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Abstract

The advent of microarray technology has made it possible to classify disease states based on gene expression profiles of
patients. Typically, marker genes are selected by measuring the power of their expression profiles to discriminate among
patients of different disease states. However, expression-based classification can be challenging in complex diseases due to
factors such as cellular heterogeneity within a tissue sample and genetic heterogeneity across patients. A promising
technique for coping with these challenges is to incorporate pathway information into the disease classification procedure
in order to classify disease based on the activity of entire signaling pathways or protein complexes rather than on the
expression levels of individual genes or proteins. We propose a new classification method based on pathway activities
inferred for each patient. For each pathway, an activity level is summarized from the gene expression levels of its condition-
responsive genes (CORGs), defined as the subset of genes in the pathway whose combined expression delivers optimal
discriminative power for the disease phenotype. We show that classifiers using pathway activity achieve better performance
than classifiers based on individual gene expression, for both simple and complex case-control studies including
differentiation of perturbed from non-perturbed cells and subtyping of several different kinds of cancer. Moreover, the new
method outperforms several previous approaches that use a static (i.e., non-conditional) definition of pathways. Within a
pathway, the identified CORGs may facilitate the development of better diagnostic markers and the discovery of core
alterations in human disease.
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Introduction

Analysis of genome-wide expression profiles has become a

widespread technique for identifying diagnostic markers of various

disease states, outcomes, or responses to treatment [1–5]. Markers

are selected by scoring each individual gene for how well its

expression pattern can discriminate between different classes of

disease or between cases and controls. The disease status of new

patients is predicted using classifiers tuned to the expression levels

of the marker genes.

One challenge of expression-based classification is that cellular

heterogeneity within tissues and genetic heterogeneity across

patients in complex diseases may weaken the discriminative power

of individual genes [6–9]. In addition, marker genes are typically

selected independently although proteins are known to function

coordinately within protein complexes, signaling cascades, and

higher-order cellular processes. Thus, the resulting expression-

based classifiers may contain unnecessarily many marker genes

with redundant information which may lead to decreased

classification performance [10].

Due to these types of difficulties, several groups have

hypothesized that a more effective means of marker identification

may be to combine gene expression measurements over groups of

genes that fall within common pathways [11–17]. The pre-defined

functional groupings of genes are drawn from canonical pathways

curated from literature resources such as the Gene Ontology [18]

and KEGG databases [19] or experimentally defined gene lists

from microarray studies [15,16,20]. Recently, pathway-based

analysis has been extended to perform disease classification of

expression profiles. Some approaches use gene expression

parametrically by representing pathway activity with a function

summarizing the expression values of member genes [21,22], while

others estimate probabilities of pathway activation based on the

consistency of changes in gene expression [23,24]. Alternative

approaches engineer normal cells to activate pre-selected onco-

genic pathways to determine gene signatures which can distinguish

tumor characteristics [20,25]. These methods have demonstrated

classification accuracies that are comparable to conventional gene-

based classifiers, while providing a strong biological interpretation

for why the expression profile is associated with a particular type of

disease (i.e., based on the pathways found to be perturbed). On the

other hand, a potential shortcoming of current pathway-based

classifiers is that the pre-defined set of genes making up a pathway

may be derived from conditions irrelevant to the disease of
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interest. Moreover, not all the member genes in a perturbed

pathway are typically altered at the mRNA level.

Here, we propose a novel gene-expression-based diagnostic that

incorporates pathway information in a condition-specific manner

(Pathway Activity inference using Condition-responsive genes,

PAC). The markers are encoded not as individual genes, nor as

static literature-curated pathways, but as subsets of condition-

responsive co-functional genes (Condition-Responsive Genes,

CORGs). To optimally discriminate samples of different pheno-

types, we identify CORGs from each static pathway in the context

of the specific disease in question. The combined expression levels

of the CORGs are treated as the pathway ‘‘activity’’ and used to

build classifiers for predicting the disease status of new patients.

We show that our pathway-based approach outperforms previous

analyses of differential expression in classifying samples across

seven different datasets. Moreover, we show that pathway

activities inferred using only CORGs lead to better classification

performance as compared to pathway activities inferred using

various types of summary statistics of all genes which participate in

a common pathway. The resulting pathway markers and their

CORGs also provide models of the molecular mechanisms which

define the disease of interest.

