Studying variation within a

population gives insight into how noisy a system is, and can reveal

how tightly regulated a process is, either in time or in space. When

comparing different populations, obtaining more data on each

population can reveal subtle differences in phenotype that might

otherwise have been overlooked. The automated analysis of large

quantities of imaging data could also be useful in large-scale,

genome-wide studies of shape and localization.

In this study we exploited the ability of PSICIC to analyze single

cells with great precision and obtained new insights into both

symmetric and asymmetric bacterial division. We established that

the cell-fate determinant SpoIIE is preferentially targeted to the

forespore side of the division plane during the asymmetric division

of B. subtilis sporulation. This result is validated by a recent study

demonstrating that during the engulfment phase of sporulation,

SpoIIE localization depends on the forespore-specific SpoIIQ

protein [11]. Consistent with the hypothesis that SpoIIE becomes

more asymmetric during sporulation, our PSICIC analysis found

that the extent of SpoIIE’s asymmetric displacement towards the

forespore increased as sporulation progressed and the sporulation

septum grew more curved (data not shown). The ability of PSICIC

to directly visualize an asymmetrical protein localization previ-

ously hypothesized on genetic grounds demonstrates the power of

PSICIC to reveal subtle yet biologically relevant information

about protein localization. This result also suggests that in many

cases conventional light micrographs contain more spatial

information than was previously appreciated, and that proper

analysis of this information can often circumvent the need for

labor-intensive fixed-cell imaging methods such as electron

microscopy or sub-diffraction-limited light microscopy.

In addition to addressing single-cell properties such as SpoIIE

asymmetry, we also applied PSICIC to population properties such

as the accuracy of the symmetric division of E. coli. Despite the fact

that E. coli division has been intensely studied before, the

resolution and scale of our PSICIC analysis yielded new insights.

Specifically, we found that division accuracy is tightly regulated by

the Min system throughout the cell length prior to the initiation of

cell constriction, but that once division starts, it proceeds through a

constant and highly stereotyped process that is apparently immune

to the influence of Min. While our data are strikingly similar to

electron microscopy-based measurements of E. coli cell-division

accuracy [14], the division accuracy that we report here is

somewhat less than the previously-reported accuracy of the

localization of FtsZ, the master regulator of E. coli division [13].

Our conclusions on the role of Min throughout the cell length also

differ from the conclusions of a recent study of the Min system in

germinating B. subtilis cells that proposed that Min does not

regulate midcell division-site placement [18]. It is possible that

FtsZ localization does not perfectly correlate with cell-division

localization in E. coli and that the Min systems of E. coli and B.

subtilis differ. Alternatively, the traditional analyses used by the

prior studies did not address pixilation effects, implying that the

data is inherently binned. For example, if one uses 100 nm pixels,

all divisions within 100 nm are reported as perfectly accurate,

thereby generating an overestimate of division accuracy and

obscuring subtle differences between populations.

The modular nature of PSICIC allows for wide expandability

and utility. Once the data has been analyzed and the digital cell

constructed, measurements of any sort can be performed, such as

morphometrics or fluorescence intensity in either one or two

dimensions. The high-throughput capacity allows for screens based

on shape or localization phenotypes. Given a series of time-lapse

images, individual cells can also be tracked over time in order to

observe dynamic changes in shape or localization. In this study we

exploited the flexibility of PSICIC to analyze multiple properties of

two different bacterial species imaged on two different apparatuses.

Though PSICIC was created with bacterial cells in mind, it can

easily be applied to both unicellular and multicellular eukaryotic

systems and could be readily modified to create a pseudo-radial,

rather than pseudo-Cartesian, internal coordinate system for

analyzing round cells that lack a clear major axis. Computational

analysis of fluorescent microscopy offers many exciting possibilities

that will only increase as modern imaging techniques are used and

expanded by the research community. We have thus made available

the source code, software, and documentation for PSICIC (see link

at http://www.molbio1.princeton.edu/labs/gitai/), and encourage

others to modify, expand, and adapt the software capabilities to suit

their own applications.
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Materials and Methods

Calculation and Choice of Contours
Contours were calculated using the MATLAB function con-

tourc, described in ‘‘The Contouring Algorithm’’ [19]. Briefly,

the intensity value of the image at any arbitrary point is estimated

using the values of the pixels nearest to that spatial point, using a

distance-weighted average of the surrounding. The function

contourc returns ordered sets of points for which the interpolated

value of the image intensity is equal to the contour intensity level

given as input. When these sets of points are connected in order by

straight line segments, the result is a closed polygon which

approximates a smooth curve defining the border of the object.

