Advertisement

< Back to Article

Untangling the Interplay between Epidemic Spread and Transmission Network Dynamics

Figure 3

HIV epidemics in synthetic populations with weak and strong concurrency.

Evolution in the numbers of susceptible (green), primarily (red) and latently (orange) infected individuals as well as their average number of contacts per person in the scenario of strong and weak concurrency are shown in the left and middle column. The logarithmic scale was chosen to present the different orders of magnitude in the size of the epidemic subgroups. The epidemics take place on random networks with the sketched distributions in the number of contacts ( to are shown, = 0 for ) into which individuals are born and die at a rate of p.a.. The epidemic parameters were chosen in accordance with the infectious profile of HIV [33], i.e., transmission rates in the stages of primary and latent infection are p.a. and p.a., respectively, with rates of progression of = 4.1 p.a. and = 0.12 p.a.. The right column (comparison, top) shows the fraction of individuals in the primary (red) and latent (orange) stage of disease in the scenarios of strong concurrency (solid lines) and weak concurrency (dashed lines), for comparison. The final diagram shows the ratio, , for both scenarios, i.e. the relative risk of infection acquired from primary over that from latent infections (strong concurrency - solid line, weak concurrency - dashed line). Epidemics are initiated as in Fig. 2, for better comparability the time axis was shifted to start both epidemics with the same number of latent cases after initial equilibration.

Figure 3

doi: https://doi.org/10.1371/journal.pcbi.1000984.g003