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Abstract

Many cognitive problems can be decomposed into series of subproblems that are solved

sequentially by the brain. When subproblems are solved, relevant intermediate results need

to be stored by neurons and propagated to the next subproblem, until the overarching goal

has been completed. We will here consider visual tasks, which can be decomposed into

sequences of elemental visual operations. Experimental evidence suggests that intermedi-

ate results of the elemental operations are stored in working memory as an enhancement of

neural activity in the visual cortex. The focus of enhanced activity is then available for subse-

quent operations to act upon. The main question at stake is how the elemental operations

and their sequencing can emerge in neural networks that are trained with only rewards, in a

reinforcement learning setting. We here propose a new recurrent neural network architec-

ture that can learn composite visual tasks that require the application of successive elemen-

tal operations. Specifically, we selected three tasks for which electrophysiological

recordings of monkeys’ visual cortex are available. To train the networks, we used

RELEARNN, a biologically plausible four-factor Hebbian learning rule, which is local both in

time and space. We report that networks learn elemental operations, such as contour group-

ing and visual search, and execute sequences of operations, solely based on the character-

istics of the visual stimuli and the reward structure of a task. After training was completed,

the activity of the units of the neural network elicited by behaviorally relevant image items

was stronger than that elicited by irrelevant ones, just as has been observed in the visual

cortex of monkeys solving the same tasks. Relevant information that needed to be

exchanged between subroutines was maintained as a focus of enhanced activity and

passed on to the subsequent subroutines. Our results demonstrate how a biologically plau-

sible learning rule can train a recurrent neural network on multistep visual tasks.
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Author summary

Many visual problems, like finding your way on a map, are solved by decomposing them

into a series of subproblems. For a successful decomposition, the neuronal processes that

solve one subproblem must make their results available to the subsequent ones. Experi-

ments in monkeys demonstrated that the outcomes of subproblems are represented as

foci of enhanced activity in the visual cortex, which are related to attention shifts and can

be used as inputs for the processes solving the next subproblems. To understand how sub-

problems and their sequencing are learned, we trained a recurrent artificial neural net-

work on the same tasks that monkeys performed, using a biologically plausible

reinforcement learning rule. The networks learned the tasks and, importantly, the activa-

tion of the networks’ units resembled the spatiotemporal patterns of activity observed in

the visual cortex of monkeys. Our results shed light on how recurrent neural networks

trained with a biologically plausible learning rule can learn to propagate enhanced activity

between subroutines to solve complex visual tasks.

Introduction

Many everyday tasks can be decomposed into subroutines that are executed sequentially. If

you want to find your way on a map, for instance, you first search where your goal and actual

position are, and then you find the path between those two positions. Ullman [1] proposed

that such complex visual tasks can be solved using visual routines, neuronal programs consist-

ing of a sequence of atomic mental steps that he called elemental operations. Curve tracing,

visual search, cuing, matching or contour grouping are examples of such elemental operations

[2–4]. The visual routine hypothesis has been applied in various domains, including visual

search [5], map reading [3], driving [6,7], block copying [8,9] and other visual tasks [10].

There are at least two critical conditions for the successful implementation of visual rou-

tines: the correct elemental operations must be chosen and applied in the appropriate order,

and information must flow between subroutines so that the output of one subroutine can be

used as the input for the next one. Those two conditions are straightforward to implement in a

computer program, but it remains unclear how variables are bound to subroutines in the

brain. Several studies provided insights into the neural basis of elemental operations and visual

routines. For example, Jolicoeur et al. [11] focused on curve tracing as an example elemental

operation. In their task, subjects had to determine if two dots were on the same or different

curves. They found that curve-tracing is a serial mental operation because the reaction time

increases when subjects trace longer curves (see Fig 1A for an example curve-tracing

stimulus).