The initial choice of contour intensity level was determined by

manually choosing a value which produced contours around the

objects of interest that were well-separated such that the borders of

nearby cells did not intersect. The choice of level was then refined

on an automated cell-by-cell basis by generating contours for a

range of different levels centered around the original value. The

same object was identified in each set of contours by matching the

centers of mass between contours at each level. The derivative of cell

area with respect to contour intensity level was then calculated for

each cell, and the contour level at which the minimum derivative

occurs was used as the final contour for that particular cell.

Establishing an Internal Coordinate System
In order to define an internal coordinate system for a cell, the

cell poles must first be identified. The pair of points on the outline

of the cell that are farthest away from each other are used as the

first approximation of the poles, an estimate that is refined later.

Having defined the poles, the cell outline is partitioned into two

curves, one running clockwise from one pole to the other pole, the

other counterclockwise. These will be referred to as the left and

right halves of the curve (though the nomenclature is arbitrary).

The left and right curves are then subdivided into n points each,

which are equally spaced along each half (though the spacing for

the left half need not equal that of the right; the spacing is

determined by the arc length of each curve). The number of

points, n, can be chosen arbitrarily, but should be chosen to over-

sample the original data; if n is too small, data will be missed, but if

n is too large, the computation time increases significantly. For the

studies reported in this work, n = 200 was found to sufficiently

oversample to capture the variation within the data set (data not

shown). Each point on the left curve is then connected to the

corresponding point on the right curve, resulting in a set of n non-

intersecting lines, called the width lines. The midpoints of the

width lines are connected to create the midline of the cell. The

final step in this process is to optimize the choice of the poles of the

cell by moving the poles stepwise along the original contour and

repeating the entire process to determine the length of the midline

generated. If the new midline is longer than the last, the search

continues in that direction; otherwise, the search terminates. This

search is performed four times, both clockwise and counterclock-

wise, starting at both poles, and the longest of the four midlines

generated is used. The longest midline together with the set of

width lines then forms the coordinate system.

Filtering Data
The data can be filtered by any number of criteria. Establishing

a minimum area and/or perimeter for objects helps to filter dirt

from the images; establishing a maximum area is often necessary

to prevent large regions of uneven coloration on the slides from

being identified as cells. To filter out cells that are adjacent to one

another and cannot therefore be individually identified, filtering

based on width was found to be the most effective method (data

not shown). The original images overlaid with the cell borders

identified by PSICIC were manually verified to check for false

positives.

Computational Analysis of PSICIC Precision
Simulated images of 16 symmetrically dividing cells were

created in Keynote (Apple). The original images varied in length

from 474 pixels to 716 pixels, and pinch depth varied from fully

divided to barely pinched (thickness at the pinch 98% that of the

rest of the cell). Each of the images was blurred using the

MATLAB function imfilter, using a disk filter generated by the

fspecial function with a radius of 20 pixels, in order to simulate

the point spread function of the microscope. Each of the blurred

cells was then rotated to 16 different orientations, to account for

any effect of angle on PSICIC measurements. The 256 blurred

and rotated cells were each then binned by a factor of 5, 10, 15,

20, and 25 to generate 1280 cells with different extents of

pixilation. The cell lengths and pinch positions were then analyzed

using PSICIC, and the measurement in pixels was multiplied by

the magnification factor of that image for comparison with the

known length of the original unprocessed cell image. The position

of the pinch was also measured as a percentage of the measured

cell length and compared to the known pinch position of exactly

50% of cell length.

Microscopy of Beads
Molecular Probes FluoSpheres carboxylate-modified micro-

spheres, 1.0 mm, yellow-green fluorescent beads were imaged on

1% agarose pads in water using a QImaging Rolera-XR camera

on a Nikon 90i microscope with a Nikon Plan Apo 1.4/1006Oil

Ph3 phase objective, using the NIS Elements software package.

The images were then analyzed using PSICIC without midline

optimization, and the diameter of the beads calculated by

multiplying the measured length in pixels with the known pixel

size of the microscope objective (0.13 mm/pixel). The measured

length was compared to the length measured by transmission

electron microscopy that was reported on the certificate of analysis

for the specific lot of beads analyzed (lot number 45102), given as

1.160.035 mm.