Methods

Datasets
We obtained previously published mRNA expression datasets

covering seven different disease classification scenarios: 24

expression profiles of HeLa cells after stimulation by Tumor

Necrosis Factor (TNF) [26], expression profiles of 62 primary

prostate tumors and 41 normal prostate specimen [27], expression

profiles of 143 acute lymphoblastic leukemia (ALL) patients [28],

breast cancer expression profiles for 295 patients from the

Netherlands [29] and 286 patients from the USA [5], and lung

cancer expression profiles for 86 patients from Michigan [30] and

62 patients from Boston [31].

Each dataset was divided into two populations of distinct

phenotypes as per the original publications (Table S1). For the

TNF study [26], 12 samples had normal IkB proteins (labeled

‘‘Wildtype’’) and 12 samples expressed mutant IkB blocking NF-

kB signaling (labeled ‘‘Mutant’’). For the prostate cancer study

[27], 62 samples were retrieved from primary tumors (labeled

‘‘Cancer’’) and 41 samples were from normal prostate specimen

(labeled ‘‘Normal’’). For the ALL study [28], 79 patients suffered

from one subtype resulting from a t(12;21)(p12,q22) reciprocal

translocation (labeled ‘‘TEL-AML1’’) and the other 64 patients

showed hyperdiploid hyperdip .50 (labeled ‘‘HH’’). For the two

breast cancer datasets, metastasis had been detected in 78 [29] and

106 [5] patients during follow-up visits within five and seven years

after surgery (labeled ‘‘Metastatic’’); the remaining 217 and 180

patients were still metastasis free (labeled ‘‘Non-metastatic’’). For

the two lung cancer datasets, we defined the two phenotype

populations according to Subramanian et al. [15], who labeled 24

patients in the Michigan dataset and 31 patients in the Boston

dataset as having a ‘‘Poor’’ prognosis, while the remaining 62 and

31 patients were labeled as having a ‘‘Good’’ prognosis.

For pathway information, we used the C2 functional set

downloaded from MsigDB v1.0 [15]. This set includes 472

canonical metabolic and signaling pathways pooled from eight

manually curated databases along with 50 co-expressed gene

clusters obtained from various microarray studies. Each pathway

or gene cluster defines a set of genes (gene clusters are henceforth

also called ‘‘pathways’’). In total, the available pathways covered

5602 genes, most but not all of which were measured in the seven

gene expression datasets, due to the various array platforms used.

Condition-Responsive Gene Identification and Pathway
Activity Inference

To integrate the expression and pathway datasets, we overlaid

the expression values of each gene on its corresponding protein in

each pathway. Within each pathway, we searched for a subset of

member genes whose combined expression levels across the

samples were highly discriminative of the phenotypes of interest

(Figure 1). For a particular gene set G, let a represent its vector of

activity scores over the samples in a study, and let c represent the

corresponding vector of class labels (e.g. good vs. poor prognosis).

To derive a, expression values gij are normalized to z-transformed

scores zij which for each gene i have mean mi = 0 and standard

deviation si = 1 over all samples j. The individual zij of each

member gene in the gene set are averaged into a combined z-score

which is designated the activity aj (the square root of the number

of member genes is used in the denominator to stabilize the

variance of the mean). Many types of statistic, such as the

Wilcoxon score or Pearson correlation, could be used to score the

relationship between a and c. In this study, we defined the

discriminative score S(G) as the t-test statistic [32] derived on a
between groups of samples defined by c.