Previous studies started to gain insight into how elemental operations are implemented in

the visual cortex. The neural activity during elemental operations can be divided in several

phases [12,13]. The first phase is dominated by feedforward processing. Basic features are reg-

istered in low level visual areas and more complex features, such as object category are regis-

tered in higher areas [14,15]. Later phases are dominated by recurrent processing, enabled by

feedback and horizontal connections, allowing the early visual cortex to act as a cognitive

blackboard [16]. Higher areas may write to the blackboard in early visual cortex using feedback

connections, to enhance the representation of task-relevant features and suppress the repre-

sentation of distracting information. Other higher visual areas can then read from the black-

board utilizing feedforward connections to selectively process features that are task relevant.
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Studies in monkeys carrying out attention-demanding tasks have supported the blackboard

analogy. For example, Roelfsema et al. [17] trained monkeys in a curve-tracing task while

recording the activity of neurons in the primary visual cortex (area V1). The animals were

trained to make an eye movement toward the end of a target curve that was connected to the

fixation point, while ignoring another distractor curve (Fig 1A). The initial response of the

neurons was determined by the information in the neurons’ receptive field that is carried by

feedforward connections from the retina. However, at a later phase of the neuronal responses,

neurons with a receptive field (RF) on the target curve enhanced their activity compared to

neurons whose RF fell on distractor curves. This later response modulation reflects an influ-

ence of recurrent processing by horizontal connections within V1 and feedback from higher

visual areas [15]. Later studies demonstrated that the enhanced activity spreads gradually over

the V1 representation of the curve [18]. The latency of the response enhancement was short at

the start of the curve, and it occurred later for neurons with RFs farther along the curve. These

Fig 1. Example stimuli for the three tasks. A, Trace task. The monkey makes an eye movement toward the blue dot

connected to the red fixation point. The representation of the target curve in the visual cortex is enhanced because

extra neuronal activity spreads over this curve (yellow). B, Search-then-trace task. The monkey searches for a marker

with one of two colors and then traces the curve that starts at this marker to its other end to make an eye movement to

the blue dot. This task requires visual search followed by curve-tracing. In the visual cortex, the search operation first

labels the target marker with enhanced activity (light blue circle). Its position can be used as the starting position of the

tracing operation which propagates enhanced activity over the target curve (light yellow). C, Trace-then-search task.

The monkey first traces the target curve connected to the fixation point and identifies the color at the end of this curve.

It then has to search for a disk with the same color, which is the target for an eye movement. In the visual cortex,

enhanced activity first propagates across the target curve and identifies the target color (trace operation, light yellow),

which is used during the subsequent search (light blue circle).

https://doi.org/10.1371/journal.pcbi.1012030.g001
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findings demonstrate the serial nature of the contour-grouping process. Related findings have

been reported for visual search, during which the representation of items that are searched for

is enhanced during a delayed phase of the neuronal responses in the monkey visual cortex

[19–24]. The early feedforward processing phase and the later recurrent processing phase map

onto what Ullman called the base- and incremental representation [1,15].

To examine how elemental operations can be combined into visual routines, Moro et al.

[25] and Roelfsema et al. [26] recorded from neurons in the visual cortex of monkeys trained

to perform more complex visual tasks. The first task was a ‘search-then-trace’ task (Fig 1B). In

this task, the fixation point could be one of two colors. The monkey had to register the color of

the fixation point and to search for a circular marker with the same color, which demarcated

the start of the target curve. The monkey then traced the target curve to its other end and

planned an eye movement to a circle at that position (blue dot in Fig 1B). The search and trace

operations were performed mentally, while the monkey kept its gaze on the fixation point. The

eye movement was made only at the end of the trial and the monkey received a reward when

he made an eye movement to the circle at the end of the target curve. The second composite

task was a trace-then-search task (Fig 1C). Now the order of the two subroutines was reversed:

the monkey first had to trace the target curve connected to the fixation point and to register

the color of a marker at the end of this curve. The monkey then searched for a larger circle

with the same color that was the target for an eye movement.

The neurophysiological studies demonstrated that it is possible to monitor the order and

progress of the successive subroutines that are executed by the monkey by recording from area

V1. The findings also illustrate how information can be transferred from one elemental opera-

tion to the next. For example, in the search-then-trace task, the initial visual search enhanced

the representation of the target marker as the beginning of the target curve (at a latency of

159ms, light blue circle in Fig 1B) so that the tracing operation could spread activity along this

curve, beginning at this marker (after 229ms, light yellow in Fig 1B). In the trace-then-search

task, the trace operation enhanced the responses elicited by the target marker (at 180ms, Fig

1C) so that its color could be registered as the target color for the subsequent search. The visual

search caused an enhanced response at the circular eye movement target at a latency of 267ms

(Fig 1C).

