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Cortical fast-spiking (FS) interneurons display highly variable electrophysiological properties. Their spike responses to
step currents occur almost immediately following the step onset or after a substantial delay, during which
subthreshold oscillations are frequently observed. Their firing patterns include high-frequency tonic firing and
rhythmic or irregular bursting (stuttering). What is the origin of this variability? In the present paper, we hypothesize
that it emerges naturally if one assumes a continuous distribution of properties in a small set of active channels. To test
this hypothesis, we construct a minimal, single-compartment conductance-based model of FS cells that includes
transient Naþ, delayed-rectifier Kþ, and slowly inactivating d-type Kþ conductances. The model is analyzed using
nonlinear dynamical system theory. For small Naþwindow current, the neuron exhibits high-frequency tonic firing. At
current threshold, the spike response is almost instantaneous for small d-current conductance, gd, and it is delayed for
larger gd. As gd further increases, the neuron stutters. Noise substantially reduces the delay duration and induces
subthreshold oscillations. In contrast, when the Naþ window current is large, the neuron always fires tonically. Near
threshold, the firing rates are low, and the delay to firing is only weakly sensitive to noise; subthreshold oscillations are
not observed. We propose that the variability in the response of cortical FS neurons is a consequence of
heterogeneities in their gd and in the strength of their Naþ window current. We predict the existence of two types of
firing patterns in FS neurons, differing in the sensitivity of the delay duration to noise, in the minimal firing rate of the
tonic discharge, and in the existence of subthreshold oscillations. We report experimental results from intracellular
recordings supporting this prediction.
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Introduction

Among inhibitory neurons in the neocortex, the ‘‘fast-
spiking’’ (FS) compose the most prominent type. These
neurons are characterized by brief action potentials with a
width smaller than 0.5 ms followed by a deep monophasic
afterhyperpolarization (AHP) [1,2]. Delayed rectifier currents
of the types Kv3.1–Kv3.2 are responsible for these character-
istics of FS action potentials [3,4]. The firing patterns of FS
cells in response to a step of injected current are highly
variable. Depending on the neuron and on the amplitude of
the current pulse, FS cells fire action potentials immediately
after the onset of the current step or after a prolonged delay,
which can be on the order of several hundreds of milliseconds
[2]. Interestingly, voltage-dependent subthreshold oscillations
in the gamma range have been reported during the delay
period. They typically occur in a narrow voltage range just
negative to threshold [4,5]. The steady-state firing pattern is
reached after an adapting [6], non-adapting, or accelerating
[2] transient. This steady state can be tonic or bursting. In the
latter case, the neuron fires rhythmic irregular bursts of
action potentials; this activity pattern is named ‘‘stuttering’’
[7]. The goal of the present modeling study is to address the
origin of this variability.

Bifurcation theory, which classifies how the behavior of
dynamical systems changes as their parameters vary, reveals
that in strongly nonlinear systems, qualitatively different
dynamical regimes can emerge as a result of a continuous
variation of some parameters [8]. Hence, heterogeneities in

biophysical parameters of neurons can induce distinct classes
of firing patterns even if their distributions are smooth. In the
present paper, we propose that a great deal of FS electro-
physiological variability is a consequence of heterogeneities
in the maximal conductance of a slowly-inactivating d-type
Kþ current [9,10], known to be present in FS cells [11,12], and
in the strength of the Naþ window current. This window
current, governed by the overlap between the activation and
inactivation curves of the Naþ current, affects the ability of
the neuron to fire at low rates [13]. To assess this proposal, we
consider a minimal, conductance-based neuronal model that
incorporates these two ionic currents and a fast delayed
rectifier Kþ current. We investigate this model using
techniques from nonlinear dynamical system theory. We find
that as the conductance of the d-current and the overlap of
the activation and the inactivation curves of the Naþ current
are varied within a range compatible with experimental data
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[14], the model neuron displays a ‘‘’’variability of firing
patterns similar to those observed experimentally in FS cells.

Our study leads to several predictions that can be tested
experimentally. In particular, we predict that FS cells that fire
tonically at low rates do not exhibit subthreshold oscillations
during the delay period. We present experimental results
consistent with this prediction.

Results

We study a minimal, single-compartment conductance-
based model that incorporates a Naþ current, INa, a fast
delayed rectifier Kþ current of the Kv3.1–Kv3.2 type, IKdr, and
a d-type Kþ current, Id. The details of the model are given in
the Model section of Materials and Methods.

Variability in Firing Patterns in a Model of FS Neurons
In all of this section, we assume that the system is noiseless.

We will change the Naþ window current by varying the half-
maximum potential, hm, of the activation curve of INa. As
shown in Figure 1, the amplitude of the window current
decreases as hm is more depolarized. The strength of the d-
current is controlled by its maximal conductance gd. The
amplitude of the current step injected into the neuron is
denoted by Iapp.

For very large window current, i.e., small hm (hm , �31.4
mV for gd ¼ 0 and hm , �32.9 mV for gd ¼ 2 mS/cm2), the
neuron is spontaneously active. In contrast, for very small
window current, i.e., sufficiently large hm (hm .�15.2 mV for
gd ¼ 0 and hm . �16.4 mV for gd ¼ 2 mS/cm2), the neuron
remains quiescent for all amplitudes of the step current. In
the intermediate range of hm, the neuron is quiescent for Iapp
smaller than a threshold Ith, while it fires spikes for Iapp . Ith.
Then, depending on hm, two qualitatively different behaviors
of the neuron occur.

Firing patterns for small Naþ window current. The phase
diagram of the different regimes of responses to a supra-
threshold step of current as a function of the parameters gd
and Iapp is shown in Figure 2A for hm¼�24 mV. It is typical of

the behavior of the model for small Naþ window current, and
it contains four regions.
When Iapp is small, in the region of the phase diagram

marked ‘‘quiescent,’’ the neuron does not fire action
potentials. The solid line that is the border of this region
corresponds to the current threshold for firing, Ith, which
depends only weakly on gd.
In the region denoted ‘‘tonic-no delay,’’ the response of the

neuron consists of a tonic discharge that begins immediately
after the step onset. An example is shown in Figure 2B (top
panel, gd¼0.1 mS/cm2 and Iapp¼3.35 lA/cm2). For sufficiently
small values of gd (gd , 0.155 mS/cm2, intersection of the
dashed line and the solid line), the ‘‘tonic-no delay’’ region
extends down to the current threshold (solid line). At current
threshold, the average firing frequency remains finite and
varies discontinuously to zero. This is shown in Figure 2B
(bottom panel) where we have plotted the f-Iapp curve for gd¼
0.1 mS/cm2, for which the minimal firing frequency is 27.4 Hz.
More generally, the firing frequency of the neuron is always
substantially large in the entire ‘‘tonic-no delay’’ region.
In the ‘‘tonic-delay’’ region, the response of the neuron is

still a tonic train of action potentials. In contrast to the
previous case (‘‘tonic-no delay’’ region); however, a substan-
tial delay separates the discharge from the current step onset
as shown in Figure 2C (gd ¼ 0.39 mS/cm2 and Iapp ¼ 3.35 lA/
cm2). When 0.155 mS/cm2 , gd , 0.393 mS/cm2, the left
boundary of this region is the threshold line where the firing
rate drops discontinuously to zero (unpublished data).
Finally, in the region located between the solid line and the

dotted line, the neuron displays bursting, see Figure 2D (gd¼
1.8 mS/cm2 and Iapp ¼ 4.2 lA/cm2). As in the ‘‘tonic-delay’’
region, the discharge is delayed. The firing pattern that
follows the delay consists of spikes occurring in clusters,
similar to the stuttering described in a family of inhibitory FS
interneurons [7]. This region is bounded to the left by the
current threshold line. Detailed analysis shows that in the
vicinity of this border, the interspike interval within the burst
remains finite while the interburst duration diverges.
Firing patterns for large Naþ window current. The phase

diagram for hm¼�28 mV is shown in Figure 3A. It is typical of
the behavior of the model for large Naþ window current.