For a given pathway, a greedy search was performed to identify

a subset of member genes in the pathway for which S(G) was

locally maximal. We refer to this subset as the set of ‘‘condition-

responsive genes’’ (CORGs) representing the majority of the

pathway activation under the relevant conditions. To identify the

CORG set, member genes were first ranked by their t-test scores,

in ascending order if the average t-score among all member genes

was negative, and in descending order otherwise. The CORG set

G was initialized to contain only the top member gene and

iteratively expanded. At each iteration, addition of the gene with

the next best t-test score was considered, and the search was

terminated when no addition increased the discriminative score

Author Summary

The advent of microarray technology has drawn immense
interest to identify gene expression levels that can serve as
biomarkers for disease. Marker genes are selected by
examining each individual gene to see how well its
expression level discriminates different disease types. In
complex diseases such as cancer, good marker genes can
be hard to find due to cellular heterogeneity within the
tissue and genetic heterogeneity across patients. A
promising technique for addressing these challenges is
to incorporate biological pathway information into the
marker identification procedure, permitting disease classi-
fication based on the activity of entire pathways rather
than simply on the expression levels of individual genes.
However, previous pathway-based methods have not
significantly outperformed gene-based methods. Here,
we propose a new pathway-based classification procedure
in which markers are encoded not as individual genes, nor
as the set of genes making up a known pathway, but as
subsets of ‘‘condition-responsive genes (CORGs)’’ within
those pathways. Using expression profiles from seven
different microarray studies, we show that the accuracy of
this method is significantly better than both the conven-
tional gene- and pathway- based diagnostics. Furthermore,
the identified CORGs may facilitate the development of
effective diagnostic markers and the discovery of molec-
ular mechanisms underlying disease.

Pathway-Based Disease Classification
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S(G). The activity vector a of the final CORG set was regarded as

the pathway activity across the samples.

Previous Gene-Set Ranking Approaches and Other
Pathway-Based Classification Methods

We also used a method proposed by Tian et al. [16] to assess the

probability of a pathway being altered in disease based on the

correlation between the expression of all its member genes and the

disease phenotype. For each pathway P in MsigDB, Tian et al.

calculated a score T by averaging the t-test statistic scores of all

member genes. Higher T was indicative of stronger pathway

correlation with the disease status. The top 10% of pathways (52

pathways) in each dataset were selected for further analysis and for

classification. The decision of whether a pathway had been

disrupted by disease was assessed on the basis of the discriminating

power of the member genes between the classes of interest (using a

t-test statistic). However, there may be some signatures of pathway

disruption that are independent of the classification task at hand.

To detect such signatures, a number of statistical functions [8,33]

can be adopted in the framework of Tian et al. Unlike the t-test,

these functions are designed to detect perturbed patterns rather

than mean expression changes.

To compare our PAC with other activity inference schemes, we

implemented three other expression summarization methods,

including a principal component analysis (PCA) similar to that

used in Bild et al. [20] and the mean and median approaches used

in Guo et al. [22]. Bild et al. used the first principal component of

the expression of the member genes to represent the activation of a

given pathway, while Guo et al. summarized the expression levels

of member genes by using simple statistics like mean and median.

Marker Robustness Evaluation
For each dataset, 100 alternative two-fold splits were generated

of each mRNA expression profile in the dataset. Pathways were

Figure 1. A schematic diagram of key gene identification and activity inference. Selected significant pathways are further subject to CORG
identification corresponding to the phenotype of interest. Gene expression profiles of patient samples drawn from each subtype of diseases (e.g.,
good or poor prognosis) are transformed into a ‘‘pathway activity matrix’’. For a given pathway, the activity is a combined z-score derived from the
expression of its individual key genes. After overlaying the expression vector of each gene on its corresponding protein in the pathway, key genes
which yield most discriminative activities are found via a greedy search based on their individual power (see Methods). The pathway activity matrix is
then used to train a classifier.
doi:10.1371/journal.pcbi.1000217.g001

Pathway-Based Disease Classification
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ranked on each fold using the method of Tian et al. [16], and

CORGs for each pathway were identified using the samples in a

single fold. Individual genes were also ranked by their discrimi-

native power on each fold. The robustness was estimated as the

average degree of overlap among top pathways/genes derived

from the two folds of samples across the 100 splits.