An important finding is that the outcome of an elemental operation is made available as a

focus of enhanced activity that may correspond to the working memory of that feature so that

it can be used as the input for the next elemental operation [27]. These findings also illustrate

the role of early visual cortex as a cognitive blackboard [16]. Reading and writing to the cogni-

tive blackboard in early visual areas permits the exchange of information between elemental

operations that are part of a visual routine. For example, in the search-then-trace task, the

visual search operation tags the location of the target marker with enhanced activity in area

V1, which corresponds to a write operation on the cognitive blackboard. This focus of

enhanced activity marks the beginning of the tracing operation, starting at this position.

At a psychological level of description, the neuronal response modulations that occur dur-

ing the recurrent processing phase correspond to shifts of attention, which are directed to

image elements that are represented with enhanced neuronal activity [28]. Indeed, the

sequence of mental operations is associated with a sequence of attention shifts. Visual search

for a target shape or color in an array of stimuli leads to a shift of attention to the item that

needs to be found [29]. Similarly, when subjects mentally trace a curve, they gradually spread

attention across all of its contour elements, which corresponds to the spread of object-based-

attention across the curve [30]. Hence, multistep visual routines and some forms of perceptual

grouping are accomplished through the spread of enhanced activity in the brain, which maps

onto shifts of attention in psychology [28].
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There is substantial evidence that visual routines are implemented in the visual cortex

through the propagation of enhanced activity during a recurrent processing phase. However, it

remains unknown what architectures and plasticity rules permit the learning of such routines

in the brain. A study by Tsotsos and Kruijne [31] considered many of the processes that are

needed to implement visual routines, but they also left many of the proposed functions, like

those that determine order of processing steps, for future work.

To investigate how curve-tracing can be learned, Brosch et al. [32] developed RELEARNN.

RELEARNN is a biologically plausible learning rule that uses two factors to gate Hebbian plas-

ticity. The first factor is a reward-prediction error that is central in many approaches to biolog-

ically inspired learning [33] and that is thought to be made available throughout the brain by

the release of neuromodulators such as dopamine [34,35]. The second factor used by

RELEARNN is a feedback signal initiated by the selected action, which propagates through a

dedicated set of recurrent connections in an “accessory network” or “credit assignment net-

work” that highlights the synapses that have had most influence on this action and that gates

the plasticity. The combination of these two factors gives rise to a learning rule that is equiva-

lent to the Almeida-Pineda algorithm that can be used to train recurrent networks [36,37],

while all the information needed to control plasticity is available locally at every synapse.

Importantly, RELEARNN is based on trial-and-error learning and does not require the

“teacher” of error-backpropagation, because the only feedback that the network receives is

whether it obtains a reward.

Interestingly, Brosch et al. [32] found that the strategy that the network learned to trace curves

resembled neurophysiological results in the visual cortex of monkeys. The network learned to

spread enhanced neuronal activity over the target curve. Brosch et al. [32] only tested curve-trac-

ing and the so-called pathfinder task [38,39]. The pathfinder task requires the detection of a string

of approximately colinear line elements among other, non-colinear line elements and can be

solved in parallel, unlike the curve-tracing task which requires a serial process (Houtkamp and

Roelfsema [40] discuss differences between curve-tracing and the pathfinder task).

It has therefore remained unclear if neural networks can learn to stitch elemental visual

operations into visual routines using a biologically plausible plasticity rule that is based on

trial-and-error learning. In the present study we set out to examine learning of visual rou-

tines by neural networks with feedforward, feedback and horizontal connections. We

asked whether the network (1) would learn multiple elemental operations, (2) whether it

would learn to execute the elemental operations sequentially and in the correct order and

(3) how the network ensured the transfer of information from one elemental operations to

the next.

We used RELEARNN [32] to train the networks on three visual routines for which neuro-

physiological data in monkeys exist: a curve-tracing task, a search-then-trace and a trace-then-

search task [25]. We found that the networks learned all three tasks. Interestingly, the activa-

tion of units of the networks resembled the spatiotemporal patterns of activity observed in the

visual cortex of monkeys. The networks learned to propagate enhanced activity along curves

and to enhance activity in retinotopic areas to transfer information between subroutines. Our

results show how recurrent neural networks trained with a biologically plausible learning rule

can learn to propagate enhanced activity to solve complex visual tasks.