Figure 1. The Strength of the Naþ Window Conductance

The maximal value of m‘
3h‘(V) with respect to V (Equation 6) is plotted

as a function of hm.
doi:10.1371/journal.pcbi.0030156.g001
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Author Summary

About 25% of the neurons in the mammalian neocortex are
inhibitory, namely reduce the activity of neurons they contact. These
inhibitory neurons exhibit diversity of morphological, chemical, and
biophysical properties, and their classification has recently been the
focus of much debate. Even neurons belonging to a single class of
‘‘fast-spiking’’ (FS) display a large variety of firing patterns in
response to standard square current pulses. Previous works
proposed that this class is in fact a discrete set of neuronal subtypes
with biophysical properties differing in a discontinuous way. In this
work, we propose an alternative theory, according to which the
biophysical properties of FS neurons are continuously distributed,
but distinct firing patterns emerge due to highly nonlinear dynamics
of these neurons. We ascertain this theory by exploring with
mathematical techniques a biophysically based model of FS
neurons. We demonstrate that variable firing responses of cortical
FS neurons can be accounted for if one assumes heterogeneity in
the strength of some of the ionic conductances underlying neuronal
activity. Our theory predicts the existence of two main firing
patterns of FS neurons. This prediction is verified by direct
recordings in cortical slices.

Firing Patterns of Fast-Spiking Neurons



Similar to the case of small window current, the firing
discharge is delayed and periodic in a broad domain of the
phase diagram. An example is shown in Figure 3B (top panel).
However, a major difference is that now the steady-state
frequency vanishes continuously at current threshold as can
be observed in the f-Iapp curve plotted in Figure 3C. This
implies that the neuron is able to discharge at low rate, in
contrast to what was found for small Naþwindow current. For
instance, in Figure 3B (top panel) the average rate is about 4
Hz. Another difference in the phase diagram is that a
‘‘stuttering’’ regime is no longer present. Finally, the ‘‘tonic-
delay’’ region is divided into two components separated by a
narrow domain where the discharge (gray region in Figure
3A), although still delayed, can display doublets [15], as shown
in the panel at the bottom of Figure 3B, or more complex
patterns (unpublished data).
Intermediate Naþ window current. The phase diagram of

the model remains qualitatively as in Figure 2A provided that
hm is not too negative (hm . �25.5 mV). However, as hm
becomes more hyperpolarized, the threshold Ith decreases
and the minimal firing frequency becomes smaller. Delayed
stuttering occurs for lower gd, but the range in current where
it is observed becomes narrower and the number of spikes
within a burst decreases. Eventually, for sufficiently hyper-
polarized hm, the f-Iapp curve becomes continuous at thresh-
old. Stuttering disappears in the sense that bursting behavior
with distinct active and quiescent phases is no longer found.
Instead, there is a regime where the neuron fires doublets of
action potentials or has more complex firing patterns (for
large values of gd). The detailed analysis of the mechanism by
which stuttering disappears when hm becomes more hyper-
polarized requires advanced bifurcation theory and is beyond
the scope of the present paper.
The delay duration. Figure 4A and 4B (solid lines) displays

the dependency of the delay duration, tdelay, on Iapp for hm¼
�24 mV and hm¼�28 mV, respectively (gd¼ 0.39 mS/cm2). In
both cases, a delay in the spike response occurs within a
restricted range of Iapp. Its duration, which is a decreasing
function of Iapp, goes to infinity at firing threshold and jumps
discontinuously to zero when Iapp becomes too large. Note
that the divergence near threshold is sharper for hm¼�28 mV
than for hm¼�24 mV. We will come back to this point later.

The Roles of the Naþ Window Current and the Slow
Inactivating Kþ Current in Shaping the Neuron Discharge
In this section, we clarify the mechanisms underlying the

different firing patterns described above and the dependency

Figure 2. Responses of the Model Neuron to Noiseless Current Steps for

Small Naþ Window Current (hm ¼�24 mV)

(A) The phase diagram of the model neuron in the Iapp-gd plane. The
solid line represents the current threshold, Ith, as a function of gd. To the
left of this line, the neuron is quiescent. To the right of the dashed line,
the spike response is almost immediate after the current step onset.
Stuttering emerges on the dotted line via a torus bifurcation.
(B) Top panel: the membrane potential V in response to a step of current
for gd ¼ 0.1 mS/cm2 and Iapp ¼ 3.35 lA/cm2. The neuron exhibits non-
delayed, high-frequency tonic firing. Bottom panel: the f-Iapp curve for gd

¼ 0.1 mS/cm2 is discontinuous at the current threshold. The minimal
frequency is 27.4 Hz.
(C) For gd ¼ 0.39 mS/cm2, Iapp ¼ 3.35 lA/cm2, the neuron exhibits
delayed, high-frequency tonic firing.
(D) For gd ¼ 1.8 mS/cm2 and Iapp ¼ 4.2 lA/cm2, the neuron exhibits
delayed stuttering.
doi:10.1371/journal.pcbi.0030156.g002
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of the phase diagram on the Naþ window current. The time
constant of the inactivation variable b of the d-current is sb¼
150 ms (see the Model section in Materials and Methods).
Hence, b varies much more slowly than all the other
dynamical variables of the model. The full dynamical system
describing the neurons can subsequently be separated into
fast (variables V, h, n, and a) and slow (variable b) subsystems.
This allows us to dissect the dynamics of our model using the
‘‘fast–slow method’’ [13,16–18]. The first step in this method is
to study how the attractors of the dynamics of the fast
subsystem depend on the value of b, taken as a time-
independent parameter. In a second step, one derives the
dynamics of the full system taking into account the slow
variations of b.
Dependency of the bifurcation structure of the fast

subsystem on the Naþwindow current. Consider the equation
determining VFP, the value of the membrane potential at the
fixed point of the fast subsystem. It is straightforward to see
that when the window current is small (i.e., (m‘)

3h‘ is small in
all the dynamic range of the voltage), VFP decreases
monotonously with b (Figure 5A) (see ‘‘The b-VFP curve of
the model neuron’’ in Materials and Methods for details).
According to bifurcation theory, this implies that the fixed
point of the dynamics of the fast subsystem can be
destabilized as b decreases only via a Hopf bifurcation (a
bifurcation where a limit cycle emerges) [18,19]. Whether the
bifurcation actually occurs and the value, bHopf, where it
occurs, depend on Iapp (bHopf ¼ 0.18 for the parameters of
Figure 5A–5C). As depicted in Figure 5A, the limit cycle that
emerges at b¼ bHopf is unstable (subcritical Hopf bifurcation).
At b¼ bSNP (bSNP . bHopf), this unstable limit cycle coalesces in
a ‘‘saddle–node of periodics’’ (SNP) bifurcation [8] with a
stable limit cycle (bSNP ¼ 0.38 for the parameters of Figure
5A–5C). This limit cycle corresponds to tonic firing of action
potentials in the fast subsystem, and it exists for b � bSNP,
both below and above b¼ bHopf. In particular, for bHopf , b ,

bSNP, the fast subsystem is bistable since its fixed point is also
stable in this range. The minimal and maximal values of the
membrane potential on this limit cycle are plotted in Figure
5A as a function of b. Note that the frequency of the periodic
motion on the limit cycles (the ‘‘firing rate’’ of the fast
subsystem) decreases with b (Figure 5B).
In the case of large Naþ window current ((m‘)

3h‘, e.g., hm¼
�28 mV), the function VFP(b) is non-monotonous and the
curve VFP(b), in the b-VFP plane, displays a ‘‘Z shape’’ (Figure
5D and ‘‘The b-VFP curve of the model neuron’’ section in
Materials and Methods). The lower branch of this curve
corresponds to a stable fixed point of the fast subsystem,
whereas on the middle branch, the fixed point is unstable
(saddle point). These two branches coalesce at some value b¼
bSN (bSN¼0.17 for the parameters of Figure 5D–5F), where the
fast subsystem undergoes a saddle–node (SN) bifurcation [18].
For b , bSN, the dynamics of the fast subsystem display a

Figure 3. Responses of the Model Neuron to Noiseless Current Steps for

Large Naþ Window Current (hm¼�28 mV)

(A) Phase diagram of the model neuron in the Iapp-gd plane. Solid line:
current threshold to action potential firing. Dashed line: to the right of
the dashed line, the spike response is almost immediate after the current

step onset. Period doubling bifurcations occur on the dotted lines,
leading to doublet or complex firing (grey region).
(B) Voltage traces for gd¼ 0.39 mS/cm2. Top: for Iapp¼ 1.25 lA/cm2, the
neuron displays low frequency delayed tonic firing. Bottom: for Iapp ¼
1.27 lA/cm2, the neuron fires doublets of action potentials.
(C) The steady-state f-Iapp curve of the neuron; gd is as in (B). The average
firing frequency goes to zero at firing threshold. Between the two solid
circles, the neuron fires doublets of spikes.
doi:10.1371/journal.pcbi.0030156.g003
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stable limit cycle (Figure 5D and 5E) [8,18]. This stable limit
cycle also exists in a small region for b . bSN, up to a value b¼
bSNP where it disappears by coalescing with an unstable limit
cycle (bSNP ¼ 0.187 for the parameters of Figure 5D–5F), i.e.,
via an SNP bifurcation. Hence, the fast subsystem displays
bistability between a limit cycle and a stable fixed point in
that small region of b values. The unstable limit cycle is
homoclinic to the saddle.