Classification Evaluation
Logistic regression models [34] were trained on both the

pathway activity matrix (pathways versus samples) and the original

gene expression matrix (genes versus samples—i.e., conventional

gene-based classification). For within-dataset experiments, the

expression samples in a dataset were divided so that four-fifths of

the samples were used as the training set to build the classifier, and

one fifth were used as the test set (five-fold cross validation). Each

of the five subsets in the dataset was evaluated in turn as the test set

and withheld during marker selection (including CORG identifi-

cation) and classifier training. In order to train a generalized

classifier and to minimize over-fitting, we further split the training

set into three smaller subsets of equal size: two subsets were used as

the marker selection set to rank markers (pathways or genes) as

well as identify CORGs (pathways only), and one subset was used

as the validation set for assessing which marker set was significant

for classification. Thus the CORGs might be different for a

specific pathway, depending on the samples used in the marker

selection set. Pathways or genes were ranked by the p-value of

discriminative power to classify samples in the marker selection set,

after which the logistic regression model was built by adding

markers sequentially in increasing order of p-value (sequential

selection). The number of markers used in the classifier was

optimized by evaluating its Area Under ROC Curve (AUC, see

[35] for details) on the validation set. The AUC metric captured

performance over the entire range of sensitivity/specificity values.

The final classification performance was reported as the AUC on

the test set using the classifier optimized from the validation set.

For unbiased evaluation, we generated 100 alternative five-fold

splits of samples in each dataset and ran cross validation on each

split. The final reported AUC values were averaged across 500

randomly selected ways of partitioning the data into four-fifths

training and one-fifth test samples.

For cross-dataset experiments, markers (pathways or genes)

were selected using the whole first dataset and then tested on the

second dataset (or vice versa). CORG identification was also

performed on the first dataset. As for the within-dataset

experiments, the patient samples in the second dataset were

divided into five subsets of equal size: four subsets were designated

as the ‘‘training’’ set to build the classifier using markers from the

first dataset, and one subset was held for testing. One hundred

alternative five-fold splits were generated to partition samples in

the second dataset into four-fifths for training and one-fifth for

testing. Therefore, we learned 500 classifiers for each of these two

datasets, in which each classifier was associated with its own

pathway marker set. The averaged AUC values among the 500

classifiers built on the second dataset were reported as the final

classification performance for each marker set identified from the

first dataset. Among the 500 classifiers, the pathway marker set

used in classification could be different depending on which

training samples were used in the second dataset. However, the

CORGs of each pathway were the same across these 500 classifiers

because the identification was done using the whole first dataset.

In this study, for pathway-based classifiers, the input marker set

was defined as the top 10% of pathways in MSigDB ranked by

Tian et al. [16] using a designated training set. In order to

compare pathway and gene based methods in a fair manner that

controls for the number of genes used, we provided the gene-based

classifiers with the same number of top ranked genes as the

number of CORGs pooled from the significant pathways selected

by Tian et al. [16].

Results/Discussion

Pathway Markers Amplify Signals over Multiple Weak
Gene Markers

We first tested the robustness of the pathway markers selected

by the method of Tian et al. [16]. The agreement between the

significant pathways was higher than that between the individually

scored gene markers (Figure S1). The CORGs within the top

pathways were also more consistent than individually scored gene

markers in different subsets of samples. The observed robustness of

CORGs might imply that some non-differentially expressed genes,

which are often dropped in conventional analysis, do have

associations with the disease of interest.

We hypothesized that pathway information could be used to

restrict the search space for truly perturbed genes whose

aggregated expression is more predictive for disease status than

individually considered. We began by analyzing the breast and

lung cancer datasets (four datasets in total), since each dataset has

available two separate cohorts of patients studied by different

researchers. The top 10% of pathways were selected for each of

the four datasets (see Methods). We identified the CORGs for each

top pathway and aggregated their expression levels into a single

activity value for each sample (Methods). By design, the inferred

pathway activities had more discriminative power in distinguishing

samples with different disease phenotypes than did the individual

expression levels of the member CORGs (PAC versus CORGs in

Figure 2A, 2C, 2E, and 2G). However, the discriminative power

fell when the pathway activity was inferred using not only the

CORGs but all member genes associated with each pathway

(PAC_all in Figure 2A, 2C, 2E, and 2G). This result suggests that,

as might be expected, not all genes in a significant pathway are

transcriptionally altered or associated with the phenotype of

interest.

