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Abstract

A fundamental task in sequence analysis is to calculate the probability of a multiple alignment given a phylogenetic tree
relating the sequences and an evolutionary model describing how sequences change over time. However, the most widely
used phylogenetic models only account for residue substitution events. We describe a probabilistic model of a multiple
sequence alignment that accounts for insertion and deletion events in addition to substitutions, given a phylogenetic tree,
using a rate matrix augmented by the gap character. Starting from a continuous Markov process, we construct a non-
reversible generative (birth–death) evolutionary model for insertions and deletions. The model assumes that insertion and
deletion events occur one residue at a time. We apply this model to phylogenetic tree inference by extending the program
DNAML in PHYLIP. Using standard benchmarking methods on simulated data and a new ‘‘concordance test’’ benchmark on real
ribosomal RNA alignments, we show that the extended program DNAMLe improves accuracy relative to the usual approach of
ignoring gaps, while retaining the computational efficiency of the Felsenstein peeling algorithm.
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Introduction

A fundamental task in sequence analysis is calculating the

probability of a multiple alignment given a phylogenetic tree

relating the sequences and an evolutionary model describing how

sequences change over time. This quantity is already at the heart

of phylogenetic tree inference by either maximum likelihood [1] or

Bayesian approaches [2–5]. It is also desirable to integrate

evolutionary modeling into the probabilistic models widely used

for other sequence analysis problems such as HMMs and SCFGs

for homology search and genefinding [6]. However, whereas

HMMs, SCFGs, and other sequence analysis models account for

insertion and deletion events in their probabilistic framework,

many widely used phylogenetic models only account for residue

substitution events.

The general approach of modeling residue substitution as a

continuous-time Markov process was introduced by the Jukes-

Cantor model of nucleotide substitution in DNA [7] and the

Dayhoff pam model of amino acid substitution in proteins [8]. It

has since been extensively developed both for nucleotides [9–14]

and amino acids [15–18], and extended to models of more than a

single residue, such as codon to codon substitutions [19,20] and

RNA basepair to basepair substitutions [21–23].

Given a substitution model and a tree, one can efficiently

calculate the probability of an ungapped multiple alignment using

Felsenstein’s peeling algorithm [1]. The Felsenstein algorithm

scales linearly with the length of the alignment and the number of

sequences. Because of its economy, it is the basis of maximum

likelihood methods in many practical phylogenetic inference tools,

including PHYLIP [24], PAUP* [25], and others [26–33]. The

Felsenstein algorithm is readily integrated with other probabilistic

models for ungapped alignment analysis, including HMMs

[14,34–38] and SCFGs [21]. However, when this approach is

applied to gapped multiple sequence alignments, gap characters

are typically treated as missing data (an unknown residue),

effectively equivalent to ignoring them.

A variety of more formal approaches for treating insertions and

deletions exist [39–49]. The canonical model in this active area of

research is the Thorne-Kishino-Felsenstein model (TKF91) [50].

TKF91 treats insertion and deletion events as a continuous-time

process governed by explicit insertion and deletion rate param-

eters, allowing multiple insertions and deletions to accumulate at

the same ‘‘site’’ over long times. TKF91 improved, for example,

upon methods that parsimoniously assume no more than one

change per site per branch, including the pioneering Bishop and

Thompson pairwise alignment likelihood model that preceded

TKF91 [51]. Many extensions of TKF91 have appeared [52–56],

including practical applications for pairwise alignment [57,58] and

multiple alignment [59–62]. Several approaches based on TKF91

or related models have addressed the problem of simultaneously

aligning and inferring the phylogeny of a group of related

sequences [63–68]. In general all algorithms in this class have

difficult time complexities, worst-case exponential in the number

of sequences, and at least in the case of parsimony models akin to

TKF91 , the problem of inferring the optimal insertion and deletion

history given a tree has been formally shown to be NP-complete

[47]. This complexity is inherent to the problem. Any implemen-

tation of evolutionary models that allow insertions and deletions,

TKF91-based or otherwise, seeks to make approximations that

make calculations tractable.

Here we are specifically concerned with the problem of

calculating the probability of a given multiple alignment and
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phylogeny. A TKF91-based approach for this problem [69] used a

clever approach of using ungapped columns in the alignment to

constrain and subdivide the solution space (a so-called ‘‘homology

structure’’), but (because TKF91 is not invariant under column

rearrangement) a sum over all subalignments compatible with a

given homology structure is still required. As a result, though time

complexity exponential in the number of sequences can be

avoided in the average case where not many gaps occur, the

approach remains expensive in absolute terms; a Bayesian Markov

chain Monte Carlo phylogenetic inference for an alignment of 10

globins was reported to require 3 CPU hours on a 1.25 GHz G4

Apple Macintosh [69]. Although TKF91 has many desirable and

realistic properties as a model of evolution, it would be

advantageous to have even more computationally efficient

approaches, particularly for problems where a gain in efficiency

might outweigh sacrificing some of the realism of the model.

An alternative is to use a continuous-time Markov process for

insertions and deletions that remains fully compatible with the

Felsenstein algorithm [41,46]. This requires an unrealistic assump-

tion of column independence, but nonetheless, it may be better than

ignoring gaps altogether. Here we further explore such models. We

propose a non-reversible generative model based on a Markov

process that we readily incorporated into an existing phylogenetic

inference application, resulting in a gain in its accuracy.

Results

Premises of the Model
The originating idea is to use an extended (K+1)6(K+1) rate

matrix for K residues (4 nucleotides or 20 amino acids) plus the gap

character to describe the rate of change of a residue to a residue

(substitution), a residue to a gap (deletion), and a gap to a residue

(insertion) [6,41,46]. From this Markov process, we construct a

generative model of sequence evolution that includes insertions

and deletions. Several consequences flow from this, which here we

discuss informally by way of introduction to the rest of the paper.

This model describes the evolution of single residues in one

column of a multiple alignment, given a phylogenetic tree. The

total probability of the alignment is then assumed to be an

independent product of each column probability. For each

column, a variant of the Felsenstein peeling algorithm recursively

infers the probability of ancestral characters at each tree node,

where an ancestral character is either a residue or a gap. Assuming

that insertion and deletion events happen one residue at a time

necessarily implies a linear ‘‘gap cost’’. This is a much less

satisfactory model of insertion and deletion processes than models

that can assume an affine or arbitrary gap cost.

It has generally been thought that models based on a gap-

extended rate matrix must be conceptually flawed, because it

appears necessary to assume that all ancestral and descendant

sequences fit in a fixed number of columns. This fundamentally

conflicts with allowing any number of insertions and deletions to

occur, and it produces a so-called ‘‘memory effect’’ artifact [70] in

which descendants ‘‘remember’’ how many gap characters were

present in ancestral sequences, allowing insertions up to that length

and precluding longer ones. A related conceptual flaw would be

treating gaps like residues, assigning a probability to a gap/gap

alignment (as one would do for any residue/residue alignment),

rather than recognizing that a gap/gap alignment may represent no

evolutionary event at all from the standpoint of just the descendant

and ancestral sequence; rather, gap/gap alignments are imposed by

events that occurred in other sequences. For a model to be at all

satisfactory, one must be able to describe a generative evolutionary

model unconditional on any fixed sequence length, in terms of

substitution, insertion and deletion events that evolve one (unaligned)

sequence to another, and show how that generative process relates

uniquely to the column-by-column inference algorithm that one will

apply to a given multiple alignment.

Here we will develop such a generative model, by borrowing

terms from a Markov process for a rate matrix extended for the

gap character. The rate matrix includes the gap character, but the

subsequent generative evolutionary model does not treat gaps as

an extra residue. Rather, it describes evolutionary insertion and

deletion (birth-death) events [71], where the evolved sequences

form alignments of arbitrary length. The existence of a generative

evolutionary model for unaligned sequences, and the mapping of

its events to the column-by-column inference procedure, is the

crucial point of differentiation between our work and previous

work on efficient column-based phylogenetic inference with gap-

extended rate matrices [6,41].

Similarly, one must have a consistent way of dealing with

columns that are unobserved in the alignment of extant sequences

– that is, places where ancestral residues have been inserted and

deleted, where alignment columns would exist if all the ancestral

sequences were known in addition to just the extant sequences.

Therefore the likelihood we calculate for an extant multiple

alignment will be its marginal likelihood, marginalized over all

possible ancestral sequences including unobserved alignment

columns that left no trace in the observed alignment.

Another conceptual problem of column-based models arises if

one adopts the usual practice of making the substitution process

reversible (in the sense that the probability of an ancestor/

descendant sequence alignment is independent of the direction of

time along the branch that connects them; this is mathematically

convenient for applying the ‘‘pulley principle’’ and using the

Felsenstein peeling algorithm on unrooted trees). If one assumes

reversibility for a substitution process that includes gaps, one

necessarily imposes a frequency of gap characters that is constant

with respect to divergence time [41]; but obviously in the limit of

zero divergence time, there are no gap characters in an alignment

of homologous sequences. Moreover, reversibility clearly cannot

hold if insertion and deletion rates are free parameters. For

Author Summary

We describe a computationally efficient method to use
insertion and deletion events, in addition to substitutions,
in phylogenetic inference. To date, many evolutionary
models in probabilistic phylogenetic inference methods
have only accounted for substitution events, not for
insertions and deletions. As a result, not only do tree
inference methods use less sequence information than
they could, but also it has remained difficult to integrate
phylogenetic modeling into sequence alignment methods
(such as profiles and profile-hidden Markov models) that
inherently require a model of insertion and deletion
events. Therefore an important goal in the field has been
to develop tractable evolutionary models of insertion/
deletion events over time of sufficient accuracy to increase
the resolution of phylogenetic inference methods and to
increase the power of profile-based sequence homology
searches. Our model offers a partial answer to this
problem. We show that our model generally improves
inference power in both simulated and real data and that it
is easily implemented in the framework of standard
inference packages with little effect on computational
efficiency (we extended DNAML, in Felsenstein’s popular
PHYLIP package).

Probabilistic Phylogeny with Gaps
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example, for a nonzero insertion rate and zero deletion rate, the

shorter of two homologous sequences automatically must be the

ancestor. A reversible insertion/deletion model would also imply

that all homologous sequences have the same expected length at

all divergence times. We overcome these problems by adopting a

non-reversible model that states an explicit prior length distribu-

tion for unaligned ancestral sequences (as opposed to assuming

that all K+1 characters including gaps occur in the ancestor at the

stationary frequencies of the Markov process). Because our model

is non-reversible, we must always work with rooted phylogenies.