The origin of the delayed spike response in the full system.
We now turn to the dynamics of the full system. Let us assume
that the neuron is at rest (Iapp ¼ 0) and that the inactivation
variable b is equal to brest (brest¼ 0.5 in the example of Figures
2C and 5A). At time t¼ 0, a current step is applied and Iapp is
raised abruptly (e.g., 3.35 lA/cm2 in Figure 5A–5C and 1.25
lA/cm2 in Figure 5D–5F). The evolution of the membrane
potential of the neuron, V, right after the step onset is driven
first by the dynamics of the fast subsystem with b ; brest
(Figures 5A and 5D). The membrane depolarizes rapidly, the
current Id starts to inactivate, and the variable b decreases.
During this process, which occurs on the slow time scale of sb,
the state of the neuron follows the fixed point of the fast
subsystem adiabatically, for the applied current Iapp. In
particular, the membrane potential of the neuron is V(t) ;

VFP(b(t)), and the slow variable b continues to decrease as long
as b‘(VFP(b(t))) , b (Equation 17). If the equation b‘(VFP(b))¼ b
has a solution, b*, for which the fixed point of the fast
subsystem is stable, b stops evolving when it reaches that
value. In that case, the state of the neuron converges to a
stable fixed point where it does not fire action potentials.
This situation, which happens when Iapp is small, is depicted
in Figure 6A and 6B. The value b* decreases with Iapp. The
largest value of Iapp for which the fixed point is stable is
determined by the equation

b‘ðVFPðbHopf ; IappÞÞ ¼ bHopf ð1Þ

or by the equation b‘(VFP(bSN; Iapp))¼ bSN for small and large
window INa, respectively. For larger values of Iapp, a solution
of the equation b‘(VFP(b)) ¼ b exists only for a b value for
which the fixed point of the fast subsystem is unstable (Figure

5C and 5F). As a result, b keeps decreasing until it crosses the
bifurcation of the fast subsystem (b¼ bHopf or b¼ bSN). When
this happens, V starts to diverge from VFP(b) and the neuron
fires action potentials. The patterns of firing following the
delay can also be assessed using the fast–slow analysis as we
will explain below.
The properties of the delay period. For small Naþ window

currents, the fixed point of the fast subsystem that desta-
bilizes at b¼ bHopf continues to exist in some range of values
of b smaller than bHopf. During the delay period, and before
the fast subsystem crosses the Hopf bifurcation (b . bHopf),
the state of the neuron remains extremely close to this fixed
point. Subsequently, it continues to track it for a while even
after b has decayed below bHopf, until it reaches a value bdelay.
Because of this ‘‘ramp effect’’ [13,20], the neuron starts to fire
well after the inactivation variable has crossed bHopf. This
explains why in our simulations for hm¼�24 mV (Figure 4A,
solid line) tdelay is always significantly larger than the
inactivation time constant of the d-current sb (by at least a
factor of 2).
In contrast, when the Naþ window current is large (e.g., hm

¼�28 mV), there is no ‘‘ramp effect,’’ since the fixed point of
the fast subsystem does not exist for b , bSN. As a
consequence, tdelay is on the order of sb for most values of
Iapp (Figure 4B, solid line). It can be significantly larger than sb
only for Iapp Z Ith, where the dynamics of b itself becomes
very slow.
The divergence of tdelay as Iapp approaches the threshold Ith

depends on the Naþ window current. As shown in the section
‘‘Dependence of the delay duration tdelay on Iapp near current
threshold for D¼ 0’’ in Materials and Methods, for Iapp Z Ith,
tdelay diverges as (Iapp�Ith)1/2 and �log(Iapp�Ith) for small and
large Naþ window currents, respectively.
The firing patterns after the delay period. For small

window current, the delay period ends when b has sufficiently
decreased to a value bdelay , bHopf where the state of the
neuron escapes from the fixed point of the fast subsystem.
Once this happens, the state of the neuron converges rapidly

Figure 4. Dependence of the Delay Duration tdelay on the Amplitude of the Current Step Iapp

(A) hm¼�24 mV.
(B) hm¼�28 mV. In the two panels, gd¼0.39 mS/cm2. Solid lines: noiseless input (D¼0). Dashed lines: noisy input with variance D¼0.01 lA2 3 ms/cm4.
The delay duration was averaged over 50 trials. Gray lines represent one standard deviation around the mean value of tdelay for noisy input.
doi:10.1371/journal.pcbi.0030156.g004
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toward the limit cycle of the fast subsystem with a value of b¼
bdelay. Subsequently, the state of the neuron continues to
evolve slowly, on a time scale of sb, which is much larger than
the time scale of the fast subsystem. Hence, at a given time, t,
the state of the neuron is located very close to the limit cycle
of the fast subsystem with a value of b ¼ b(t). We denote this
limit cycle by LC(b(t)). The state of the neuron follows LC(b(t))
many times before b changes significantly. Averaging the
dynamics of b over a cycle, one finds that the evolution of b
(Equation 17) can be approximated by:

db
dt
¼ 1

sb
½FðbÞ � b� ð2Þ

where F(b) is the time-average of the function b‘(V(t)) over
LC(b) (see Figure 5C).

If bdelay . F(bdelay), b keeps decreasing below bdelay as the
neuron fires action potentials. Eventually, it stabilizes at the
value b* defined by F(b*)¼ b* (the solution of Equation 2 must
exist in that case because in our model LC(b) exists up to b¼0
and F(b) is always strictly positive). Therefore, the delay is
followed by a transient during which the firing pattern
displays reverse adaptation. Eventually, the neuron fires
tonically and periodically.
In contrast, if bdelay , F(bdelay), b starts to increase during the

firing period. If the equation F(b) ¼ b has a solution, b*, b
eventually converges to b*. During this convergence, the
neuron fires spikes with some frequency adaptation. Even-
tually, its state stabilizes on a limit cycle, LC(b*) correspond-
ing to tonic periodic firing. Interestingly, if b* . bHopf, LC(b*)

Figure 5. Bifurcation Diagrams and the Fast–Slow Analysis of the Model Neuron

(A–C) are for small and (D–F) for large Naþwindow currents. Parameters in (A–C) are as in Figure 2C: hm¼�24 mV, gd¼0.39 mS/cm2, Iapp¼3.35 lA/cm2.
Parameters in (D–F) are as in the top panel in Figure 3B: hm ¼�28 mV, gd ¼ 0.39 mS/cm2, Iapp ¼ 1.25 lA/cm2.
(A,D) The bifurcation diagram of the fast subsystem in the V-b space.
(B,E) The frequency f of the limit cycle of the fast subsystem, plotted as a function of b (f-b curves).
(C,F) The functions b‘(VFP(b)) and F(b) (Equation 2) plotted as a function of b. Thin solid lines: stable fixed points; thin dotted lines: unstable fixed points;
thick solid line: stable limit cycle (periodic state); thick dotted line: unstable limit cycle. Solid circles denote Hopf, saddle-node (SN), and saddle-node of
periodics (SNP) bifurcation points. The value of b at rest (Iapp¼0) is brest, and b* is the value of b at steady state of the neuron. For bdelay, see text. In (C,F),
the intersection of the curve b¼ F(b) with the diagonal dashed line determines the value of b* (open square point). Arrows represent the evolution of
the neuron from rest to its steady state following a current step injection of amplitude Iapp.
doi:10.1371/journal.pcbi.0030156.g005
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coexists with a stable fixed point. This happens, for example,
in the parameter set of Figure 5A. The highest value that b*
may have is bSNP. Therefore, the smallest value of Iapp for
which b* exists is determined by the equation