Results

The tasks for the model

We trained networks on three tasks. The first task is a version of the curve tracing task (Fig

2A). This task requires only one of the elemental operations, which is curve tracing [1]. To
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solve it, the model had to learn to group a set of connected pixels on a grid of 15 by 15 pixels

that started with a red pixel. The model had to select the blue pixel at the end of the target

curve, composed of green pixels, for an eye movement. We did not simulate the eye movement

itself, but we considered the response of the network to be correct if it selected the location of

the appropriate blue pixel in the output layer (Fig 3).

The second task was the search-then-trace task (Fig 2B). We cued the color that was the tar-

get of search by activating one of two additional input units, which coded for brown and red

(Fig 2). The model had to locate the pixel with the same color in the visual stimulus and trace

the curve starting at this pixel to its other end to locate a blue pixel that was the target for an

eye movement.

The third task was the trace-then-search task (Fig 2C). Now the target curve started with a

blue pixel. The model had to identify the color at the other end of the target curve and to select

the same color at a location outside the pixel frame. Specifically, it could choose between a red

and brown pixel.

In the previous experiments with the monkeys, the trial started when the animal directed its

gaze to the fixation point. However, in our modeling work, we started each trial by presenting

the full stimulus, irrespective of the model’s gaze position. Furthermore, we placed the colored

markers that were part of the visual search subtask next to the grid of the curve tracing task, to

simplify the routines. This stimulus design neither altered the structure of the tasks, nor the

need to transfer information between subroutines.

The search-then-trace and the trace-then-search tasks can be solved by visual routines,

composed of visual search and curve tracing as elemental operations, but in different orders.

These tasks also illustrate how the output of one operation needs to be carried over as input for

the next operation. For example, the output of the search operation of the search-then-trace

task is the location of the marker with a specific color, which is the starting point for the subse-

quent tracing operation.

Model

We will first describe the network architecture and RELEARNN, the biologically plausible

reinforcement learning rule. We will then describe the network simulations and

Fig 2. Example stimuli for the three tasks for the model. A, Trace task. The task is to make an eye movement to the blue pixel of the curve starting with a red pixel. B,

Search-then-trace task. The model searches for a target marker (here red, as cued on the left of the array) and it has to make an eye movement to the blue pixel at the other

end of the curve starting with this marker. C, Trace-then-search task. The model traces the curve starting with the blue pixel to identify a colored marker at the other end

(here brown), which cued the target color that the model should select at the left of the grid. Each trial started with the full stimulus in view.

https://doi.org/10.1371/journal.pcbi.1012030.g002
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compare them to neuronal activity in the visual cortex of monkeys that were trained on the

same tasks.

Structure of the network

We trained convolutional neural networks with an input layer, two hidden layers and an out-

put layer. The input layer (layer 0) consisted of a grid of 15x15 input units and there were two

extra input units outside the grid. There were four units at every grid location, one for each of

the possible colors of the pixels (red, brown, blue and green). We did not model the more elab-

orate receptive field structure and its variety in low-level visual cortical areas, which might

have distracted from the purpose of the model [41]. In each layer there was a group of feedfor-

ward units that only propagated information to the next layer and to other feedforward units.

These feedforward units also gated the activity of units in another, recurrent group with a RF

at the same position (Fig 3, “horizontal gating”). Units in the recurrent group could propagate

information to the next or previous layer and to units with different receptive fields within the

Fig 3. Architecture of the network. The network comprises one input layer, two hidden layers and one output layer. The

input and hidden layers have four features each. In each layer, units belong to the feedforward or to the recurrent group. The

activity of units in the recurrent group is gated by input of neurons in the feedforward group with the same RF so that they

cannot participate in the spread of enhanced activity in case the corresponding feedforward unit is inactive.

https://doi.org/10.1371/journal.pcbi.1012030.g003
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same layer. As a result, units in the recurrent group could be modulated by activity outside

their RF. The gating by units in the feedforward group with the same RF (Fig 3) ensured that

the response modulation could not spread to recurrent units that are not active because they

represent features that are not present in the image.