Because we map generative evolutionary model events onto an

alignment column, the column is assumed to be correctly aligned

phylogenetically – all aligned residues are assumed to be homologous

and related only by substitution events. This means that no more

than one insertion event may occur in any given column. Enforcing

this assumption requires modification of the usual Felsenstein peeling

algorithm to include some extra bookkeeping.

Given alignments are unlikely to be phylogenetically correct,

because humans and alignment programs tend to produce

aesthetically pleasing alignments that compress columns contain-

ing few residues. Importantly, for any arbitrary tree topology and

any arrangement of observed residues and gap characters in an

alignment column, there exists at least one possible assignment of

characters to ancestral nodes that makes all extant aligned residues

homologous. Therefore the problem with using phylogenetically

incorrect alignments is not that the algorithm will fail altogether (as

would happen if some combinations of alignments and trees were

impossible), but rather that we can expect its inference ability to be

degraded by forced inference of incorrect histories in phylogenet-

ically incorrectly aligned columns. How much the overall inference is

degraded by this and by the other assumptions described above is a

matter for empirical testing, which we describe in the second half of

the paper, after we describe the model itself.

Solving the Markov Process for a Gap-Extended Rate
Matrix Model

First, we start by solving the Markov process associated with a

rate matrix extended to include a gap character. For an alphabet

of K residues, probabilistic substitution models are defined by a

K6K rate matrix R such that the matrix of conditional probabilities

Qt(i,j) ; P(j|i,t) is given by

Qt~etR~
X?
l~0

tRð Þl

l!
: ð1Þ

We extend this to include the gap character by augmenting the

rate matrix to a (K+1)6(K+1) matrix Re that depends on arbitrary

rates of deletions m$0 and insertions l$0:

Re~
R{mdij

m

..

.

m

��������
lp1. . . lpK {lj

0
BBBBB@

1
CCCCCA, ð2Þ

where p = (p1,…,pK) is the distribution of inserted residuesPK
i~1 pi~1

� �
, and dij stands for the Kronecker delta in the

K6K subspace (valued one if i = j and zero otherwise). Since the

extended rate matrix Re has the property that each row adds up to

zero, we can construct a model of evolution for the extended rate

matrix defined as

Qe
t:et Re

~
X?
l~0

tReð Þl

l!
: ð3Þ

At zero divergence, the probabilities of any insertion or deletion of

a residue or any substitution of a residue to a different residue are

all zero.

Generally, the extended conditionals Qe
t can be cast into the

form,

Qe
t~

Mt

gt

..

.

gt

��������
j1

t . . . jK
t stj

0
BBBBB@

1
CCCCCA, ð4Þ

with the conditions stz
PK

j~1 jj
t~1 and gtz

PK
j~1 Mt i,jð Þ~1,

for each row i, and where Mt is the K6K conditional substitution

matrix (to be defined later).

In particular, for a reversible K6K rate matrix R, if we assume

that the distribution of inserted residues in equation (2) is the

stationary distribution associated to the reversible rate R

(piR(i,j) = pjR(j,i)) then one can derive the analytic expression for

Qe
t in terms of the solution for the K6K conditional matrix Qt = etR

and the rates of insertion and deletion. This particular solution for

the extended conditional probabilities is given by

Qe
t~

Mt

gt

..

.

gt

��������
jtp1 . . . jtpK 1{jtj

0
BBBBB@

1
CCCCCA, ð5Þ

where the gap-specific functions gt and jt are given by

gt~
m

lzm
1{e{ lzmð Þt
� �

, ð6Þ

jt~
l

lzm
1{e{ lzmð Þt
� �

, ð7Þ

when at least one of the two rates is positive. For the particular

case of no insertions and deletions (l = m = 0) both functions are

defined as identically zero.

Finally, we have to describe how to obtain the K6K conditional

substitution matrix subspace Mt in Qe
t from a rate matrix R and the

insertion and deletion rates. Generally, any biologically relevant

K6K substitution rate matrix R must have zero as a non-degenerate

eigenvalue, and at least one other negative eigenvalue. To express Mt

in general form, let (0,2e1,…,2eA) represent the eigenvalues of R, for

1#A#K21, with ea.0 for 1#a#A. Then the standard conditional

substitution probabilities could be expressed as:

Qt i,jð Þ~pjz
XA

a~1

Oa i,jð Þe{eat, ð8Þ

where Oa is a K6K matrix of real numbers specific for each unique

nonzero eigenvalue. Text S1 shows how to derive the Oa matrices

Probabilistic Phylogeny with Gaps
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from the similarity transformation that relates R with its diagonal

form.

Now the extended conditional matrix in the substitution-only

subspace Mt is expressed as:

Mt i,jð Þ~pj
l

lzm
z
XA

a~1

Oa i,jð Þe{ eazmð Þtzpj
m

lzm
e{ lzmð Þt: ð9Þ

If l = m = 0, Mt(i,j) is defined as the standard substitution

conditional matrix Qt(i,j) in Equation 8.

For example, the F84 model [14] is defined by the substitution

rate R(i?j) = bpj+aDij, where Dij~pj

�ijP
k pk�jk

, and where the

function �ij is 1 if i,j are both either purines or pyrimidines, and 0

otherwise. The F84 rate depends on two non-negative parameters

a and b, and on a stationary residue distribution p. The F84 rate

matrix has non-zero eigenvalues e1 = b, and e2 = a+b. The matrix

O1 is given by O1(i,j) =Dij2pj, and the matrix O2 is given by

O2(i,j) = dij2Dij. For the gap-extended F84 model, we obtain

MF84
t i,jð Þ~pj

l

lzm
z Dij{pj

� �
e{ bzmð Þtz

dij{Dij

� �
e{ azbzmð Þtzpj

m

lzm
e{ lzmð Þt,

ð10Þ

which for the particular case l = m = 0 is defined as the original

F84 model for substitutions,

QF84
t i,jð Þ~pjz Dij{pj

� �
e{btz dij{Dij

� �
e{ azbð Þt: ð11Þ

The conditional model of McGuire et al. [41] describes a

particular solution of the extended F84 model presented here, in

which the rates of insertions and deletions are constrained to

satisfy the conditions l = b and m 3 b.

A more detailed description of the characteristic differential

equations for an arbitrary gap-augmented rate matrix and the

particular solution described above is provided in Text S1. Under

different assumptions, such as a reversible substitution rate matrix

but using a distribution of inserted residues other than the

stationary distribution for R, or a non-reversible substitution rate

matrix, Qe
t could still be obtained numerically [72].

A note about reversibility. For a reversible substitution rate

matrix, the particular Markov process including gaps solved here is

also reversible, as can be seen by using the marginal frequencies

pil/(l+m) for a residue, and m/(l+m) for the gap character.

However, one has to distinguish between the reversibility of a

Markov process and the reversibility of an evolutionary process

constructed using that Markov chain. A Markov chain is said to be

reversible if and only if there exists a marginal distribution that

satisfies the reversibility condition [73]. However, regardless of

whether the Markov process is reversible in the strict sense, when

constructing an evolutionary process from it one may specify an

ancestral marginal distribution other than what reversibility

requires. In evolutionary models, ‘‘reversibility’’ is generally taken

to mean that the joint probability of an ancestral and a descendant

sequence is invariant regardless of which sequence is used as the

ancestor and which is used as the descendant. In probabilistic

inference, this latter definition of reversibility is the most relevant

(for instance to invoke the pulley principle [1]). From here on in

this paper we use the term reversibility in this latter (broader)

sense. Thus, the evolutionary model that we construct in the next

section is not reversible in this (usual) sense though the Markov

chain that it is based on is reversible in the strict sense.

Up to this point, this is essentially McGuire’s model [41] (with a

minor generalization). That model has the conceptual problems

we described in the preamble, thought to be inherent to

approaches based on gap-extended rate matrices. In the next

section, we show how these problems may be circumvented.

The Generative Model
We construct the generative model as an independent product

of single-event (substitution, deletion or insertion) contributions.

What we will do to construct the model is to borrow terms from

the conditional Markov process introduced in the previous section.

We describe the probability of an insertion as proportional to jtpi

in Equation 7, the probability of a deletion as proportional to gt in

Equation 6, and that of a substitution as proportional to Mt(i,j) in

Equation 9, but we ignore the gap to gap transition of the Markov

process. This allows us to derive a generative model that describes

insertions and deletions not as mere ‘‘gap character’’ replacements

on a fixed length alignment but as true evolutionary events (births

and deaths of residues).

A given sequence x = {x1…xl} that evolves to another sequence

y = {y1…yl9} corresponds unambiguously to a pairwise alignment

in which a substitution is represented by a conserved or

mismatched column, a deletion by an ancestral residue aligned

to a gap in the descendant sequence, and an insertion is

represented by an ancestral gap aligned to a residue. Let

x̂ = x̂1..x̂L and ŷ = ŷ1..ŷL mean the aligned sequences x and y.

Specifically, the probability that y was generated from x after time

t with pairwise alignment x̂ŷ that includes s#l substitutions, (l2s)

deletions, and (l92s) insertions {I1…Il92s} (where the subset of

residues xs1
. . . xss

f g from x are substituted by ys1
. . . yss

f g in

sequence y) is constructed as

Pet y,x̂xŷy xjð Þ~ 1{jtð Þlz1cl{s
t jl0{s

t pI1
. . . pIi0{s

P
s

k~1
Pet ysk

xsk
jð Þ:ð12Þ

The functions gt, jt and Pe
t j ijð Þ are given by the Markov model

solutions (Equations 6, 7, an 9). The residue distribution p, is set to

the stationary distribution of the substitutions rate matrix. In that

way, for a reversible substitution rate matrix, this generative model

is quasi-reversible (i.e. reversible in the substitutions subspace).

In equation (12), everything but the term (12jt)
l+1 is borrowed

from the Markov process. This extra term is responsible for having

a normalized distribution, such that the sum of the contributions of

all sequences y of all possible lengths and all possible alignments is

one. The extra term accounts for the fact given a sequence x of

length l, insertions can occur at (l+1) places. That is, at each of the

(l+1) places that an insertion in x could occur, an insertion of

length z occurs with probability 1{jtð Þjz
t pI1

. . . pIz
(a normalized

geometric distribution).