FðbSNP; IappÞ ¼ bSNP ð3Þ

We consider the case where the value of Iapp determined by
Equation 3 is larger than the value of Iapp determined by
Equation 1. For Iapp between those two values, the equation
F(b) ¼ b does not have a solution, but the state of the fast
subsystem is on the limit cycle LC(b). In this case, b keeps
increasing until it reaches its value at the SNP bifurcation,
bSNP, beyond which there is no limit cycle (Figure 6C and 6D).
At that point, the neuronal state jumps back to a stable fixed
point, b decreases slowly again to bdelay, and the whole process
repeats itself. Therefore, in this case, the neuron displays
‘‘elliptic bursting’’ [13,18]). As a matter of fact, as shown in the
section ‘‘The equation F(b)¼ b has no solution for large gd’’ in
Materials and Methods, when gd is sufficiently large, there is
no solution to the equation F(b)¼ b in a broad region of Iapp.
This explains the existence of a regime of bursting (stutter-
ing) in the phase diagram (Figure 2A) for large gd values. Note
that the boundaries to the left and to the right of this region
are given (in the limit of large sb) by the equations

b‘(VFP(bHopf; Iapp)) ¼ bHopf (Equation 1) and F(bSNP; Iapp) ¼
bSNP (Equation 3), respectively.
A similar analysis can be done when the Naþ window

current is large and the delay ends at an SN bifurcation (when
b crosses bSN). As in the case of small Naþwindow current, two
situations can be distinguished depending on whether bSN is
larger or smaller than F(bSN) (Figure 5F). In the first case,
tonic firing occurs. Tonic firing also occurs in the second case
unless the equation F(b) ¼ b has no solution. In the latter
situation, bursting is expected to occur. However, because the
bistable region (bSN , b , bSNP) is small and the period of the
limit cycle is large in that region (Figure 5D and 5E), the fast–
slow analysis correctly predicts the behavior of the full model
only if sb is very large. As a matter of fact, for sb¼ 150 ms, we
find doublets in place of well-defined bursting patterns.
Transient firing of spikes before the delay period. As shown

in Figure 2C, the neuron may fire a transient of a few (1–3)
spikes before the delay period. A similar phenomenon is
observed in experiments (i.e., [11], see results shown below).
In our model, this behavior stems from the dynamics of INa

and happens because the abrupt depolarization induces a
rapid increase in the activation variable m, whereas the
inactivation variable h decreases more slowly, on a time scale
of a few ms. As a result, a rapid but transient increase in INa

Figure 6. Fast–Slow Analysis of Neurons with Small Naþ Window Current Exhibiting a Depolarized Rest Potential or Stuttering

Fast–slow analysis is described for hm¼�24 mV.
(A,B) Parameters are: gd¼0.39 mS/cm2, Iapp¼2.9 lA/cm2. (Except for Iapp, parameters are as in Figures 5A–5C and 2C. The neuron is quiescent at steady
state.)
(C,D) The parameters gd¼ 1.8 mS/cm2 and Iapp¼ 4.2 lA/cm2 are as in Figure 2D, and the neuron stutters at steady state. For each case, we plot the
bifurcation diagrams of the fast subsystem in the V-b space (A,C), and the functions b‘(VFP(b)) for fixed points and F(b) for limit cycles (Equation 2) as
functions of b (B,D). Symbols are as in Figure 5.
doi:10.1371/journal.pcbi.0030156.g006

PLoS Computational Biology | www.ploscompbiol.org August 2007 | Volume 3 | Issue 8 | e1561504

Firing Patterns of Fast-Spiking Neurons



occurs, which may induce a few spikes before the neuronal
dynamics converges to the new steady state of the fast
subsystem. This effect resembles rebound excitation [13],
although it happens even if there is no hyperpolarization
before the injection of Iapp. It requires that the neuron be
sufficiently depolarized by the current step. Note that the
model neuron does not fire rebound spikes in response to
release from hyperpolarizing current steps (Figure S1A).

Effects of Noise on the Neuronal Dynamics
The effect of noise on the delay duration. The probability

of firing is always non-zero in the presence of noise. Hence,
strictly speaking, the very definition of a delay in firing is
ambiguous. This probability, however, is (exponentially) small

in the limit of small noise. In practice, delays can still be
observed in a clear manner in the model unless the noise is
large. This is shown for both small (Figure 7A and 7B) and
large (Figure 7C) Naþ window currents.
The delay duration, tdelay, in the presence of noise with

variance D ¼ 0.01 lA2 ms/cm4 is plotted for small and large
window INa in Figure 4A and 4B, respectively. Comparison
with the noiseless case (solid line) shows that when the
window INa is small, noise reduces tdelay dramatically. In
contrast, for large window INa, the effect of noise on the delay
is weak, except for values of Iapp in the vicinity of Ith. This
difference can be explained as follows. For small window
current, the neuron state escapes slowly from the unstable
fixed point of the fast subsystem during the delay period
because of the ‘‘ramp effect.’’ This escape accelerates when
noise increases. In the section ‘‘Dependence of tdelay on D for
weak noise’’ in Materials and Methods, we derive the
expression for tdelay as a function of D for low noise. One
finds that:

tdelay ¼ B� AlogD ð4Þ

where A . 0 and B are constants (Equation 33). This equation
provides a good fit to the results of our simulations over 11
orders of magnitude of D (Figure 8). Because of the
logarithmic dependency, tdelay is considerably reduced in
the presence of weak noise.
In contrast, when the window INa is large, there is no ‘‘ramp

effect,’’ and tdelay is only weakly dependent on D (Figure 4B).
An exceptional case is when Iapp Z Ith. In that case, the
instability of the rest state of the full system is very weak and
noise accelerates the escape from this rest state.
The spectrum of the membrane potential fluctuations

during the delay period in the presence of noise. When the
Naþ window current is small, the fixed point of the fast
subsystem near the bifurcation at b ¼ bHopf is ‘‘spiral,’’ i.e.,
small perturbations around it decay or grow in an oscillatory
manner when b , bHopf or b . bHopf, respectively [8,21]. When
noise is added, it excites this oscillatory mode, and therefore

Figure 8. Dependence of the Averaged Delay Duration on the Noise

Variance, D

Black line: the delay duration, tdelay, computed and averaged over 50
trials of the noisy external current step is plotted as a function of log(D).
Parameters: hm¼�24 mV (small window Naþ current), gd¼ 0.39 mS/cm2,
and Iapp ¼ 3.08 lA/cm2. Gray lines: one standard deviation confidence
limit of the averaged tdelay. Red line: fitting to the simulation results using
the analytical prediction for small D (Equation 4). The arrow on the y-axis
indicates the value of tdelay for a noiseless input (D¼ 0).
doi:10.1371/journal.pcbi.0030156.g008

Figure 7. Voltage Traces and Firing Patterns of the Model Neuron in

Response to a Noisy Current Step

(A) Delayed tonic firing for hm ¼�24 mV, gd ¼ 0.39 mS/cm2, Iapp ¼ 3.35
lA/cm2.
(B) Delayed stuttering for hm¼�24 mV, gd¼ 1.8 mS/cm2, Iapp¼ 4.2 lA/
cm2.
(C) Delayed tonic firing for hm ¼�28 mV, gd ¼ 0.39 mS/cm2, Iapp ¼ 1.25
lA/cm2. In all three panels, the variance of the noise is D ¼ 0.01 lA2 3
ms/cm4. The time course of the mean applied current, Iapp, is also
plotted. The membrane potentials during the delay periods are
magnified in the panels on the right. Note the presence of subthreshold
oscillations in (A) and (B). The peaks of these oscillations are denoted by
the arrows.
doi:10.1371/journal.pcbi.0030156.g007
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the membrane potential of the neuron displays sustained
subthreshold oscillations (see Figures 7A and 7B and 9A and
9B). Similarly, oscillatory fluctuations induced by noise are
observed during the interburst periods in the stuttering state.

In contrast, when the Naþwindow current is large, the fixed
point of the fast subsystem disappears in an SN bifurcation.
Hence, in that case, small perturbations during the delay
period decay exponentially and monotonously. As a conse-
quence, the membrane potential does not display subthres-
hold oscillations during that period (Figures 7C and 9C).

Noise-induced stuttering for small Naþwindow current. We
have noted above that in the noiseless case, the stuttering
region in the phase diagram is bounded between two lines
defined by the equations b‘(VFP(bHopf;Iapp))¼ bHopf (Equation
1) and F(bSNP; Iapp)¼ bSNP (Equation 3). On the left of the line
determined by the equation b‘(VFP(bHopf; Iapp)) ¼ bHopf, the
rest state is the only stable attractor of the full system (Figure
10A). However, the stable limit cycle (LC(b)) is an attractor of
the fast subsystem, in addition to the fixed point, as shown in
the phase portrait in Figure 10A. Noise, which acts on a fast
time scale, can induce random switching from the fixed point
to this limit cycle before the slow dynamics of b enters into
play. Once switching has happened, b starts to increase slowly,
and the state of the neuron drifts on the limit cycle LC(b(t)),
and therefore the neuron fires action potentials. The train of
action potentials has some probability to stop if the noise
switches the neuronal state back to the fixed point of the full
system. If this has not happened before b has reached bSNP,
firing stops, because at that point the limit cycle ceases to
exist. In any case, this results in stochastic stuttering (Figure
10B).

