Advertisement

< Back to Article

Transat—A Method for Detecting the Conserved Helices of Functional RNA Structures, Including Transient, Pseudo-Knotted and Alternative Structures

Figure 17

Comparison of Transat (top figure) and RNAalifold P (bottom figure) for the trp-attenuator data set.

In the top figure showing the Transat predictions, base-pairs predicted by Transat have non-black colours which indicate their reliability as estimated by Transat ( green, blue, orange and red) using a p-value threshold of . The bottom figure shows the RNAalifold P predictions, see the caption of Figure 16 for more information on arc-plots. Transat predicts all helices of the known structures and several new helices, albeit with relatively high p-values between and ), whereas RNAalifold P captures only two of the helices and proposes an single new base-pair which extends of the known helices, see also Figure 10.

Figure 17

doi: https://doi.org/10.1371/journal.pcbi.1000823.g017