Using the generative probability distribution (Equation 12), one

can calculate the expected length (in residues without gaps) of

descendant sequences originated from an ancestral sequence of

length l after summing to all possible patterns of substitutions,

insertions and deletions, that is given by (full derivation in Text S2):

Sl0 lj Tt~l 1{gtð Þz lz1ð Þ jt

1{jt

: ð13Þ

Crucially, this model does not assume that all observed

sequences are generated from a preset number of aligned columns.

Thus there is no ‘‘memory effect’’ [70]. Our model is a generative

probabilistic model with a close correspondence to the birth-death

description of the TKF91 model [50], (see Text S2, for more detail).

Probabilistic Phylogeny with Gaps
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We have implemented this generative model in a computer

program for evolving sequences named eRATE.

The Joint Probability of a Pairwise Ancestor/Descendant
Alignment

Given the conditional probabilities of the generative model, one

wants to calculate the joint probability of a multiple alignment of

sequences generated with the model, given a phylogenetic tree.

Before doing that, let us consider the joint probability of a pairwise

ancestor/descendant alignment, as a building block for a full-

fledged algorithm for phylogenetic inference on multiple align-

ments.

Using the same notation as in the previous section, we can

calculate the joint probability of the pairwise ancestor/descendant

alignment (x̂,ŷ) after divergence time t using the expression

Pe x̂x,ŷy tjð Þ~Pet y,x̂xŷy xjð ÞPet xð Þ, ð14Þ

where Pe(x) is the probability of the ancestral sequence. This

distribution is a prior, not determined by the generative model. In

order to have this prior factorize effectively into columns, we will

assume the length of ancestral sequences follows a geometric

distribution (12p)pl for a sequence of length l with arbitrary

Bernoulli frequency parameter 0,p,1.

The joint probability of a pairwise ancestor/descendant

alignment can then be factorized as a product of terms over

alignment columns as:

Pe x̂x,ŷy tjð Þ~Pe ? tjð Þ P
L

k~1
Pe x̂xk,ŷyk tjð Þ

~ 1{pð Þ 1{jtð Þ p 1{jtð Þ½ �szdgd
t ji

t

px1
. . . pxl

pI1
. . . pIi

P
s

k~1
Pet ysk

xsk
jð Þ,

ð15Þ

where the length of the alignment L = s+d+i. Normalization of this

joint probability requires including the extra term

Pe(w|t) = (12p)(12jt) that cannot be associated to any observed

column. Intuitively this term can be viewed as an extra

(terminating) column (w). An analogous ‘‘extra column’’ term

will appear in the multiple alignment case with the Felsenstein

pruning algorithm.

In Text S3, we use the joint probabilities in Equation 15 to

calculate other related length distributions of the model such as the

length distribution for descendant sequences and the length

distribution of alignment length, by summing over the other variables

(marginalization). Because the model is non-reversible, the distribu-

tion of descendant sequences is different from that of ancestral

sequences, and depends on the divergence time (non-stationary).

Figure 1. Felsenstein’s peeling algorithm extended to gaps. Graphical description of the extended Felsenstein algorithm to calculate the
probability of an alignment given a phylogenetic tree using the generative model for gaps presented in this work, given by Equations 20 and 21. For
a given column in a multiple alignment, recursion A corresponds to the probability of a tree up to node k with a residue at the node (Equation 20).
Recursion B corresponds to the probability of a tree up to node k with a gap at the node (Equation. 21). The algorithm needs to consider only
evolutionarily correct events, thus recursion A includes substitutions and deletions but no insertions, and recursion B has to include one and only one
insertion. In the case of having a residue i at node k (recursion A), the A1 term corresponds to the original substitution-only Felsenstein algorithm,
where q and s are residues, and gq and gs stand for the sum to all possible residue substitutions. The terms A2 and A3 represent a deletion
occurring for the right and left child respectively (and a substitution for the other child node). Because no insertion can occur in this recursion, there
are no evolutionary events happening for descendants for the child that suffers the deletion. Thus, for a A2 or A3 term to have a contribution all
nodes down to the leaves for the child that suffers the deletion have to be gaps. (We represent with gray the situation of no evolutionary event
happening, and with an empty gray triangle with gaps at the bottom the situation of gaps at all nodes including the leaves for a given subtree.) The
A4 term corresponds to a deletion for both children nodes, and no evolutionary event from there on. A A4 term contributes only if with all the leaves
under node k are gaps. In the case of having a gap at node k (recursion B), the insertion might occur for the left or right child, which is represented by
graphs B1 and B2 respectively. The insertion might instead be delayed to a node under the left or right child, which is represented by graphs B3 and
B4 respectively. In all four cases, the child node for which no insertion occurs does not have any evolutionary events, and has to include all gaps at
the internal nodes and leaves. The substitution, deletion and insertion probabilities are given by the generative model as per Equations 22–24,
respectively.
doi:10.1371/journal.pcbi.1000172.g001
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From the joint alignment probability distribution, we can also

calculate the expected frequencies of insertions f ei tð Þ and deletions

f ed tð Þ in pairwise ancestor/descendant alignments (see Text S3 for

derivation). These quantities illustrate some important properties of

the model. They will also be useful in making comparisons to the

properties of other reversible models (see Discussion). They are,

Because the model is non-reversible, f ei tð Þ and f ed tð Þ are

different (note that we avoid the traditional term ‘‘indel’’ in this

paper, because we are not treating them reversibly). When the

insertion rate is zero (and the deletion rate is positive), the expected

frequency of insertions is zero for all divergence times but the

expected frequency of deletions is not, as one would expect.

Similarly, when the deletion rate is zero (and the insertion rate is

positive), the expected frequency of deletions is zero for all

divergence times while the expected frequency of insertions is not.

For more detail, see Text S3.

Felsenstein’s Peeling Algorithm Extended to Gaps
Felsenstein’s peeling algorithm is an efficient algorithm for

calculating the probability of a multiple alignment given a tree and

a Markov substitution model. Extending the Felsenstein algorithm

to include insertion and deletion events with the model we propose

here requires four modifications. Those are: extra bookkeeping in

the Felsenstein recursions to enforce that no more than one

insertion occurs per column, so that all aligned residues are

homologous; including a term from the prior ancestral sequence

length distribution in the calculation of each individual column

likelihood; including in the overall alignment likelihood the extra

normalization terms collected in the ‘‘extra column’’ (w); and

finally, marginalizing the contributions of possible ancestral

residues that have left no trace in extant sequences. Otherwise,

the substitution model assumed by the Felsenstein peeling

algorithm is simply replaced by the generative model described

in the previous section by Equation 12 which includes substitu-

tions, insertions and deletions.

Using the notation of [6], for a given position u in the alignment,

let Pu(Lk,i) be the probability up to node k given that the character

(residue or gap) at node k is i. For a residue i, Pu(Lk,i) cannot

contain any insertion only substitutions and deletions. For a gap,

Pu(Lk,–) has to include one and only one insertion. Thus, Pu(Lk,–) is

defined to be zero if all the nodes under k are gaps for that

position. These probabilities are calculated recursively starting

from the leaves of the binary tree as,

If node k is a leaf, for a residue i,

Pu Lk,ið Þ~
1 if leaf k has residue i at position u,

0 otherwise,

�
: ð18Þ

for a gap,

Pu Lk,{ð Þ~0: ð19Þ

If node k is not a leaf, for a residue i,

Pu Lk,ið Þ~
X

1ƒqƒK

Pu Ldl
k
,q

� �
P q i,tl

k

��� �
zd udl

k
~{

� �
P { i,tl

k

��� �" #
|

X
1ƒsƒK

Pu Ldr
k
,s

� �
P s i,tr

k

��� �
zd udr

k
~{

� �
P { i,tr

k

��� �" #
,

ð20Þ

for a gap,

Pu Lk,{ð Þ~
X

1ƒqƒK

Pu Ldl
k
,q

� �
P q {,tl

k

��� �
zPu Ldl

k
,{
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d udr
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� �
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ð21Þ

where dl
k and dr

k are the two daughters of node k, tl
k, and tr

k are the

distances from node k to its left and right child respectively, and

where the probabilities for the daughter nodes have already been

calculated by the recursion. uk stands for the subset of leaves under

node k for column u, and uk = – indicates that all leaves under node

k are gaps for column u. The single-event conditional probabilities

are dictated by the generative model in Equation 12 as,

P j i,tjð Þ~ 1{jtð ÞPet j ijð Þ, ð22Þ

P { i,tjð Þ~ 1{jtð Þgt, ð23Þ

P j {,tjð Þ~jtpj , ð24Þ

for 1#i,j#K, where the functions gt, jt and Pe
t j ijð Þ are given by the

Markov model solutions (Equations 6, 7, and 9). Figure 1 shows a

graphical interpretation of the Felsenstein recursions described in

Equations 20 and 21.

The second modification is due to the existence of a length

distribution for ancestral sequences for this model. In order to

Figure 2. Comparison of DNAML versus DNAMLe for ungapped alignments. Tree reconstruction for ungapped alignments generated according
to a F84 substitution model (2.0 transition to transversion ratio and equiprobable residues), for nine different time divergences, ranging from 0.005 to
2.0 substitutions per site and branch. For a given divergence value, 100 random trees with eight taxa were used. For each tree, single alignments
were generated with lengths ranging from 50 to 1000 residues in 5 residue increments. For each alignment, a tree was inferred using the programs
DNAML and DNAMLe. Results are displayed as a function of the length of the alignments. (A) Fraction of trees which topology was correctly inferred as a
function of the alignment length. The best performance occurs for alignments that contain about 18% pairwise substitutions on average (0.05
substitutions per site and branch). In this case, detectability seems to asymptote to approximately 78% for alignments of at least 800 residues. (B,C)
Corresponding results when using the SDD and nBSD measures respectively. (D) Average mean branch length for each length bin. Overall, the two
methods show similar performance for ungapped alignment. We mark with an arrow some extreme cases in which the two methods perform
differently when inferring the tree branch lengths. (E) Comparison of computational time performance.
doi:10.1371/journal.pcbi.1000172.g002

ð20Þ

ð16Þ

ð17Þ
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Figure 3. Comparison of DNAML versus DNAMLe for synthetic alignments with gaps. Tree reconstruction test for simulated alignments with
gaps generated with the program ROSE [76] according to 100 random eight-taxon trees, using the F84 model for substitutions and a Poisson gap
length distribution (P lw0ð Þ~ ll{1e{l

l{1ð Þ! , for l = 0.5). Alignments lengths range from 50 to 1,000 residues. Here we compare the performance of DNAML

(left) versus DNAMLe (right) for two different evolutionary situations: in red alignments with no gaps and 0.06 substitutions per site and branch, which
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calculate the total probability of a given aligned column

P(u|T,Re,p), we need to use the probability of the sequence at

the root. The total probability of site u is given by

P u T ,Re ,pjð Þ~Pu Lroot,{ð Þzp
X

1ƒiƒK

Pu Lroot,ið Þpi, ð25Þ

where p is the parameter of the geometric distribution of ancestral

sequences, and p are the residue frequencies at the root.