Stochastic stuttering can emerge also for Iapp larger than its
critical value for which F(bSNP; Iapp) ¼ bSNP. Then the tonic,
periodic firing is the only stable attractor of the full system
(Figure 10C), but the fast subsystem also has a stable fixed
point (Figure 5A; phase portrait in Figure 10C). Noise can
induce switching from the limit cycle to the fixed point. Once
this has happened, b decreases either until the noise switches
the state back to the limit cycle or until b reaches bHopf, where
the neuron switches back deterministically to the limit cycle
of the fast subsystem (Figure 10D).

Experimental Results
The minimal firing rates in the tonic discharge following

the delay period is broadly distributed among FS neurons

[22–24]. The theoretical results described above established
correlations between the minimal firing rate of a neuron and
the existence of subthreshold oscillations during the delay
period. Neurons that fire at high rates display subthreshold
oscillations during that period [22,23]. In contrast, neurons
that can fire at low rates lack those oscillations. We report
here experimental results supporting this prediction.
The responses to steps of depolarizing current pulses were

recorded intracellularly in FS neurons (n ¼ 20, average ratio
of the spike’s rising phase dV/dt to falling phase dV/dt¼ 1.17 6

0.29), as described in the section ‘‘Whole cell recordings and
analysis’’ in Materials and Methods. Eight neurons responded
to the depolarization onset almost instantaneously with a
tonic non-adapting spike train. The other 60% of the
neurons (n ¼ 12) displayed a prolonged delay period, which
was preceded by a transient firing of 1–3 spikes in some cases
(Figure 11A and B), similar to the simulations of our model
for low Naþ window current (Figure 7C). One cell from this
group of 12 cells fired irregularly (Figure 11C). Eight out of
those 12 cells had properties as reported in previous
experimental studies of FS neurons (see also [22,25]). These
eight cells exhibited a delay period followed by a tonic, high-
frequency regular discharge (Figure 11A) or stuttering
discharge with large, instantaneous intra-burst firing rate
(Fig 11B). The minimal average firing frequencies in this
group of neurons ranged from 25 to 220 Hz (average 81 6 59
Hz) and the voltage threshold to action potential was�31.6 6

5.0 mV. All the computed trial-average power spectra of the
membrane fluctuations during the delay period (n ¼ 4)
displayed a peak within the gamma range (20–100 Hz). Two
examples are shown in Figure 12A and 12B. These features
are similar to those exhibited by our model neuron for small
window current (Figure 9A and 9B).
Different properties were found in the remaining three

neurons (out of these 12 cells) that displayed delay to firing.
First, their minimal firing frequencies were under 10 Hz
(average 6.8 6 2.6 Hz) (Figure 11D), substantially lower than
in the other group of eight neurons. Their spike threshold
was �39.6 6 6.4 mV, a significantly more hyperpolarized
value than in the other group (p¼ 0.01, student t-test). These
neurons did not exhibit stuttering behavior. Finally, spectral
analysis of the fluctuations during the delay period failed to
reveal subthreshold oscillations (Figure 12C). These proper-
ties are as predicted in our model for large Naþ window
current (Figure 9C).

Discussion

Summary of the Theoretical Results
The minimal model of FS neurons studied in our work

displays four types of behavior in response to a current step,
depending on the Naþwindow current and on the strength of
the conductance of the Kþ current Id.
1. When the Naþ window current and the conductance gd

are small, the neuron exhibits tonic, high-frequency firing
that follows the current step onset almost immediately, even
if the step amplitude is just above firing threshold.
2. When the Naþ window current is small and the

conductance of the d-current is of intermediate strength,
delayed high-frequency tonic firing occurs for just supra-
threshold step amplitudes. The delay duration decreases as
the step amplitude increases and abruptly jumps to zero at

Figure 9. Fourier Spectrum of the Membrane Potential Fluctuations

During the Delay Period in the Model for Three Different Strengths of the

Naþ Window Current

(A) hm¼�22 mV, gd¼0.8 mS/cm2, Iapp¼4.9 lA/cm2; (B) hm¼�24 mV, gd¼
0.39 mS/cm2, Iapp¼3.23 lA/cm2; (C) hm¼�28 mV, gd¼0.39 mS/cm2, Iapp¼
1.25 lA/cm2.
doi:10.1371/journal.pcbi.0030156.g009
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some critical value. Noise dramatically reduces this duration.
Noise also induces subthreshold oscillations during the delay
and can also induce stuttering.

3. For small Naþ window current but large values of the d-
current conductance, the response to just suprathreshold
input is delayed stuttering with high-frequency firing within
the bursts. As the current step amplitude increases, the
response becomes tonic firing, first delayed and subsequently
and abruptly non-delayed. Other properties are as in 2.

4. For large value of the Naþ window current, the neuron
responds with delayed tonic firing for small amplitude of the
current step and non-delayed tonic firing when the amplitude
of the current step is large. In contrast to what happens in 2,
the average firing rate is low near firing threshold; noise very
weakly affects the delay duration and does not induce
subthreshold oscillations during the delay period.

Naþ and Kþ Currents in FS Cells and in Our Model
A large spectrum of Kþ currents with different activation

and inactivation properties and kinetics has been reported in
FS neurons [7,11,26]. Delayed rectifier Kþ channels from the
Kv3.1–Kv3.2 types are responsible for the fast spike repola-
rization and strong AHP of these neurons [3,4,27]. Slowly
inactivating Kþ channels from the Kv1.1, Kv1.2, and Kv1.6
types have also been found in FS cells [12]; blockade of these
currents with DTx-I eliminates delays to firing present in the

control situation. The d-current incorporated in our model
can be thought of as representing these slow channels.
We are aware of a single experimental study where the

activation and inactivation properties of the Naþ channels in
FS neurons were measured [14]. One conclusion of that study
is that the overlap between the activation and inactivation
curves of this current is small. Clearly this does not mean that
the Naþ window current has no effect, since this will depend
on the maximum conductance of this channel, a value which
is not known. As a matter of fact, in our model, the
inactivation mid-point potential, and the gain of the
activation and inactivation functions are in accordance with
the data provided by Martina and Jonas [14]. We take the
same value of the Naþ conductance gNa as in [3,28]. With this
value, we find variability of firing patterns while varying the
activation mid-point potential in a range compatible with the
data provided by Martina and Jonas [14].
Throughout this article, we use the half-activation curve of

INa, hm, to quantify the strength of the Naþ window current.
Effects of modifying the window current by depolarizing or
hyperpolarizing hh are similar to the effects of hyperpolariz-
ing or depolarizing hm, respectively (Figure S2). We did not
include a persistent Naþ current in our minimal model
because this current was not found in FS neurons [14].
However, if added to our model, this current would have an
effect similar to increasing the Naþ window current (unpub-
lished data).

Figure 10. Noise-Induced Stuttering Activity for Small Naþ Window Current (hm ¼�24 mV)

(A,B) Voltage traces in response to a step current of amplitude Iapp ¼ 3 lA/cm2.
(A) In the absence of noise in the input (D ¼ 0), the membrane potential depolarizes during the current step but the neuron does not fire action
potentials.
(B) Noise of variance D ¼ 0.1 lA2 3 ms/cm4 induces irregular bursts of action potentials (irregular stuttering).
(C,D) Voltage traces in response to a step current of amplitude Iapp ¼ 3.2 lA/cm2.
(C) For D ¼ 0, the neuron exhibits delayed tonic firing.
(D) For D¼ 0.1 lA2 3 ms/cm4, the neuron stutters irregularly. For all panels, gd ¼ 0.5 mS/cm2. Projection of the phase portraits on the V-h plane for
constant values of b (0.046 in (A) and 0.22 in (C)) are shown below the traces in (A,C). These values of b are either the fixed-point value (in (A)) or the
average value on the limit cycle (in (C)). Solid circles denote stable fixed points, solid lines denote stable limit cycles, and dotted lines denote unstable
limit cycles.
doi:10.1371/journal.pcbi.0030156.g010
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Synchronization properties of neuronal networks are
tightly related to single neuron properties [29–33]. For
instance, increasing the strength of the Naþ window current
transforms the bifurcation of the rest state from a Hopf type
to an SN type. This change may switch an inhibitory-coupled
network of FS neurons from an asynchronized state to a
synchronized state [34]. Furthermore, Skinner et al. showed
that networks of FS cells that possess both sufficiently strong
Naþ window current (or persistent Naþ current) and Id, and
that are coupled by both inhibitory and electrical coupling
[35], may exhibit collective bursting oscillatory behavior [36].
Hence, the variability in single-cell properties, presented in
this article, is very relevant to the network’s behavior.