We then compared our pathway markers to the individual gene

markers selected without pathway information. We found that the

PAC activity scores outperformed individual gene markers in

terms of discriminating samples with different disease phenotypes

in both the source datasets used for marker identification (PAC

versus Genes in Figure 2A, 2C, 2E, and 2G) and the independent

verification datasets (Figure 2B, 2D, 2F, and 2H). In the

verification datasets, the CORGs demonstrated almost the same

discriminative power as did the top genes, although the top genes

were more powerful in the original datasets. These comparisons

suggest that aggregating the perturbed genes in a pathway leads to

a better marker for discriminating disease phenotypes. Although

the expression of a single gene might not be a strong predictor,

pathway integration provides a means to amplify individual weak

signals at the transcriptional level.

Pathway Markers Increase the Classification Accuracy
We next tested that the inferred pathway activity levels could be

used in the classification of disease status for a new expression

profile. To use pathway information for classification, pathway

activities were used as feature values in a classifier based on logistic

regression. The technique of five-fold cross validation was applied

to test the predictive power of the pathway markers (see Methods).

In each run of cross validation, we only considered the top 10% of

pathway markers selected by Tian et al. [16] using the designated

training data.

Pathway-Based Disease Classification
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Figure 2. Discriminative power of pathway and gene markers in the breast and lung cancer datasets. Mean absolute t-scores against
phenotypes were compared between four marker sets in the source dataset, which was used to identify markers—(A) and (C) for the two breast
cancer datasets and (E) and (G) for the two lung cancer datasets—or in an independent verification dataset—(B) (D) (F) (H). Pathway markers were
ranked by using their absolute t-scores from a two-tail t-test on activity levels (see S(G) in Methods) between the two phenotypes of interest in the
source dataset, and their discriminative power in the same order was measured in the verification dataset. Pathway activities were estimated using
only CORGs (PAC) or all member genes (PAC_all). The individual predictive power of CORGs in the top pathways was also evaluated using the same t-
test on their gene expression levels (CORGs). A similar analysis was performed using the same number of top discriminative genes as the number of
CORGs covered by the pathway markers (Genes).
doi:10.1371/journal.pcbi.1000217.g002

Pathway-Based Disease Classification
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As shown in Figure 3A, our pathway-based classifiers (PAC)

significantly outperformed the conventional gene-based classifiers

(Gene). The improved performance was not simply due to

grouping multiple gene expression measurements, as shown by

comparing our performance with that of random groups of genes

(PAC_random; averaged AUCs of 1000 sets of same-size random

gene sets as the significant pathways). Classifiers using pathway

activity inferred by the mean or median of the member gene

expression [22] or the 1st principle component (PCA) [20] had

higher predictive power than those using random gene sets

(PAC_random), but only comparable power to the conventional

gene-based classifiers. These results indicate that there are at least

two critical factors in developing an advanced molecular

diagnostic: (1) a biologically meaningful definition of pathways

and (2) inference of condition-specific pathway activity.

Next, we tested the reproducibility of the pathway markers

selected across different microarray platforms or different cohorts

of patients. For this purpose, we used expression profiles of the two

lung cancer datasets and the two breast cancer datasets generated

from different groups. For each cancer, significant pathways and

their CORGs were identified using the whole first dataset and then

tested on the second dataset, or vice versa (Figure 3B). Our

pathway-based classifiers again significantly outperformed the

gene-based classifiers.

To show that the better performance of PAC was not dependent

on the chosen classification algorithm, we evaluated all markers

and pathway activity inference methods using three additional

classification approaches: k-nearest neighbors, naı̈ve Bayes, and

linear discriminative analysis. Moreover, forward selection method

was also employed to show our superior performance was not

beneficial from the feature selection method used. All further

analyses demonstrated the same trends, i.e., our CORG-based

pathway classifiers outperformed other gene-based and pathway-

based classifiers (Figures S2 and S3).

Pathway Markers and Their CORGs Provide Biologically
Informative Models for Lung Cancer Prognosis

Beyond achieving better classification performance, the dis-

criminative pathway markers and their CORGs can lend insight

into the biological basis for why samples are classified as a specific

disease status. As an example, we examined the pathway markers

selected in the above two cross-dataset experiments for classifica-

tion of lung cancer prognosis (for a similar analysis of breast cancer

metastasis, see Table S2 and Figure S4). We counted the

frequency with which each pathway in MSigDB was selected

over the 500 classifiers, and we identified the top most frequent

pathways having over 100 occurrences (Table 1).