Third, the factorization in columns of the unconditional in

length alignment distribution leaves some normalization terms that

we gather together into what we think of as an ‘‘extra column’’ (w)

contribution. Thus, when calculating the total probability of a

multiple alignment as the product of l individual columns, there is

an additional term in the equation:

P alignment T ,Re ,pjð Þ~P ? T ,Re ,pjð Þ P
1ƒuƒL

P u T ,Re ,pjð Þ: ð26Þ

The term P(w|T,Re,p) = (12p)Pw(Lroot) is calculated by a similar

peeling algorithm,

P? Lkð Þ~
1 if k is a leaf,

P? Ldl
k

� �
P? Ldr

k

� �
Pe

tl
k

?ð ÞPetr
k
?ð Þ otherwise:

(
ð27Þ

where Pet ?ð Þ~ 1{jtð Þ.
Lastly, one could delete an ancestral residue leaving no trace in

extant sequences—a column could exist but not be present in the

observed alignment—therefore we are interested in calculating

P(L0) the probability of an alignment with L0 observed columns

after marginalizing the unobserved columns. The probability of an

alignment with L0 observed columns and k unobserved columns is

given by

P L0,k T ,Re,pjð Þ~P w T ,Re,pjð Þ P ugap T ,Re,pj
� �� �k

P
1ƒuƒL0

P u T ,Re,pjð Þ,
ð28Þ

where the probability of an all-gaps column ugap is a particular case

of Equation. 25. Then, for a given alignment of L0 observed

columns, we marginalize to all possible unobserved columns as,

P L0 T ,Re,pjð Þ~ P w T ,Re,pjð Þ
1{P ugap T ,Re,pj

� � P
1ƒuƒL0

P u T ,Re,pjð Þ: ð29Þ

This is the final expression for the probability of a given alignment

of L0 columns, after marginalizing all possible unobserved

ancestral residues.

This algorithm will now reproduce the results of the original

Felsenstein algorithm for ungapped alignments when the param-

eters l = m = 0 (except for a geometric term which is the same for

all trees, thus will not affect the maximum likelihood estimation of

a tree). In addition, l = m = 0 are the optimal parameter choices for

any ungapped multiple alignment for any given tree. Notice that

for the previous statement to be true, it is crucial to have the extra

term (12jt) in the generative process of a substitution. Once we set

m = 0, the residue-residue substitution process in the presence of

gaps (described by Equation 9) reaches the same asymptotic value

(described by Equation 8) for any value of l, including both the

limit l = 0 and the limit l = ‘. It is the extra term that renders the

total probability of any finite-length alignment to zero in the case

l = ‘, and makes l = 0 optimal on ungapped alignments.

The extended peeling algorithm has worse-case time complexity

O Kz1ð Þ2� lz2ð Þ � 2n{1ð Þ
� �

for an alphabet of size K and a

multiple alignment of L columns and n sequences.

An Implementation in PHYLIP: DNAMLe
To test an application of our model, we modified the program

DNAML (from the PHYLIP package version 3.66, 4 August 2006 [24])

to use our generative model. Given a nucleotide multiple

alignment, the DNAML program infers a phylogenetic tree for the

sequences by maximum likelihood under an F84 rate matrix

model [14]. Our modified program DNAMLe uses the extended F84

rate matrix given by Equations 5, 6, 7, and 10, and implements the

extended Felsenstein algorithm described in the previous section.

DNAMLe uses the same core algorithms for maximum likelihood

tree inference as the original DNAML. For every DNAML function we

implemented a DNAMLe counterpart. In addition, DNAMLe optimizes

the gap parameters (l, m). After each new branch is added to the

tree using DNAML’s Newton-Raphson method, DNAMLe midpoint

roots the tree, and then jointly optimizes both branch lengths and

gap parameters using conjugate gradient descent. Midpoint

rooting is an easy but simplistic rooting method; we made no

attempt in DNAMLe to optimize the placement of the root, though

this would be possible without a significant efficiency cost, using

methods described in [74], for example.

For simplicity, in this paper’s results, we approximate the

average length of ancestral sequences ( p
1{p

) by the average length

of sequences in the given alignment. This is in line with common

practice in maximum likelihood methods for phylogenetic

inference for substitutions, which approximate the prior residue

distribution at the root by the observed residue frequencies in the

data [24]. In Bayesian methods, the root residue distribution and

other parameters of the rate matrix are determined as part of the

inference process usually in combination with Markov-chain

Monte Carlo (MCMC) methods as for instance in [5]; parameter p

could be estimated using similar techniques.

Given an ungapped alignment, DNAMLe and DNAML are expected

to produce identical results (same unrooted tree with same

likelihood, same branch lengths, and confidence limits). Given a

gapped alignment, comparison of the two implementations allows

us to ask how much performance improves when gaps are treated

by our extended model as opposed to treating gaps as missing

data.

Benchmarking
We compared DNAMLe and DNAML in three types of benchmark-

ing experiments. First, using simulated ungapped alignment data,

we confirmed that the two programs give essentially identical

results when no insertions and deletions are present. Second, we

produce alignments with 21%66% pairwise average substitutions; in blue alignments with gaps (pins = pdel = 0.001 and 0.07 substitutions per site and
branch) with a similar percentage of pairwise substitutions (20%65%) as the ungapped alignments. The alignments with gaps have a percentage of
pairwise gaps of 13%64%. Results are presented as a function of the geometric mean of sequences lengths. The tree reconstruction test assesses the
similarity between the inferred tree and the original tree. Three measures of tree similarity are displayed in (A), (B), and (C), respectively: a binary
count of whether the trees are topologically identical or not (TP), the Symmetric Difference Distance (SDD) and the normalized Branch Scoring
Distance (nBSD). (D) Mean branch length of the inferred trees, and (E) the running time required for the different inferences.
doi:10.1371/journal.pcbi.1000172.g003
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Table 1. Poisson l = 0.5 gap distribution for 8-taxon alignments.

Ave Subs
per Site
and Branch

ROSE Gap

Parameter
Pairwise
% ID

Pairwise
% SUBS

Pairwise
% GAPS

DAUC
%

(TP)

DAUC
%

(SDD)

DAUC
%

(nBSD) Mean MBL Time (L = 1000) (s)

DNAML DNAMLe DNAML DNAMLe

0.005 0.0020 9662 261 261 23.4 218.5 217.6 0.005 0.007 2.961.7 4.760.8

9662 261 261 3.8 25.0 216.3 0.006 0.008 2.561.1 4.660.6

0.010 0.0010 9462 461 261 14.8 216.1 27.9 0.010 0.012 2.460.8 5.360.7

9462 462 261 24.8 2.3 26.7 0.010 0.013 2.460.9 5.260.8

0.010 0.0020 9263 461 462 22.7 226.1 215.7 0.010 0.014 2.460.6 5.960.8

9163 562 462 24.9 4.3 214.2 0.012 0.018 2.460.4 5.860.8

0.020 0.0010 8864 862 462 12.9 219.1 26.7 0.020 0.024 2.460.2 6.060.7

8764 963 462 28.7 12.3 25.3 0.023 0.027 2.460.2 5.960.8

0.020 0.0020 8565 762 863 20.5 232.9 212.3 0.020 0.028 2.860.6 7.061.0

8366 1064 762 25.2 7.1 211.3 0.030 0.039 2.960.6 7.160.8

0.030 0.0005 8664 1163 361 7.4 214.7 22.7 0.030 0.032 2.560.7 6.060.7

8564 1263 361 212.8 15.9 21.4 0.032 0.035 2.760.6 6.160.7

0.030 0.0010 8365 1163 662 14.3 222.4 26.4 0.030 0.035 2.760.5 7.061.0

8165 1364 562 210.5 13.3 24.8 0.036 0.042 2.860.5 6.960.9

0.030 0.0020 7866 1063 1164 18.4 235.6 212.1 0.030 0.042 2.960.6 8.261.2

7568 1665 963 25.5 5.8 29.2 0.050 0.062 3.160.4 8.661.0

0.040 0.0005 8265 1464 462 9.6 217.2 22.7 0.040 0.042 2.760.4 6.560.7

8165 1564 462 216.4 19.3 20.7 0.043 0.047 2.760.3 6.760.6

0.040 0.0010 7866 1464 863 15.3 226.1 26.2 0.040 0.045 3.060.5 8.060.9

7667 1765 762 210.1 12.3 23.7 0.051 0.058 3.260.8 7.960.7

0.040 0.0015 7567 1364 1264 16.9 233.1 28.4 0.040 0.048 3.160.4 8.961.2

7268 1966 963 27.1 7.8 26.2 0.061 0.071 3.460.6 9.161.2

0.040 0.0020 7367 1263 1564 20.7 237.2 210.6 0.040 0.052 3.460.5 9.461.3

6869 2167 1163 24.7 4.6 28.4 0.072 0.085 3.760.4 10.861.3

0.070 0.0005 7167 2265 763 12.6 221.3 23.0 0.070 0.071 3.360.4 9.661.0

7068 2466 662 211.6 15.0 20.3 0.080 0.085 3.460.5 9.360.9

0.070 0.0010 6668 2065 1364 16.0 231.2 26.3 0.070 0.074 3.760.4 10.861.1

62610 2868 1063 29.2 9.3 23.2 0.101 0.109 3.960.3 11.661.2

0.070 0.0015 6269 1965 1965 20.2 239.6 28.2 0.070 0.078 4.060.6 12.561.7

57611 3168 1263 27.1 5.0 29.1 0.126 0.135 4.760.6 14.661.8

0.070 0.0020 58610 1864 2467 23.7 241.5 210.8 0.070 0.083 4.360.7 13.561.7

52612 3569 1364 24.4 3.1 211.9 0.154 0.162 5.160.7 16.862.4

0.100 0.0005 6369 2866 1063 17.1 229.7 23.6 0.100 0.100 4.060.7 12.161.3

60610 3268 863 211.7 12.7 20.4 0.121 0.125 4.160.5 12.061.5

0.100 0.0010 5769 2566 1866 20.6 240.3 26.3 0.100 0.100 4.560.7 14.561.3

52612 3669 1163 27.9 6.6 26.3 0.160 0.165 4.760.5 15.462.3

0.100 0.0015 52610 2365 2566 25.3 244.1 28.8 0.100 0.105 4.960.6 16.662.2

47612 40610 1364 24.0 2.0 212.2 0.201 0.202 5.761.0 19.063.3

0.100 0.0020 48611 2164 3167 27.2 250.7 211.4 0.100 0.110 5.460.7 18.362.2

43612 43610 1464 0.3 20.5 216.9 0.242 0.234 6.061.0 20.763.1

DAUC
% fð Þ~ AUCSf DNAMLeð ÞT{AUCSf DNAMLð ÞT

max AUCSf (DNAMLeT, AUCSf DNAMLð ÞTf g|100:

For a given method M, the area under the curve (AUC): AUCSf Mð ÞT~
PL~100

L~50 Sf L Mjð ÞT|DL,

where:

Sf L Mjð ÞT~ 1
N

PN
n~1 f An

LM
� �

, for alignments An
L

	 
100

n~1
with geometric mean of sequence length L, and DL = 5 nts, for these experiments.

Nomenclature:

TP = fraction of true positive trees.

SDD = Symmetric Difference Distance.

Probabilistic Phylogeny with Gaps

PLoS Computational Biology | www.ploscompbiol.org 10 September 2008 | Volume 4 | Issue 9 | e1000172



assessed the ability of the two programs to accurately infer

phylogenetic tree topologies for simulated alignment data with

insertions and deletions from arbitrarily generated trees. Third, we

assessed the programs’ ability to correctly infer phylogenetic trees

on real ribosomal RNA data.

The problem with benchmarking phylogenetic inference

methods is knowing the ground truth. Evolutionary trees are only

experimentally known in a few unusual cases for short time scales

and rapidly evolving organisms; all other trees have been inferred.

The strength of simulated data experiments is that the tree is

known, but their weakness is that the simulation must assume an

evolutionary model that may be biologically unrealistic and/or too

similar to the evolutionary model assumed by the inference

method to be tested. On the other hand, the strength of testing on

real biological alignments is that the data are realistic, and the

weakness is that the true tree is unknown. To evaluate inferences

on real data, we have developed a ‘‘concordance test’’ that does

not rely on the true tree being known. Testing on both simulated

and real data should help compensate for weaknesses of either

approach.

Tests on simulated ungapped alignments. We first made

sure that DNAMLe and DNAML produce essentially identical

inferences when no insertions or deletions are present. This is a

control experiment, making sure that DNAMLe correctly infers that

optimal deletion and insertion rates are 0 on ungapped

alignments, and that the likelihood calculation correctly reduces

to the original ungapped version.

We generated simulated 8-taxon rooted trees using the

algorithm of Kuhn and Felsenstein [75], which samples a variety

of branch lengths and topologies. Each tree was rescaled to a

chosen average branch length.

We used the program ROSE to generate simulated alignments

from these sampled phylogenetic trees [76]. We use ROSE because

it allows us to implement reasonably realistic models of insertion

and deletion, which we will describe and use in the next section; in

these initial ungapped control experiments, we turn off the

insertion and deletion parameters. We modified ROSE to use the

F84 rate matrix model for residue substitution, the same model

used in DNAML and DNAMLe. We used a uniform stationary

distribution of 25% for each residue, and a transition/transversion

ratio of 2.0 (the DNAML default).

We sampled trees for 9 different average branch lengths,

ranging from 0.005 to 2.0 substitutions/site and branch in roughly

2–36 multiplicative steps (corresponding to average pairwise

identities ranging from 98% down to a fully saturated 25% in the 8

sequences). (The units of evolutionary time are in principle

arbitrary. Substitution rate matrices are traditionally normalized

to units of substitutions/site. DNAMLe reports time in units of changes

per site, where changes include substitutions, insertions, and

deletions.) For each choice of average branch length, we sample

100 different trees. For each tree, we generate different alignment

lengths ranging from 50 to 1000 in steps of 5. A total of 900 trees

and 171900 alignments were generated (100 samples each for 9

choices of branch length and 191 choices of alignment length). For

each alignment, we infer a maximum likelihood tree topology

using DNAMLe and DNAML.

To evaluate the correctness of inferred tree topologies, we

computed three standard measures: the fraction of correct

topologies (true positives, TP), the symmetric difference distance

(SDD) [77], and the branch score distance (BSD) [75]. TP simply

counts an inferred topology as right or wrong (high TP is better).

SDD counts the number of non-identical internal branches in the

two (unrooted) trees, where ‘‘identical’’ means splitting the two

trees into the same disjoint sets of taxa; for a comparison of trees of

8 taxa, SDD ranges from 0 for identical trees to 10 for maximally

dissimilar topologies. BSD evaluates not just the topology but also

the correctness of inferred branch lengths, by summing the cost

assigned to each internal branch of the square of the difference to

the identical branch in the other tree (if there is no identical

branch in the other tree, the cost is the whole branch square).

Because BSD depends on total tree branch length, in order to

compare results across different branch lengths, we calculate a

normalized BSD (nBSD) on trees rescaled to an average branch

length of one. Both SDD and BSD were calculated using the

PHYLIP program TREEDIST. Better inferences are indicated by larger

TP and by smaller SDD and nBSD.

The results are shown in Figure 2. As expected, the accuracy of

tree topologies inferred by the two methods is essentially identical

by the TP and SDD measures. As in any phylogenetic inference

method, accuracy improves with alignment length (more data is

better), and shows an optimum average branch length of about

0.05, corresponding to average pairwise sequence identities of

about 82% (more similar sequences have fewer substitutions and

less signal, and less similar sequences are more saturated). In the

best cases (0.05 branch length, alignments longer than 800 nt)

both methods infer the correct tree about 78% of the time

(Figure 3A). nBSD values are also essentially identical for most

choices of average branch length. We do see significant differences

in branch length estimation (either by the nBSD test, or by plotting

average inferred branch length) at large, saturating choices of

average branch lengths of 1.0 or 2.0, corresponding to almost

uncorrelated random sequences. In this extreme (and not

biologically relevant) regime, branch lengths make little difference

in likelihood so long as they are large (and accordingly, likelihoods

assigned by the two methods are not significantly different, despite

the different inferred branch lengths), and the inferred branch

lengths become sensitive to details of the optimization method.

Thus these extreme cases appear to be identifying a biologically

irrelevant weakness in DNAML’s optimizer, which infers overly large

branch lengths (5.760.5 instead of 2.0 for the largest alignments),

whereas DNAMLe results, produced by a different implementation of

optimizer, are closer to the correct value (1.5560.05). Overall,

with the exception of this minor difference in numerical

optimization, these results indicate that DNAMLe and DNAML do

Table 1. cont.

NBSD = normalized Branch Score Distance.

MBL = mean branch length.

For a large variety of synthetic alignments of 8 taxa with gaps generated using a Poisson (l = 0.5) length distribution. We compare the performance of DNAMLe respect to
DNAML using three different measures. For each measure, we report the relative area under the curve (AUC) difference DAUC

% fð Þ, which for a given measure f describes (as a

percentage) the difference between the AUC for DNAMLe versus that of DNAML relative to the larger of the two AUC’s. In white, we show the results obtained with the

phylogenetically correct alignments, in gray after realigning with CLUSTALW 1.83. In bold when the result is favorable to DNAMLe.

doi:10.1371/journal.pcbi.1000172.t001
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Table 2. Geometric gap distribution for 8-taxon alignments.

Ave Subs per
Site and
Branch

l = m
Parameter

Pairwise
% ID

Pairwise
% SUBS

Pairwise
% GAPS

DAUC
%

(TP)

DAUC
%

(SDD)

DAUC
%

(nBSD) Mean MBL Time (L = 1000) (s)