Comparison of Model Behavior with Experimental Results
The firing patterns exhibited by our model include

‘‘classical’’ non-delayed tonic firing, delayed tonic firing,

and delayed stuttering. These three patterns of firing are
consistent with those described in recent experimental
studies of FS cells (e.g., [7,22]) as well as in the experimental
results reported in the present study. Increasing Iapp in the
model eventually causes the disappearance of the delay. This
is also consistent with experimental observations [2].
A large variability is observed between FS neurons in their

minimal firing rates in response to steady current. Whereas
many FS cells have high steady-state minimal firing frequen-
cies on the order of tens of Hz or more [2,23], the minimum
firing rate of other FS neurons can be as low as 20 Hz [22] or
even less than 10 Hz [37]. Especially, FS neurons with
neurogliaform morphology can fire at low rates [24,38].
Although in our experimental data we classified neurons as
FS based on their spike width and repolarization rate [1], and
did not examine their morphology, our experimental results
are consistent with such variability in the minimal firing rate.
Further experimental work is needed to verify whether only
FS neurons with neurogliaform morphology can fire at low
rates. Relying on our modeling study, we propose that
heterogeneities in the Naþ window current contribute
strongly to variability in the minimal firing rate.
In our model, a delay in action potential firing is induced

by a slow crossing of a bifurcation driven by the slowly
inactivating d-current. Depending on the window current of
the Naþ current, this bifurcation can be of Hopf or SN types.
As a consequence, the properties of the neuron during the
delay period depend also on the Naþ window current. In
particular, subthreshold oscillations are found during that
period (and also during the quiescent periods in stuttering
patterns). This is consistent with the observation of subthres-
hold oscillations at frequencies in the gamma-range (20–100
Hz) in FS neurons in cortex [22] during delay or interburst
periods. Moreover, in our model, these oscillations exist only
when the INa window current is small (Figure 9A and 9B).
Subsequently, we predict that subthreshold oscillations in an
FS neuron are more likely to be observed in neurons with a
large minimal firing frequency. Our experimental results
(Figures 11 and 12) are consistent with this prediction.
Finally, noise can induce irregular stuttering in our FS

model (Figure 10). Similar patterns were found in previous
experiments (Figure 1C in [23]), as well as in the experiments
reported here (Figure 11C).

Some Limitations of Our FS Model
There are several physiological observations that the model

does not replicate. The AHP and the spike amplitude are
larger in the model (Figures 2 and 7) than in FS neurons
recorded in slice experiments (Figure 11). Changing the
reversal potential of the Kþ current reduces the AHP of the
model neuron to some extent. It may also happen that in FS
cells, the spike-generating area is distant from the soma, and
therefore action potentials recorded in the soma are filtered
by cable properties. This effect, which cannot be included in
our single compartment model, may contribute to the
reduction of the AHP.
Another limitation of our model is that it can account

neither for the substantial accommodation observed in some
FS cells (AC cells in Figure 5 in [7]) nor for the burst of action
potentials that precedes tonic firing sometimes observed in
FS neurons (‘‘b’’ cells in Figure 5 in [7]). Although our model
may exhibit some adaptation, it is a result of the strong AHP,

Figure 11. Experimental Results: Responses of FS Neurons to Just

Suprathreshold Depolarizing Current Steps

(A) An example of a neuron displaying high rate delayed tonic firing after
a delay. The time interval below the top horizontal bar is magnified in
the inset on the right.
(B) A neuron exhibiting stuttering.
(C) A neuron that exhibits delayed irregular firing.
(D) A neuron that fires at low rates after a delay. The dotted line denotes
�70 mV.
doi:10.1371/journal.pcbi.0030156.g011
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which causes Id to inactivate during firing, but this inactiva-
tion is only weak. However, accommodation and initial
bursting can probably be accounted for if one incorporates
additional slowly activating Kþ currents into the model.

Finally, stuttering FS cells that do not exhibit an initial
delay in response to the injection of a step current are
observed experimentally [6]. Such a behavior is not present in
the phase diagram of Figure 2A. However, it can occur in the
framework of our model if the reversal potential of the leak
current is taken to be more depolarized (e.g., VL¼�60 mV in
Figure S1B) than the reference parameter set VL ¼�70 mV
(Figure 1).

Relation to Previous Theoretical Works and Models of FS
Cells

To our knowledge, our work is the first to propose a
minimal conductance–based model incorporating ionic
channels known to exist in FS cortical interneurons and
which accounts in a comprehensive way for the variability of
firing patterns these cells display. The analysis we have made
of this model builds on previous theoretical works. The role
of the window INa in achieving low firing rates was considered
in [13,18]. The fact that slowly inactivated Kþ currents can
induce delay to action potential firing and bursting was also
described in [13,39]. The stuttering pattern displayed by our
model is an example of ‘‘elliptic bursting’’ [18,20,40] (also
named ‘‘SubHopf/Fold cycle’’ [19]). In addition, the present
paper relates the appearance of subthreshold oscillations and
the dependence of the delay duration on the levels of noise
and applied current with the bifurcation structure of the fast
subsystem.

Marder and colleagues proposed that for a specific pattern
of activity, one can find parameter subspaces within which
the model displays qualitatively, and even quantitatively,

similar behavior [41,42]. They also proposed that neuronal
function can be stabilized by homeostatic mechanisms
ensuring that the neuron always remains in those subspaces
[43]. Clearly, the bifurcation point cannot exist in such
subspaces. There are, however, directions in parameter space
along which the qualitative behavior of the neuron varies via
bifurcations of the dynamics, as shown in our paper. These
bifurcations can underlie the variability observed in the
electrophysiological properties of FS cells.

Predictions from the Model
We predict that for FS cells that exhibit delay before firing,

the delay duration, tdelay, decreases with the amplitude of the
current step, Iapp, and disappears at a non-zero value as Iapp is
elevated (Figure 4A). When the neuron displays stuttering in
response to just suprathreshold oscillations, we predict that
elevating Iapp will first increase the average number of spikes
during the stuttering state (Figure 2D), and then will
transform the cell into a tonic firing cell (Figure 2A). A
depolarizing pre-pulse shortens tdelay and even eliminates it if
the pre-pulse is large enough, but does not affect the
stuttering behavior (Figure S1B). Similarly, a hyperpolarizing
pre-pulse increases tdelay. These predictions can be tested by
current-clamp experiments.
Our theoretical work and the experimental results pre-

sented here suggest the existence in FS cells of two types of
responses to step current pulses. They differ in the minimal
firing frequencies, the properties of the membrane potential
fluctuations during the delay period, and the sensitivity of the
delay duration to noise. More specifically, we predict that the
minimal firing rate, the sensitivity of tdelay to noise, and the
presence of subthreshold oscillations of the membrane
potential during the delay period are negatively correlated
to the strength of the Naþ window current. Furthermore, we
predict that FS neurons that can fire at low firing rates cannot
stutter, and that increasing gd artificially via dynamic clamp
may convert a tonic-delay response into stuttering. These
predictions can be tested in a detailed population study of
electrophysiological properties of FS neurons.
The modeling results presented in this paper can be

applied to understand the effect of some neuromodulators on
the firing patterns of FS cells. Dopamine attenuates the d-
type Kþ current Id in a subgroup of FS neurons [44].
Consistent with the results of our modeling study, dopamine
also transforms the firing pattern of an FS cell from a tonic-
delay type to the tonic-no delay type [44] (see also [45]). Naþ

currents are affected by metabotropic glutamate receptor
subtype 1 (mGluR1). As shown by [46], it shifts hh to more
hyperpolarized potentials in pyramidal neurons, decreasing
their Naþwindow current. It also facilitates the persistent Naþ

current INaP by shifting its activation curve leftward [46].
Similarly, serotonin makes hh more negative in pyramidal
cells, and also reduces the maximal conductance of INaP [47].
If one assumes that these modulators have similar effects on
Naþ currents in FS cells, our results suggest that they may
modify qualitatively the firing patterns of these neurons.