Analysis of SpoIIE Localization during B. subtilis
Sporulation

Cultures of PY79 and Jdb872 (SB201) spoIIE-gfp kan [20] were

sporulated by resuspension. At 60 minutes after resuspension,

100 ml of sporulating cells were taken. To Jdb872, 0.5 ml of FM4-

64 (Invitrogen; 100 mg/ml) was added just before the cells were

collected by centrifugation. To PY79, 0.5 ml of FM4-64 (100 mg/

ml) and 1.0 ml nonyl acridine orange (Invitrogen; 10 nM) were

added. The pellet was resuspended in 10 ml PBS and added to a

poly-L-lysine pre-treated coverslip. The cells were imaged using a

Nikon Eclipse 90i with a 1006objective using phase contrast and

captured by a Hamamatsu Orca-ER camera using Nikon

Elements BR software. Exposure for FITC and TRITC was

300 ms for all pictures taken.

Images were analyzed by PSICIC. For each fluorescent channel

a one-dimensional intensity profile along the midline of the cell

was generated by taking the sum of the interpolated intensities at

20 evenly-spaced points along each width line. The location of

peaks in the intensity data was calculated by first finding local

maxima in the intensity profile. In order to account for asymmetry

in the shapes of these peaks, the points where the intensity crossed

a threshold of 90% the peak value on either side of the local
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maxima were found, and the first moment of the intensity between

those points was taken. Specifically, the point marked as the peak

is given by

Pp{1

i~l

xi{xiz1ð Þf xið Þz
Pr

j~pz1

xiz1{xið Þf xið Þ

f xp

� � zxp

where xi are the points along the midline, xp is the initially located

peak, xl and xr are the 90%-maximal-intensity boundaries to either

side of the peak, and f(x) is the value of the intensity profile at the

point x along the midline.

The distance between peaks of SpoIIE-GFP and FM4-64

intensity was calculated for adjacent peaks located within one

quarter-cell length of the end of a cell (either a cell pole or a

cellular division site, defined as a local minimum in the thickness of

a cell). Peaks not significantly higher than the background

fluorescence level, peaks distant from the end of a cell, and peaks

with no corresponding nearby peak in the other fluorescent

channel were ignored. The sign of the distance between peaks was

given as positive if the SpoIIE-GFP peak was closer to the nearby

cell end, and negative if the FM4-64 peak was closer to the nearby

cell end.

Analysis of E. coli Division Accuracy
E. coli strains BW25113 [30] and DminC::Kan [31] were grown

overnight in LB and LB plus 30 mg/ml kanamycin, respectively, at

37uC. Overnight cultures were diluted 1:1000 and then grown for

an additional 2 hours. Samples were prepared on pads composed

of 1% agarose in water, and imaged as described above for the

microscopy of beads.

The resulting images were analyzed using PSICIC. To find the

pinch position of a cell, the second set of differences between

thickness measurements was taken as an approximation of the

second derivative for non-continuous data, and smoothed using a

two-point moving average to reduce noise. The maximum of the

smoothed data was then located, and the local minimum of the

thickness nearest that maximum was taken as the pinch position. A

pinch was discarded if the depth of the pinch was outside the range

reliably identifiable by PSICIC (thicker than 95% of the maximum

cell thickness, data not shown). Outliers in both data sets were

manually examined to ensure validity.

Statistical Methods
To determine whether the SpoIIE-GFP displacement data was

statistically significantly different from a symmetrical distribution,

a two sided t-test for a distribution with unknown mean and

variance was used [32].

To determine if the variances of the distributions of wild-type

and DminC E. coli were significantly different, the Ansari-Bradley

test, a non-paramentric test which does not require data to come

from a normal distribution, was used. This test requires both

distributions to have the same median, a requirement satisfied by

our data sets which both have median 0.5 [19].

Accession Numbers
The GenBank (http://ww.ncbi.nlm.nih.gov/Genbank) acces-

sion numbers for the genes and proteins discussed in this paper are

E. coli MinC (AAC74260), E. coli MinD (AAC74259), E. coli MinE

(AAC74258), E. coli FtsZ (AAC73206), B. subtilis SpoIIE

(CAB11840), and B. subtilis SpoIIQ (CAB15672).
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