DNAML DNAMLe DNAML DNAMLe

0.005 0.30 9662 261 261 28.9 227.5 224.9 0.005 0.007 2.861.5 4.460.6

9562 361 261 7.6 27.5 222.3 0.006 0.009 2.260.5 4.560.6

0.010 0.15 9462 462 261 19.8 221.4 213.1 0.010 0.012 2.260.7 5.060.8

9362 562 261 23.2 2.9 211.7 0.012 0.014 2.260.2 5.060.7

0.010 0.30 9263 461 462 28.7 236.1 220.9 0.010 0.014 2.861.3 5.760.8

9163 662 361 0.3 0.2 217.1 0.015 0.021 2.460.3 6.060.9

0.020 0.15 8864 863 462 16.0 227.8 211.7 0.020 0.024 2.560.4 5.960.9

8764 963 461 27.0 7.6 28.2 0.025 0.030 2.560.3 6.160.9

0.020 0.30 8564 762 863 22.3 240.6 218.0 0.020 0.028 2.760.4 6.760.9

8664 1264 261 0.0 0.0 211.6 0.036 0.045 2.460.3 5.760.7

0.030 0.06 8664 1163 261 12.0 218.9 25.4 0.030 0.032 2.560.4 5.960.7

8664 1264 261 29.3 11.3 23.5 0.032 0.053 2.460.3 5.760.7

0.030 0.15 8365 1163 662 17.7 233.5 210.4 0.030 0.035 2.660.5 6.760.9

8166 1465 562 25.0 6.7 26.7 0.041 0.048 2.960.4 6.960.8

0.030 0.30 7866 1063 1263 22.1 245.9 216.4 0.030 0.040 3.060.4 8.260.9

7368 1966 862 1.9 21.6 29.5 0.060 0.071 3.360.3 9.061.1

0.040 0.06 8265 1464 361 11.0 222.6 25.0 0.040 0.042 2.760.3 6.560.6

8165 1665 361 210.4 14.6 22.6 0.044 0.047 2.760.4 6.560.8

0.040 0.15 7866 1464 863 18.3 235.7 29.4 0.040 0.045 2.960.4 7.760.8

7567 1966 662 24.1 4.4 24.8 0.058 0.066 3.160.4 8.261.0

0.040 0.24 7567 1364 1264 20.9 242.3 213.1 0.040 0.049 3.260.5 8.861.1

7068 2267 862 20.6 0.6 27.4 0.074 0.085 3.660.4 9.661.2

0.040 0.30 7367 1263 1564 23.4 246.5 213.9 0.040 0.052 3.360.5 9.361.6

6669 2567 963 2.5 21.4 28.4 0.085 0.097 4.060.5 11.061.6

0.070 0.06 7267 2265 763 14.3 230.2 24.6 0.070 0.071 3.360.6 8.960.9

7068 2567 562 27.5 10.4 21.4 0.082 0.086 3.460.4 9.161.1

0.070 0.15 6767 2065 1364 23.5 242.8 29.1 0.070 0.074 3.860.7 11.361.3

61610 3168 863 23.2 2.9 25.4 0.113 0.121 4.160.6 12.262.0

0.070 0.24 6169 1964 2065 25.3 247.5 211.5 0.070 0.079 4.260.7 12.861.6

55611 3569 1063 24.4 1.8 27.7 0.147 0.154 4.860.8 15.062.7

0.070 0.30 5869 1864 2466 24.1 247.3 213.2 0.070 0.083 4.460.5 13.961.6

51611 3869 1163 23.0 1.8 210.1 0.170 0.176 5.060.6 16.562.8

0.100 0.06 6468 2866 862 16.8 234.6 25.5 0.100 0.097 3.860.6 11.261.5

61610 3368 662 211.6 10.1 20.7 0.123 0.127 3.960.4 11.761.7

0.100 0.15 57610 2566 1865 22.4 244.2 29.8 0.100 0.100 4.560.6 14.864.7

51611 3969 1063 26.1 3.4 27.3 0.175 0.179 5.060.5 16.163.2

0.100 0.24 51610 2265 2666 29.6 250.8 211.5 0.101 0.105 5.360.8 17.062.1

46612 43610 1163 4.7 22.9 212.4 0.223 0.220 5.660.7 19.164.1

0.100 0.30 47611 2164 3267 29.1 253.5 213.7 0.102 0.110 5.460.8 18.262.4

43612 46610 1263 4.1 23.8 215.3 0.254 0.243 5.860.8 21.063.8

DAUC
% fð Þ~ AUCSf DNAMLeð ÞT{AUCSf DNAMLð ÞT

max AUCSf DNAMLeð ÞT, AUCSf DNAMLð ÞTf g|100:

For a given method M, the area under the curve (AUC): aucSf Mð ÞT~
PL~100

L~50 Sf L Mjð ÞT|DL

where:

Sf L Mjð ÞT~ 1
N

PN
n~1 f An

L Mj
� �

, for alignments An
L

	 
100

n~1
with geometric mean of sequence length L, and DL = 5 nts, for these experiments.
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produce essentially identical results on ungapped alignments, as

expected.

Tests on simulated alignments with insertions and

deletions. Using the same protocol as above, we then asked

whether DNAMLe would produce better inferences on gapped

alignments than DNAML. ROSE simulates insertions and deletions by

inserting and deleting a block of residues at a random position

according to a chosen length distribution, and controlled by

insertion/deletion probability parameters pins and pdel per unit

branch length. Note that because ROSE generates multi-residue

insertions and deletions, it simulates a different and more

biologically realistic process than the column-independent

insertion/deletion process our model assumes. We therefore

expect our model to suffer in the simulation from its assumption

that gaps are uncorrelated, much as it would in real data; the

question is whether this is outweighed by having at least some

model of insertion and deletion, compared to DNAML’s treatment of

gaps as missing data.

Tests using a Poisson insertion and deletion length

distribution. We had ROSE sample insertion and deletion

lengths l from a Poisson distribution P lw0ð Þ~ ll{1e{l

l{1ð Þ! with

l = 0.5. This particular distribution allows with probability

0.3935 insertions or deletions of more than one nucleotide at the

time. This is still a weak violation of the column independence

assumptions, and in the next section we will test the limits of our

model regarding this issue. We used a range of 14 different gap

probability parameters pins = pdel, ranging from pins = pdel = 0 (no

gaps) to pins = pdel = 0.1.

Results of an illustrative comparison of two choices of gap

probability and average branch length are shown in Figure 3.

These two datasets have roughly equal frequencies of observed

substitution and therefore show roughly equal performance with

DNAML (left side of Figure 3): in the first (red points) pins = pdel = 0

and average substitution branch length of 0.06 produced

ungapped alignment datasets in which all changes were substitu-

tions (pairwise comparisons averaged 21% substitutions and 79%

overall identity), and in the second (blue points), setting

pins = pdel = 0.001 and an average substitution branch length of

0.07 produced alignment datasets with substitution events that

averaged 20% in pairwise comparisons, and insertion/deletion

events that averaged 13% in pairwise comparisons. These average

percentages of substitutions and gaps in the blue dataset are

reasonably realistic, comparable to those observed in our real

rRNA alignments; see Table 4. The right side of Figure 3 then

shows the effect of DNAMLe being able to use the information in

gaps in addition to substitutions: for DNAMLe inferences, the blue

dataset (the one with gaps) is more informative, and accuracy

increases.

Table 1 shows the relative performance of DNAMLe versus DNAML

for a large range of alignments with gaps. In order to summarize

with one number curves similar to those presented in Figure 3, we

calculate the area under the curve (AUC) in analogy to ROC

curves. In particular, we introduce the relative AUC difference,

DAUC
% . For a given measure f, the quantity DAUC

% fð Þ describes (as a

percentage) the difference between the AUC for DNAMLe versus that

of DNAML relative to the larger of the two AUC’s. DNAMLe shows

consistently better performance than DNAML, and the improvement

increases with the percentage of gaps in the alignment.

Figure 3 and Table 1 also show the mean branch lengths

inferred by the two methods. For the gapped alignments (blue),

DNAMLe infers longer branch lengths than DNAML (in units of

changes/site) because it counts insertions and deletions as changes,

in addition to substitutions.

Table 1 also shows results (in gray) when instead of using the

phylogenetically correct alignments, we allow the sequences to be

realigned using a standard (and not phylogenetically aware)

alignment algorithm. In particular for the experiments in this

paper, we used CLUSTALW version 1.83. The more noticeable effect

of realigning is that the columns of the alignment get compressed.

The number of substitutions increases and the number of gaps

decreases respect to the phylogenetically correct alignments. As

expected, performance of DNAMLe declines in terms of predicting

the phylogenetic topology correctly, (although the two methods

become almost equivalent in terms of topological measures as the

number of gaps in the realignments increases). However, as seen in

Table 1, DNAMLe still shows improvement in all cases in terms of

the nBSD measure which takes into account the combined effect

of both the accuracy of the topology and the accuracy of the

branch lengths. These results show that the loss due to the lack of a

phylogenetically correct alignment seems to be compensated by

the contribution to branch lengths introduced by treating

insertions and deletions as real evolutionary events.

The time performance of DNAMLe is similar to that of DNAML. Both

scale linearly with alignment length (and with number of taxa,

though this is not shown by these experiments, which use a fixed

number of 8 taxa). For both methods, the scaling factor increases as

the number of substitutions and the number of gaps increases (see

Table 1). DNAMLe shows (for trees of eight taxa and alignments of

1,000 residues) about a three-fold increase in average run time

compared to DNAML, whether the alignment has gaps or not.

Tests sampling from the generative model. As a matter

of completeness, we have also sampled from the generative model

described in this work using the program eRATE. The model inserts

residues following a geometric distribution controlled by the time-

dependent parameter jt in Equation 7. We applied the protocol

described in the previous section. Results for gapped alignments

Table 2. Geometric gap distribution for 8-taxon alignments.

Nomenclature:

TP = fraction of true positive trees.

SDD = Symmetric Difference Distance.

NBSD = normalized Branch Score Distance.

MBL = mean branch length.

Similarly to Table 1, we show results for a large variety of synthetic alignments of 8 taxa with gaps generated using the generative model described in this paper. We
compare the performance of DNAMLe RESPECT TO DNAML using three different measures. As in Table 1 and for each measure, we report the relative area under the curve (AUC)
difference DAUC

% fð Þ defined above. White rows indicate results for the phylogenetically correct alignments. Gray rows indicate results after realigning the evolved

sequences with CLUSTALW 1.83. In bold when the result is favorable to DNAMLe.

doi:10.1371/journal.pcbi.1000172.t002
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with a large range of degrees divergence (comparable to those

presented in the previous section) are given in Table 2. As

expected, this is a relatively easier test than that posed by

alignments with Poisson distributed gaps, but in general, similar

trends are observed in the results (compare Table 1 with Table 2,

see also Table 3).

Test of the column independence assumption. In order to

test the limitations of considering individual gaps as independent

events, we also had ROSE sample insertions and deletions from a

distribution that simulates a DNA alignment of a protein-coding

region. To that purpose, we used a nucleotide version of the

empirically-derived coding gap distribution introduced in SIMPROT

[78] that allows gaps to occur only as multiple of three. We also

added an option in ROSE in order to allow insertions and deletions to

occur randomly but only at multiple of three positions with respect to

the start of the alignment.

The SIMPROT gap length distribution depends on one parameter

c/t. We selected three different values, in increasing order of

divergence: c/t = 100 for which p(3 nts) = 0.7238 and p(24 nts) =

0.0001; a second distribution c/t = 6 which is a good approxima-

tion to a empirically-determined distribution trained on protein

sequences with less than 100 PAM sequence divergence [79]; and

finally c/t = 1 which corresponds exactly to a distribution

empirically determined from proteins sharing no more than 25%

sequence identity [80]. We limited the maximum number of

inserted or deleted nucleotides to 100. For the c/t = 6 distribution,

one has p(3 nts) = 0.4510 and p(99 nts) = 0.0009. For the c/t = 1

distribution, one has p(3 nts) = 0.2938 and p(99 nts) = 0.0034. For

each of the three protein-coding gap distributions, we applied the

same protocol as for the Poisson distribution used previously.