Pathways involved in glucose metabolism (‘‘Glycolysis’’ in

Table 1) and estrogen signaling (‘‘Breast cancer estrogen

signaling’’ and ‘‘Estrogen receptor modulators down-regulated

genes’’) were frequently used in classifying lung cancer patients,

and over-expression of these pathways had poor prognosis in both

datasets (Figure 4). Constitutively up-regulated glycolysis has been

observed in most primary and metastatic cancers and further

explored to develop potential therapeutic targets [36–38]. Up-

regulated glycolysis enables unconstrained proliferation and

invasion and may lead to a more aggressive type of lung cancer

[37]. Estrogen signaling has been known to promote cell

proliferation and suppresses apoptosis, and its role in the late

steps of lung metastasis has recently been suggested [39]. As shown

in Table 1, many pathways could be represented by CORGs of

the size from two to four, although some required more than eight

genes (Figure S5). Especially for larger CORG sets, it would be

computationally infeasible to identify these combinations to have

Figure 3. Classification accuracy within (A) and across (B) datasets. Bar chart of Area Under ROC Curve (AUC) classification performance of
CORG-based pathway markers (PAC), conventional pathway markers (Mean, Median, and PCA), and individual genes (Gene; same number of top
discriminative genes as the number of CORGs in pathway markers). Classification performance is summarized as mean6ste of AUC over 100 runs of 5-
fold cross-validation within a dataset. To compute PAC_random, the AUC values of 1000 sets of random gene sets were averaged. Numbers above
the red bars are -log (p-value) from the Wilcoxon signed-rank test on the 500 AUCs of ‘‘PAC’’ against those of ‘‘Gene’’ (only the ones with p-
value,0.05 are shown). The p-values measure the significance of difference between PAC and gene-based classification.
doi:10.1371/journal.pcbi.1000217.g003

Pathway-Based Disease Classification
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maximal discriminative power in the absence of prior pathway

knowledge.

Conclusion
We have demonstrated that effectively incorporating pathway

information into expression-based disease diagnosis can provide

better discriminative and more biologically defensible models.

Grouping gene expression responses via functional linkages can

amplify individually weak signals due to the heterogeneity of

samples, either genetic or technical. In addition, such gene

groupings also emerge as a critical step of removing potential

redundancy on expression among genes associated with the same

function. In view of classification tasks, genes of the same

expression pattern do not provide extra information for a classifier

but may cause over-fitting. The identification of condition-

responsive genes within each pathway helps to reduce noisy or

variable measurements, leading to a more precise and robust

classifier. Better coverage and quality of human pathway

information is likely to enable more precise prediction of disease

status and, accordingly, better management of patient care. In

addition, human interaction databases are growing exponentially

at present, enabling further opportunities for unveiling novel

functional pathways or complexes [40–43]. Integrating known

pathways and novel hypotheses from protein networks with

Table 1. Frequently selected pathway markers for lung cancer prognosis.

Pathway Name Frequency # genesa CORGs

From Michigan to Boston

Glutamine up-regulated genes 433/500 5/313 NP LDHA BZW1 TUBA1 LAMB3

Gluconeogenesis 247/500 2/32 LDHA ENO2

Glycolysisb 245/500 3/22 ENO2 PGK1 ALDOA

Breast cancer estrogen signaling 203/500 3/101 VEGF KRT18 KRT19

Glycolysis and gluconeogenesis 176/500 5/55 GAPD LDHA ENO2 ALDH3B2 ALDH3B1

Estrogen receptor modulators down-regulated genes 138/500 4/74 ARHE STC1 KRT7 COPEB

Leucine down-regulated genes 134.500 4/180 NP LDHA TUBA1 CCNA2

B lymphocyte pathway 102/500 4/11 CR2 ITGAL HLA-DRA CR1

From Boston to Michigan

Breast cancer estrogen signaling 481/500 6/101 KRT18 KRT19 GAPD MT3 CDKN2A TFF1

Pyrimidine metabolism 258/500 3/45 POLR2E NP RRM1

Glycolysis 258/500 2/22 ENO2 PGK1

MTA3 pathway 238/500 3/16 TUBA1 GAPD MTA1

Insulin up-regulated genes 165/500 10/235 PGAM1 ARF4 ARCN1 DNCL1 EIF2S2 PSMA6 YWHAH PSMA3 ZNF9
CLNS1A