Materials and Methods

Model. Our model of FS cells is based on that of [3,28], with several
modifications based on voltage clamp data. The current balance
equation is

Figure 12. Experimental Results: Fourier Spectrum of the Membrane

Potential Fluctuations during Delay Periods in FS Neurons

Top: voltage time courses for three FS neurons exhibiting delayed firing.
Bottom: the Fourier spectra of the subthreshold membrane potentials
during the delay before spiking for these three neurons.
(A) The minimal (just suprathreshold) firing frequency of this neuron is
high (80 Hz). Pronounced subthreshold oscillations are observed during
the delay period.
(B) The minimal firing frequency of this neuron is lower than in (A) (38
Hz). The subthreshold oscillations exhibited by this neuron are less
pronounced than in (A).
(C) The minimal firing frequency of this neuron (4.3 Hz) is much lower
than in (A) or (B). This neuron does not exhibit subthreshold oscillations
during the delay period. Spectra were calculated over the time intervals
denoted by the horizontal bars in the top panels.
doi:10.1371/journal.pcbi.0030156.g012
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C
dV
dt
¼ �INaðV ; hÞ � IKdrðV ; nÞ � IdðV ; a; bÞ � gLðV � VLÞ þ Inoise þ Iapp

ð5Þ

where V is the membrane potential of the neuron, C¼ 1lF/cm2 is the
membrane capacitance, and the parameters of the leak current are gL
¼ 0.25 mS/cm2 and VL ¼�70 mV. The external current injected into
the neuron is denoted by Iapp.

The Naþ current INa is given by:

INaðV ; hÞ ¼ gNam3
‘ðVÞhðV � VNaÞ ð6Þ

where the gating variables, h and m, follow:
dh
dt
¼ ½h‘ðVÞ � h�=shðVÞ ð7Þ

m‘ðVÞ ¼ f1þ exp½�ðV � hmÞ=rm�g�1 ð8Þ

h‘ðVÞ ¼ f1þ exp½�ðV � hhÞ=rh�g�1 ð9Þ

shðVÞ ¼ 0:5þ 143f1þ exp½�ðV � hthÞ=rth�g�1 ð10Þ

The parameters are: gNa¼ 112.5 mS/cm2, VNa¼ 50 mV, rm¼ 11.5 mV,
hh¼�58.3 mV, rh¼�6.7 mV, hth¼�60 mV, rth¼�12 mV [14]. In this
work, we study the effect of the strength of the Naþ window current,
controlled by the parameter hm, on the dynamics of the neuron.

The delayed rectifier Kþ current IKdr is of the Kv3.1–Kv3.2 type. It
is responsible for the brief duration of the spike, about 0.5 ms [2,48],
and for the high firing frequency [3,49]. It is given by:

IKdrðV ; nÞ ¼ gKdrn2ðV � VKÞ ð11Þ

with:

dn
dt
¼ ½n‘ðVÞ � n�=snðVÞ ð12Þ

n‘ðVÞ ¼ f1þ exp½�ðV � hnÞ=rn�g�1 ð13Þ

snðVÞ ¼ f0:087þ 11:43f1þ exp½ðV þ 14:6Þ=8:6�g�1g

3f0:087þ 11:43f1þ exp½�ðV � 1:3Þ=18:7�g�1g
ð14Þ

All the parameters of the delayed rectifier current are fixed: gKdr ¼
225 mS/cm2, VK¼�90 mV, hn¼�12.4 mV, rn¼ 6.8 mV, htn¼�27 mV,
rth ¼�15 mV [50].

The Kþ current Id incorporated in the model [10,11] has fast
activation and slow inactivation. It is defined by:

IdðV ; a; bÞ ¼ gda3bðV � VKÞ ð15Þ

da
dt
¼ ½a‘ðVÞ � a�=sa ð16Þ

db
dt
¼ ½b‘ðVÞ � b�=sb ð17Þ

a‘ðVÞ ¼ f1þ exp½�ðV � haÞ=ra�g�1 ð18Þ

b‘ðVÞ ¼ f1þ exp½�ðV � hbÞ=rb�g�1 ð19Þ

Throughout the paper, all the parameters of the d-current but gd are
fixed: ha¼�50 mV, ra¼ 20 mV, sa¼ 2 ms, hb¼�70 mV, rb¼�6 mV, sb
¼ 150 ms [51,52]. The parameter gd is varied to study the effect of the
strength of this current.

Finally, to study the effect of noise in the external input on the
firing pattern of the neuron, we add an additional external input,
Inoise, of the form:

InoiseðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2DnðtÞ

p
ð20Þ

where n(t) is a Gaussian white noise with an average 0 and a unit
variance, and D has the units of lA2 3 ms/cm4 .

Numerical methods. Simulations were performed using the fourth-
order Runge-Kutta method with a time step of 0.01 ms implemented

as a C program or within the software package XPPAUT [53], which
was used also for computing bifurcation diagrams.

Delay. The delay duration tdelay is defined to be the time from the
onset of current injection, or, if the neuron fires transient 1–3 spikes,
from the last transient spike to the first spike of the sustained firing.
We define that the neuron shows a delay if tdelay is at least twice as
large as the inter-spike interval during steady-state spiking tISI, or if it
is larger than both 100 ms and 1.2 tISI.

Fourier spectrum. Discrete Fourier transforms of subthreshold
oscillations were calculated numerically over a time window of TFT
ending TBS¼ 5 ms before the first spike of the steady-state firing. The
absolute values of the Fourier components were averaged over nR
repetitions of the same stimulus. Parameters for Figure 9 are: TFT ¼
120 ms, nR¼ 20. Parameters for Figure 12 are: TFT¼ 90 ms, nR¼ 5 (A),
TFT ¼ 120 ms, nR ¼ 13 (B), TFT ¼ 120 ms, nR ¼ 11 (C).

The b-VFP curve of the model neuron. The bifurcations of the fast
subsystem when b varies depend on the shape of the function VFP(b),
where VFP is the value of the membrane potential of the neuron at the
fixed point of the dynamics for fixed b. Equivalently, one can relate
the bifurcations to the shape of the curve b¼ b(VFP), in the b-VFP plane
(the ‘‘b-VFP curve’’), which is defined by (see Equations 5, 6, 11, and
15):

b ¼
�INaðVFPÞ � IKdrðVFPÞ � ILðVFPÞ þ Iapp

gd½a‘ðVFPÞ�3 3ðVFP � VKÞ
: ð21Þ

where

INaðVFPÞ ¼ gNa½m‘ðVFPÞ�3h‘ðVFPÞ3ðVFP � VNaÞ

ILðVFPÞ ¼ gL 3ðVFP � VLÞ

and

IKdrðVFPÞ ¼ gKdrn2‘ðVFPÞ3ðVFP � VKÞ:

The denominator in Equation 21 is positive and increases with VFP.
The numerator therefore is positive in the relevant range of VFP for
which b . 0. The functions IL(VFP) and IKdr(VFP) are increasing with
VFP. Only the function INa(VFP) may decrease with VFP. Therefore, for
a small Naþ window current, b decreases monotonously with VFP.
This happens for instance for hm ¼�24 mV (Figure 5A). In contrast,
if the overlap between the activation and the inactivation curves of
the Naþ current is sufficiently large [13], the term �INa(VFP) in
Equation 21 can contribute substantially to make the function b(VFP)
be non-monotonous. This happens for instance for hm ¼ �28 mV
(Figure 5D).

Dependence of the delay duration tdelay on Iapp near current
threshold for D ¼ 0. We estimate tdelay, the duration of the delay to
firing of action potentials, using the ‘‘fast–slow method,’’ and derive
the dependence of tdelay on Iapp near the current threshold Ith in the
noiseless case. During the delay period, the fast subsystem is at its
fixed point, and b decreases slowly. We use this fact to compute the
scaling of the divergence of tdelay with Iapp�Ith for Iapp Z Ith for the
two bifurcation scenarios.