As we observe in Table 3, the c/t = 100 coding gap length

distribution DNAMLe still shows an improvement respect to DNAML at

least for the two topological measures, this is despite the fact that this

distribution breaks the column independence assumption more

strongly than the Poisson distribution used in the previous section

(p(l$6 nts) is 0.2762 for this distribution, compared to 0.0002 for the

Poisson distribution). However, for the two more divergent coding

gap length distributions, the size of the insertion/deletion blocks is so

Table 3. 8-Taxon alignments.

Gap Length
Distribution

Ave Subs
per Site
and Branch

Gap
Parameter

Pairwise
% ID

Pairwise
% SUBS

Pairwise
% GAPS

DAUC
%

(TP) DAUC
% SDDð Þ DAUC

% nBSDð Þ

eRATE 0.005 0.30 9662 261 261 28.9 227.5 224.9

POISSON l = 0.5 0.005 0.0020 9662 261 261 24.6 219.8 216.8

CODING c/t = 100 0.005 0.0020 9662 261 262 4.8 22.5 11.8

CODING c/t = 6 0.005 0.0010 9664 261 264 24.5 5.0 36.8

CODING c/t = 1 0.005 0.0005 9664 261 264 28.1 7.0 41.3

eRATE 0.020 0.30 8564 762 863 22.3 240.6 218.0

POISSON l = 0.5 0.020 0.0020 8565 762 863 20.5 232.9 212.3

CODING c/t = 100 0.020 0.0020 8565 762 764 2.9 20.5 11.3

CODING c/t = 6 0.020 0.0010 8468 762 967 211.6 19.9 43.3

CODING c/t = 1 0.020 0.0005 8568 762 768 215.1 20.9 51.6

eRATE 0.040 0.30 7367 1263 1564 23.4 246.5 213.9

POISSON l = 0.5 0.040 0.0020 7367 1263 1564 20.7 237.2 210.6

CODING c/t = 100 0.040 0.0020 7368 1364 1465 0.7 0.2 8.3

CODING c/t = 6 0.040 0.0010 72610 1264 16610 221.9 31.3 40.4

CODING c/t = 1 0.040 0.0005 73611 1364 14611 226.9 36.4 50.1

eRATE 0.070 0.30 5869 1864 2466 24.1 247.3 213.2

POISSON l = 0.5 0.070 0.0020 58610 1864 2467 23.7 241.4 210.8

CODING c/t = 100 0.070 0.0020 60610 1864 2267 2.4 22.4 5.5

CODING c/t = 6 0.070 0.0010 57612 1765 26612 228.6 34.5 38.0

CODING c/t = 1 0.070 0.0005 59613 1865 23613 239.4 50.1 48.9

Nomenclature:

AUC = area under the curve

TP = fraction of true positive trees.

SDD = Symmetric Difference Distance.

NBSD = normalized Branch Score Distance.

We assess the performance of DNAMLe for five different gap length distributions using alignments of 8 taxa with similar average pairwise substitutions and gaps. The gap
distributions used to create the synthetic alignments are ordered by increasing degree of violation of the column independence assumption. For a given measure, we
report the relative AUC difference DAUC

% introduced in Table 1. In bold when the result is favorable to DNAMLe.
doi:10.1371/journal.pcbi.1000172.t003
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Table 4. 4-Taxon alignments.

Gap Length
Distribution

Ave Subs per Site
and Branch Gap Parameter

Pairwise
% ID

Pairwise
% SUBS

Pairwise
% GAPS

ÆTPæ%

r = 1
ÆTPæ%

r = 1
ÆTPæ%

r = 10
ÆTPæ%

r = 10

DNAML DNAMLe DNAML DNAMLe

eRATE 0.005 0.30 9762 161 261 94.3 96.2 67.1 80.6

9762 261 161 93.6 95.6 64.0 69.4

POISSON l = 0.5 0.005 0.0020 9762 261 261 93.5 95.1 65.2 76.0

9762 261 261 93.5 94.5 63.8 69.7

CODING c/t = 100 0.005 0.0020 9762 161 161 91.9 92.6 63.3 72.1

9762 261 161 92.2 92.4 63.1 69.8

CODING c/t = 6 0.005 0.0010 9762 161 263 91.4 91.6 62.9 96.6

9763 261 263 91.1 91.0 61.5 68.5

CODING c/t = 1 0.005 0.0005 9764 161 163 90.7 91.4 62.7 69.0

9764 261 164 91.3 90.4 62.3 69.0

eRATE 0.010 0.30 9463 361 362 97.4 98.3 78.2 89.6

9463 462 261 97.1 97.1 71.3 70.0

POISSON l = 0.5 0.010 0.0020 9463 361 361 97.6 98.6 77.4 86.4

9463 361 361 97.2 98.1 74.0 72.5

CODING c/t = 100 0.010 0.0020 9463 361 362 96.9 97.3 76.0 81.1

9463 361 362 96.8 96.8 75.4 74.4

CODING c/t = 6 0.010 0.0010 9465 361 364 96.5 97.0 75.6 78.4

9465 362 364 96.6 96.2 75.3 75.8

CODING c/t = 1 0.010 0.0005 9465 361 365 96.8 96.8 74.5 77.6

9466 362 365 96.4 96.4 75.1 77.3

eRATE 0.030 0.30 8367 863 964 99.5 99.9 89.9 96.7

8067 1466 662 99.3 99.4 65.8 43.6

POISSON l = 0.5 0.030 0.0020 8467 863 864 99.4 99.8 89.8 95.4

8367 1165 763 99.2 99.4 76.3 55.5

CODING c/t = 100 0.030 0.0020 8467 863 864 99.5 99.5 90.0 90.4

8367 964 764 99.3 98.9 85.1 66.3

CODING c/t = 6 0.030 0.0010 8369 863 1068 99.2 98.6 88.4 85.8

8369 964 967 99.0 96.8 85.4 67.9

CODING c/t = 1 0.030 0.0005 83610 863 869 98.2 97.2 89.2 85.3

83610 964 868 98.0 95.4 86.2 74.5

eRATE 0.050 0.30 75610 1264 1466 99.6 100.0 92.86 98.0

72610 2368 862 99.3 99.5 46.8 25.7

POISSON l = 0.5 0.050 0.0020 75610 1164 1366 99.8 99.9 92.5 97.1

73610 1965 1062 99.2 99.4 62.6 36.1

CODING c/t = 100 0.050 0.0020 76610 1164 1266 99.5 99.6 92.2 92.0

7469 1566 964 99.4 98.8 82.7 52.3

CODING c/t = 6 0.050 0.0010 74612 1264 15610 99.3 98.7 90.8 84.7

72612 1466 1368 98.4 95.6 82.9 55.8

CODING c/t = 1 0.050 0.0005 74612 1264 13611 99.0 97.6 91.4 83.6

74613 1466 12610 98.2 94.7 86.0 63.6

eRATE 0.100 0.30 58614 1965 2469 99.8 100.0 92.9 98.8

53611 3869 1063 98.1 98.3 34.9 32.4

POISSON l = 0.5 0.100 0.0020 55614 1965 2469 99.6 100.0 93.7 98.0

54611 35610 1164 98.3 98.5 35.1 33.8

CODING c/t = 100 0.100 0.0020 59614 1765 2269 99.8 99.7 94.0 91.5
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large that by taking gaps into account, we cannot even reproduce the

topology of the original substitutions-only tree.

Test for long-branch attraction. To make sure that DNAMLe
does not suffer for some unexpected reason from significantly

more systematic long-branch attraction than DNAML itself, we used

4-taxon trees depending on two parameters [81]. One parameter

is the branch length of the internal branch and two opposite leaves

(the three-branch parameter, t3), the other parameter is the branch

length of the other two opposite leaves (the two-branch parameter,

t2). Using the same protocol as before, we assessed the programs

performance on alignments generated according to 4-taxon trees

in which the two-branch parameter is 10 times longer than the

three-branch parameter, for all gap length distributions used

above.

Results are presented in Table 4. For the phylogenetically

correct alignments, we do not observe any long branch attraction

effect. In fact, in most cases (except for the two most extreme

coding distributions and the most divergent cases) DNAMLe tends to

perform better than DNAML, and the improvement is larger for the

case prone to long branch attraction (t3 = 10t2 or r = 10) than for

the balanced case in which all five branches are equal (t3 = t2 or

r = 1). For the realigned tests, both DNAML and DNAMLe show a

Table 5. rRNA alignment statistics.

SSU Archaea Chloroplasts Bacteria Eukarya Mitochondria

No. seqs 74 75 1601 900 617

Alignment length 1756 2456 3094 7160 4716

Geometric mean seqs 1446 1446 1497 1788 1011

Pairwise % ID 7167 74611 6866 56614 49620

Pairwise % SUBS 2365 1967 2264 2065 2566

Pairwise % GAP 664 765 1165 24612 26620

Total % gaps 17.6 39.0 53.2 74.8 78.0

LSU Archaea Chloroplasts Bacteria Eukarya

No. seqs 26 32 120 89

Alignment length 3346 4311 4555 9055

Geometric mean seqs 2994 2936 2918 3623

Pairwise % ID 6569 70610 6766 50612

Pairwise % SUBS 2967 2065 2564 2265

Pairwise % GAP 662 1165 964 28611

Total % gaps 10.5 31.8 35.9 59.6

Statistics of the rRNA alignments obtained from the Comparative RNA Web Site [82] after sequences with more than 95% identity to each other have been removed
from the alignments.
doi:10.1371/journal.pcbi.1000172.t005

Table 4. cont.

Gap Length
Distribution

Ave Subs per Site
and Branch Gap Parameter

Pairwise
% ID

Pairwise
% SUBS

Pairwise
% GAPS

ÆTPæ%

r = 1
ÆTPæ%

r = 1
ÆTPæ%

r = 10
ÆTPæ%

r = 10

DNAML DNAMLe DNAML DNAMLe

53611 2969 1365 99.0 98.0 51.4 43.8

CODING c/t = 6 0.100 0.0010 54616 1866 28614 98.4 98.4 92.1 78.6

54615 2669 20610 97.5 92.4 51.3 38.9

CODING c/t = 1 0.100 0.0005 56616 1966 24615 99.0 97.4 92.5 77.0

56615 2569 19611 97.9 91.4 63.8 44.1

nomenclature:

ÆTPæ% = mean percentage of true positive trees.