P53 hypoxia pathway 148/500 3/20 FHL2 IGFBP3 HIF1A

Glutamine down-regulated genes 133/500 4/313 PGAM1 ERH PAICS BZW1

p53 signalling 114/500 6/101 HIF1A FADD GAPD APEX1 CDKN2A CSNK2B

Estrogen receptor modulators down-regulated genes 108/500 3/74 KRT7 DUSP4 MMD

NFKB up-regulated genes 103/500 2/111 KRT7 GBP1

aThe number of CORGs and member genes are specified.
bPathways/Genes in italics are shared between datasets.
doi:10.1371/journal.pcbi.1000217.t001

Figure 4. Pathway activity of the top frequently used markers in the two lung cancer datasets. Activities were inferred from CORGs
identified from each dataset. Green/red blocks indicate pathways (rows) that are up-/down- regulated in patients (columns) of specific prognosis
(above color bars: pink and green indicate poor and good prognosis, respectively). Pathways are clustered based on the similarity of their activities
across patients.
doi:10.1371/journal.pcbi.1000217.g004

Pathway-Based Disease Classification
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expression profiles and phenotypic information will lead to more

effective molecular characterization of human disease [17].

Supporting Information

Table S1 The seven data sets used in method evaluation

Found at: doi:10.1371/journal.pcbi.1000217.s001 (0.01 MB PDF)

Table S2 Frequently selected pathway markers for breast cancer

prognosis

Found at: doi:10.1371/journal.pcbi.1000217.s002 (0.01 MB PDF)

Figure S1 Marker reproducibility of pathway-based and gene-

based selection in (A) NF-kB dataset, (B) Leukemia dataset, (C)

Prostate dataset, (D) Netherlands dataset, (E) USA dataset, (F)

Michigan dataset, and (G) Boston dataset Blue and yellow lines

chart the magnitude of overlap among top n markers for pathways

ranked by Tian et al. [16] and genes ranked by conventional t-test,

respectively. Purple lines chart the magnitude of overlap among

CORGs for the top n pathways. The performance of the 100

alternative splits is denoted by its mean.

Found at: doi:10.1371/journal.pcbi.1000217.s003 (0.03 MB PDF)

Figure S2 Classification accuracy within and across datasets

using different classifiers, (A) k-nearest neighbor with k = 3, (B) k-

nearest neighbor with k = 5, (C) naı̈ve Bayes and (D) linear

discriminative analysis Bar charts denote classification accuracy in

(A) and (B) and Area Under ROC Curve (AUC) in (C) and (D).

Classification performance is summarized as mean +/2 ste of

accuracies/AUCs over 100 runs of 5-fold cross-validation.

Numbers above the red bars are -log (p-value) from the Wilcoxon

signed-rank test on the 500 accuracies/AUCs of ‘‘PAC’’ against

those of ‘‘Gene’’ (only the ones with p-value,0.05 are shown).

Found at: doi:10.1371/journal.pcbi.1000217.s004 (0.02 MB PDF)

Figure S3 Classification performance using sequential selection

(SEQ) or forward selection (FWD)

Found at: doi:10.1371/journal.pcbi.1000217.s005 (0.01 MB PDF)

Figure S4 Pathway activity of the top frequently used markers in

the two breast cancer datasets Activities were inferred from

CORGs identified from each dataset. Green/red blocks indicate

pathways (rows) that are up-/down- regulated in patients

(columns) of specific phenotype (above color bars: pink and green

indicate metastasis and non-metastasis, respectively). Pathways are

clustered based on the similarity of their activities across patients.

Found at: doi:10.1371/journal.pcbi.1000217.s006 (0.11 MB PDF)

Figure S5 Distribution of numbers of CORGs in top 10%

pathways

Found at: doi:10.1371/journal.pcbi.1000217.s007 (0.01 MB PDF)
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