Hopf bifurcation of the fast subsystem. The evolution of b is given by
Equation 17, and it becomes very slow when b approaches b‘(V).
For large sb, V follows the curve VFP(b) during the delay period
(Figure 5A). We denote by ~b the solution of the equation
b‘ðVFPð~bÞÞ ¼ ~b, and define ~V [VFPð~bÞ Note that the fixed point of
the fast subsystem for b ¼ ~b is unstable if the neuron fires following
the delay. When Iapp is near Ith, VFP(b) is approximated by ~V [13],
and therefore b‘ðVFPðbÞÞ’ ~b Equation 17 for the evolution of b is
approximated by

db
dt

’½~b� b�=sb ð22Þ

Using Equation 22 for computing tdelay is justified because tdelay is
determined mainly by the slow dynamics of b when it is near ~b. Before
the current step is applied at time t¼ 0, the system is at rest with b¼
brest. The subsystem converges immediately to its fixed point on the
slow time scale, and the solution to Equation 22 is

bðtÞ ¼ ~b� ð~b� brestÞe�t=sb ð23Þ

According to Equation 3.13a from [20], tdelay is determined by the
equation Z tdelay

0
dtReðkðtÞÞ ¼ 0: ð24Þ

Near a Hopf bifurcation,
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ReðkÞ ¼ aðbHopf � bÞ ð25Þ

where bHopf is the value of b at the Hopf bifurcation and a is a
constant. Substituting Equation 23 in Equation 24 and using
Equation 25, we obtain

ðbHopf � ~bÞtdelay � ðbrest � ~bÞsbð1� e�tdelay=sb Þ ¼ 0 ð26Þ

Near the threshold current Ith, tdelay .. sb, and Equation 26 becomes

tdelay ¼
sbðbrest � ~bÞ
bHopf � ~b

ð27Þ

Generically, when Iapp�Ith is small, ~b depends only weakly on Iapp and
bHopf � ~b depends linearly on Iapp�Ith. Therefore, tdelay scales as
(Iapp�Ith) �1.

Saddle-node bifurcation of the fast subsystem. The dynamics are very slow
near the SN bifurcation, occurring at (bSN, VSN). Neglecting the
changes in VFP during the evolution, Equation 23 becomes

bSN ¼ bISN � ðbISN � brestÞe�tdelay=sb ð28Þ

where bISN ¼ b‘(VSN). Namely,

tdelay ¼ �sblog
bSN � bISN
brest � bISN

ð29Þ

Generically, when Iapp�Ith is small, bSN�bISN depends linearly on
Iapp�Ith. Therefore, tdelay scales as �log(Iapp�Ith).

Dependence of tdelay on D for weak noise. We calculate the
dependence of tdelay on the noise variance, D, for weak noise and weak
window INa. In this case, the delay ends because the fast subsystem is
destabilized via a Hopf bifurcation. According to Theorem 4.1 in [40],
assuming that the variance of the noise, D, is neither too large nor too
small, tdelay is determined by the equationZ tdelay

0
dtReðkðtÞÞ ¼ ~B� ~AlogD ð30Þ

where ~A and ~B are constants. As above, tdelay is determined mainly by
the slow evolution near ~b, and therefore one can use the
approximation VFPðbÞ’ ~V . Substituting Equations 23 and 25 in
Equation 30, we obtain

ðbHopf � ~bÞtdelay � ðbrest � ~bÞsbð1� e�tdelay=sb Þ ¼ ð~B� ~AlogDÞ=a ð31Þ

Solving this equation for tdelay, in the limit tdelay .. sb, we obtain

tdelay ¼ B� AlogD ð32Þ

where A ¼ ~A=ðbHopf � ~bÞ and B ¼ ½ðbrest � ~bÞsb þ ~B=a�=ðbHopf � ~bÞ.
The equation F(b)¼ b has no solution for large gd. We consider the

case that, for a certain value of gd, gd¼ gd1, and a step current with an
amplitude Iapp, there is a solution to the equation F(b)¼ b. We prove
here that for a large enough gd, a solution to this equation does not
exist for this value of Iapp. The function F(b) is defined only when the
limit cycle exists, namely only for b � bSNP. Since the current Id
depends on gd and b only through the product gdb (Equation 15), bSNP
for any other value of gd is

bSNPðgdÞ ¼ gd1bSNPðgd1Þ=gd ð33Þ

This means that bSNP(gd) is very small for large gd.
We continue by noticing that: (1) F(b) is the time-average of the

function b‘(V(t)) over LC(b) (Equation 2); (2) b‘(V) is a positive,
decreasing function of V (Equation 19); and (3) V � VNa. Therefore,
F(b) � F(b‘(VNa)). From the fact that bSNP(gd) decreases with gd
(Equation 33), one finds that, for large enough gd, F(b‘(VNa)) .
bSNP(gd). Since F(b) is defined only for b � bSNP(gd), we obtain that F(b)
. b, and there is no solution to the equation F(b) ¼ b if gd is large
enough. Therefore, the full system cannot exhibit a tonic firing state.
If the rest state of the neuron is unstable, the neuron stutters. In
practice, F(b) is much larger than F(b‘(VNa)) because the membrane
potential spends a large fraction of its period in subthreshold values,
and therefore gd should not be extremely large to prevent a solution
of the equation F(b) ¼ b.

Whole-cell recordings and analysis. Mice (CD1, 21–28 d old) were
deeply anaesthetized with pentobarbital, decapitated, and their
brains quickly removed into cold (5 8C) physiological solution.
Coronal cortical slices (400 lm thick) were cut with a vibratome
(Campden Instruments, http://www.campdeninstruments.com) and
then transferred to a holding chamber where they were kept at

room temperature for at least 1 h before recording, continuously
bubbled with 95% O2, 5% CO2. Recording was done in a chamber
mounted on an upright microscope equipped with IR/DIC optics
(Nikon physiostation EC-600), where they were held at 32–34 8C and
constantly perfused. The normal bathing solution contained (in mM):
124 NaCl, 3.5 KCl, 2 MgSO4, 1.25 NaHPO4, 2 CaCl2, 26 NaHCO3 and
10 dextrose, and was saturated with 95% O2, 5% CO2 (pH 7.4).
Whole-cell recordings were made from neurons in the barrel field.
Patch recording micropipettes (4–6 MX) were filled with a solution
containing (in mM) 125 K gluconate, 5 NaCl, 2 MgCl2, 10 EGTA, 10
HEPES, and 2 Na2-ATP, pH 7.2, 280 mOsm). Voltages were recorded
with a patch clamp amplifier (AxoPatch 2B, Axon Instruments, http://
www.axon.com), and digitally sampled at 10 kHz. Data acquisition and
analysis were performed with Labview (National Instruments, http://
www.ni.com). Series resistance was typically ,15 MX. During all
recordings, 50 lM DL-2-amino-5-phosphopentanoic acid (AP5,
Sigma, http://wwwsigmaaldrich.com) and 6,7-dinitroquinoxaline-2,3-
dione (DNQX; 20 lM, Sigma) were present in the bath to block
excitatory transmission.

Identification of FS neurons. Non-pyramidal neurons were targeted by
their soma and proximal dendrites image under the IR/DIC micro-
scope. Among those, FS neurons were identified according to their
electrophysiological properties. A neuron was classified as an FS
neuron if: 1) it fired brief spikes with fast, deep, monophasic AHPs [1];
and 2) the ratio of the spike’s rising phase dV/dt to falling phase dV/dt
was smaller than 2. Previous studies revealed that the morphological
correlate of FS neurons can be either ‘‘basket’’ [7] or ‘‘neurogliaform’’
[24,54,55]. Most FS neurons express parvalbumin [56], but others
express somatostatin [57]. Thus, this type of interneuron may be
heterogeneous in terms of its morphology or chemical content, but
we did not use these criteria for our classification.

Supporting Information

Figure S1. Voltage Traces of the Responses of the Model Neuron to
Current Steps

(A) The neuron does not fire rebound spikes in response to release
from hyperpolarizing current steps. Parameters: hm ¼�24 mV, gd ¼
0.39 mS/cm2, Iapp¼0, Iapp of the hyperpolarizing current step is�8 lA/
cm2, VL ¼�60 mV.
(B) The neuron exhibits stuttering without delay for weak window INa
and depolarized VL, that is raised to �60 mV from the reference
parameter set of�70 mV. Parameters: hm¼�24 mV, gd¼ 1.8 mS/cm2,
Iapp¼ 1.7 lA/cm2.

Found at doi:10.1371/journal.pcbi.0030156.sg001 (68 KB PDF).

Figure S2. Response of the Model Neuron to Noiseless Current Steps
for Modified hh Values

(A) Parameters: hm¼�24 mV, hh¼�54.3 mV, gd¼ 0.39 mS/cm2. Left:
voltage trace for Iapp ¼ 2.38 lA/cm2. Right: the steady-state f–Iapp
curve of the neuron. The average firing frequency goes to zero at
firing threshold.
(B) Parameters: hm¼�28 mV, hh¼�62.3 mV, gd¼ 0.39 mS/cm2. Left:
voltage trace for Iapp ¼ 1.95 lA/cm2. Right: the steady-state f–Iapp
curve is discontinuous at the current threshold. The minimal
frequency is 23.3 Hz.

Found at doi:10.1371/journal.pcbi.0030156.sg002 (87 KB PDF).
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