We test the possibility of spurious long branch attraction associated to DNAMLe using 4-taxon trees depending on two parameters: t3 the length of the internal branch
and two opposite leaves, and t2, the length of the other two opposite leaves [81]. We compare the performance of DNAMLe respect to that of DNAML using alignments
generated by trees with similar average substitutions branch length (abl) but such that in one case the four leaves are identical (t3 = t2 or r = 1) with another extreme
case prone to long branch attraction in which two opposite leaves are 10 times longer than the other two leaves and the internal branch (t2 = 10-t3 or r = 10). For a given
‘‘abl’’ and a given parameter r, one has t3~

6ab1
3z2r

and t2 = rt3. For each method (DNAML and DNAMLe) and tree configuration (r = 1 and r = 10), we report the mean

percentage of true positives (TP). No long branch attraction is observed for the phylogenetically correct alignment (in white). For the CLUSTALW 1.83 alignments (in gray),

both methods have a tendency to infer the wrong tree as the divergence increases. In bold when more than 50% of the trees are incorrectly predicted.
doi:10.1371/journal.pcbi.1000172.t004
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certain long-branch attraction tendency when the amount of

substitutions nearly triples that of gaps. For the more extreme

coding distribution, the effect seems to be more severe for DNAMLe.

This effect can be attributed to the column independence

assumption. These results show that while there is some systematic

long-branch attraction for DNAMLe and DNAML that effect occurs in

some extreme situations which we do not see reproduced in real

alignment such as those of rRNA.

Concordance test on ribosomal RNA alignments. We

developed a test to evaluate a phylogenetic inference method on

real data, called the ‘‘concordance test’’. We split an alignment

randomly into two disjoint sets of columns, infer a tree on each,

and ask if the two trees are identical. The frequency that the same

tree is obtained for different subsets of columns from the same

alignment should be correlated with phylogenetic inference

accuracy, because in general, we only expect to obtain the same

tree if it is the correct tree. The concordance test should be well

suited for evaluating whether a modified method extracts more

information from a given alignment, which is the question at hand

here. The test may be less suited for evaluating the absolute

accuracy of an entirely new inference program, because some

systematic errors, such as long branch attraction, could result in

agreement on the wrong tree; simulations could be used to detect

such systematic problems, though.

We found it is important to choose columns randomly, rather than

simply splitting an alignment in half, because real alignments often

contain preferentially 59- or 39-truncated sequence fragments.

In order to evaluate the performance of DNAMLe and DNAML on

real alignments, we applied the concordance test to a large

number of ribosomal RNA alignments. We obtained curated

rRNA alignments from the Comparative RNA Web Site (CRW;

http://www.rna.ccbb.utexas.edu) [82] for different domains of life

– five small subunit (SSU) alignments and four large subunit (LSU)

alignments – and filtered out sequences more than 95% identical

to another. These datasets are summarized in Table 5. We

randomly sampled a large number of eight-taxon subalignments

from these datasets and applied the concordance test with the

DNAMLe and DNAML methods.

Results are summarized in Figure 4. Overall, DNAMLe shows tree

concordance of 27.9% for SSU and 46.6% for LSU, while DNAML

shows tree concordance in 16.9% for SSU and 35.7% for LSU.

The error estimate for all these results is about 0.5–0.6%, which

indicates that the improvement obtained by DNAMLe is significant.

LSU alignments are longer than SSU (420561179 versus

19596579), probably explaining the better performance. For

alignments with few gaps, the two methods produce similar results.

The improvement of DNAMLe over DNAML increases with the

frequency of gaps in the alignments.

With respect to computational time, Figure 4D shows that both

methods scale similarly, with DNAMLe taking about two- to three-

fold longer.

Discussion

We have presented a non-reversible probabilistic model of

sequence evolution accounting for substitutions, insertions, and

deletions that is based on a continuous-time Markov process. This

model does not assume a pre-stated number of columns. Rather, it

describes a generative evolutionary model of substitution,

insertion, and deletion events, starting from an explicit prior

distribution over ancestral sequences of any length. This avoids the

conceptual flaws that easily arise in column-independent models

based on a Markov process that includes the gap character. The

model remains compatible with efficient post-order transversal

algorithms to calculate the likelihood of a phylogenetic tree. The

model can also be used to calculate the probability of ancestral

sequences with an arbitrary number of residues that leave no trace

in the observed alignment.

To do this, the model assumes column independence, an

assumption that is problematic because insertions and deletions

typically involve multiple residues at the same time. Although we

can indeed produce synthetic examples for which our model

breaks down due to the column independence assumption, our

results for real rRNA alignments show that the gap-extended

model is able to produce better trees than the standard model,

indicating that the cost of the assumption is outweighed by the

gain in modeling gaps instead of ignoring them as missing data.

McGuire et al. have already made the same observation [41].

There are ways in which we might relax the column independence

assumption; for example, one could extend the ideas of context-

dependent substitution rate matrices and context-dependent

residue distributions [83].

The model introduces as free parameters the rates of insertions

and deletions, and the geometric probability parameter for the

distribution of ancestral sequences. In the results presented here,

for simplicity, we have used the F84 substitution rate matrix,

identical deletion rates for all residues, and assumed that inserted

residues have the same probability distribution as the stationary

distribution of the substitution process. Our model does not

require these simplifications. Our results may be generalized to

arbitrary substitution rate matrices, deletion rates, and inserted

residue probability distributions.

It would be straightforward to integrate this method into any

probabilistic model of sequence alignment, including phylo-

HMMs [38,84] and phylo-SCFGs [21], in order to account for

insertion and deletion events as well as substitution events, without

changing the algorithmic complexity of the existing algorithms,

and where the insertion and deletion parameters can be inferred

from the data [46].

Comparison to Reversible Models
The TKF91 model and McGuire’s model are designed to be

reversible. Our model is non-reversible with respect to insertions

and deletions. Reversibility is a mathematically convenient

Figure 4. Comparison of DNAML versus DNAMLe using the ‘‘tree concordance test’’ on ribosomal RNA alignments. Tree concordance test
for SSU (left) and LSU (right) rRNA alignments displayed as a function of the total fraction of gaps present in the alignment. We used five SSU and four
LSU alignments described in Table 5. For each alignment, we randomly selected a large number of eight taxa alignments (4,000 for the Archaea and
Chloroplasts alignments, and 10,000 for the Eukarya, Bacteria and Mitochondria alignments). Each eight taxa alignment was first shuffled and then
split in two halves. The tree concordance test assesses the similarity between the two trees inferred for the two sections of the alignment. Three
measures of tree similarity are displayed: a binary count of whether the trees are topologically identical or not (TP), the Symmetric Difference Distance
(SDD) and the normalized Branch Scoring Distance (nBSD). Results for all SSU (LSU) tests have been summarized together. (A) A histogram of total
alignments, as well as the number of TPs for DNAML (magenta) and DNAMLe (cyan) as a function of the total fraction of gaps in the alignment. (B,C,D)
Results for the fraction of TPs, the SDD, and the nBSD respectively. Overall tree concordance for SSU rRNA is 27.9% (10,589/38,000) for DNAMLe, versus
for 16.9% (6,418/38,000) DNAML. Overall tree concordance for LSU rRNA is 46.6% (13,048/28,000) for DNAMLe , versus 35.7% (10,002/28,000) for DNAML. (E)
shows a comparison of time performance. DNAMLe shows on average a two to three fold time increase respect to DNAML for eight taxa alignments.
doi:10.1371/journal.pcbi.1000172.g004
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assumption in phylogenetic inference (allowing inference on

unrooted trees, for example), and for residue substitution events,

usually seem reasonable. However, in the case of insertion/

deletion processes, reversibility seem less easy to justify, if one

expects the insertion rate l and the deletion rate m to behave as

independent parameters.

For a model to be reversible with respect to insertions/deletions,

obviously constraints must be imposed on the insertion rate l and

deletion rate m; moreover, the constraints imposed by reversibility

can be counterintuitive. Consider what happens in a case of zero

deletion rate and a positive insertion rate. For McGuire’s model,

reversibility requires that the frequency of gaps is a constant (p–),

and that it is related to the rates of insertions and deletions by the

condition p– = m/(l+m). For the TKF91 model, reversibility requires

a length distribution for evolved sequences identical to that of

ancestral sequences which is geometric with parameter l/m [85].

So, in McGuire’s model, imposing m = 0 automatically implies that

the gap frequency is zero, effectively converting the model into a

substitution-only model, regardless of the insertion rate. In TKF91,

the length distribution breaks down entirely in the m,l regime,

and gives arbitrarily large joint ‘‘probabilities’’. Our model

remains valid for any arbitrary (positive or zero) values for

insertion and deletion rate.

Another consequence of imposing reversibility is that the

expected frequencies of insertions and deletions in a pairwise

alignment must be identical. For McGuire’s model, the expected

frequencies of insertions and deletions in a pairwise alignment are

given by,

where p– is the constant frequency of a gap, and l+m = b(12p–),

where b is one of the two parameters of the F84 substitution model

[14]. For the TKF91 model, the expected frequencies of insertions

and deletions in a pairwise alignment are given by (see Text S4):

Therefore in TKF91 for small divergence times, the expected

frequency of insertions is solely dependent on the deletion rate m;

indeed, Equation 31 does not depend on the insertion rate at all. If

one desires insertion and deletion rates to be independent

parameters, it is more logical to expect that the observed

frequencies of deletions and insertions should be in general

different, and should depend on both deletion and insertion rates.

This is the case in our model, shown in Equations 16 and 17. At

one extreme, for l = 0 (zero insertion rate), f ei tð Þ~0 and

f ed tð Þ~1{e{mt. At another extreme, for l = ‘, f ei tð Þ~1,

f ed tð Þ~0 for any positive time t.

However, this is not to say that our model is free of its own

problems. Most significantly, our model’s assumption of column

independence is problematic. Rather, in return for this simplifi-

cation, our model’s advantage is that it allows computationally

efficient likelihood inference while using a birth-death generative

model allowing arbitrary rates of insertion and deletion.

Materials and Methods

The C source code for the modified PHYLIP 3.66 package [14]

that contains the program DNAMLe , the C source code for evolving

sequences with the generative model (eRATE ), the modified ROSE

package (version 1.3) [76], as well as all the Perl scripts and

datasets used to generate the results presented in this paper are

provided as a tarball in Dataset S1. The program DNAMLe uses the

EASEL sequence analysis library (SRE, unpublished) which is also

provided.

Supporting Information
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Found at: doi:10.1371/journal.pcbi.1000172.s001 (24.89 MB GZ)
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