The activities of neurons in the feedforward group in layer l at timestep t were determined

by activities of feedforward neurons in the lower layer at the same timestep through connec-

tions V. If X represents the activity of neurons in the feedforward group, Y the activity of

neurons in the recurrent group, l the layer index, then the activity of neurons was determined

by:

XlðtÞ ¼ sðV∗Xl� 1ðtÞÞ ð1Þ

YlðtÞ ¼
sðφðX0ðtÞÞ � ðU1∗Y1ðt � 1Þ þH0∗Y0ðt � 1ÞÞÞ; if l ¼ 0

sðφðXlðtÞÞ � ðU lþ1∗Ylþ1ðt � 1Þ þ T l� 1∗Yl� 1ðtÞÞÞ; otherwise
ð2Þ

(

Here σ is a nonlinear activation function and φ a gating function (see below),� represents

an element-wise product between the activity of feedback and feedforward units and * indi-

cates a convolution.

In the recurrent group, units in the input layer receive horizontal input from the same

layer at the previous timestep through connections H (green terms in Eq 2), units in the

higher layers receive feedforward input from the preceding layer at the same timestep

through connections T (blue terms) and feedback from the next higher layer through con-

nections U (red terms). The horizontal connections in the input layer carry color informa-

tion and facilitate the learning of the search component in the search-then-trace and the

trace-then-search tasks.

For connections between hidden layers, we used a 3x3 convolutional kernel, and enforced

that neurons could only make connections to their Von Neumann neighborhood (4- neigh-

borhood). As is common for convolutional neural networks, the kernels were replicated using

weight sharing, a property not present in biological neural networks [42]. However, the net-

works could also learn the tasks without weight sharing. Specifically, without weight sharing

the networks learnt the curve-tracing task after an average of 140,000 trials as opposed to

19,000 trials when we used weight sharing. We used weight sharing to reduce computation

time, but we note that our results are likely to generalize to biologically plausible learning

schemes without weight sharing.

The last hidden layer was fully connected to the output layer and the recurrent input layer

with weights linking units with the same RF initialized with positive values and between units

with different RFs initialized with negative values to bias the winner-takes-all mechanism in

the last layer, which stabilized learning.

The activity of units in the retinotopically organized output layer was determined as:

Q ¼W3 � X3ðTÞ þW0 � X0ðTÞ ð3Þ

where T is the timestep at which the network reached a stable state (Fig 3). Units in the output

layer learned to represent the also called Q-value [33], which is the expected reward when the

networks selected this position for an eye movement.

During training, the model chose the eye movement with the highest Q-value with proba-

bility 1−�. With probability � the network explored other actions and sampled a random action
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a from the Boltzmann distribution PB:

PB að Þ ¼
expðQaÞP
kexpðQkÞ

ð4Þ

� was set to 0.05 across tasks and networks. As mentioned in the above, we only simulated the

selection of the eye movement in a map of space. We neither simulated the eye movement itself

nor the shift of the visual image that is caused by eye movements.

We trained the networks with RELEARNN [32], which is a biologically plausible imple-

mentation of Q-learning that uses three phases. Upon presentation of the stimulus, the

activity of the input neurons remains constant and activity propagates through the recur-

rent connections of the network. We selected the action once the activity of the units settled,

but we did not wait longer than 50 timesteps. When an action was selected, an “attentional”

signal originating from the winning action was propagated through an accessory network to

determine the influence of each neuron on the selected action. The accessory network is

important for credit assignment, with one unit for every unit of the regular network. It per-

mits local computation of weight updates (see “RELEARNN”). The network then gets a

reward r from the environment and computes a reward prediction error δ that is deter-

mined by:

d ¼ r � Qa ð5Þ

Where Qa is the Q-value of the selected action a. The reward prediction error δ is broad-

casted to the whole network by a neuromodulatory signal, such as dopamine [34] and is thus

available at all synapses. δ and the “attentional” feedback signal are combined to update the

weights of the network, as will described below in the RELEARNN section.

Activation and gating functions

A popular activation function to train recurrent neural networks is the ReLU function because

it alleviates the problem of the vanishing gradient [43]. However, ReLU functions offer no

guarantees that the network will reach a stable state [44], which is a necessary condition for

learning rules such as RELEARNN. On the other hand, squashing nonlinearities like sigmoid

or tanh functions guarantee that the network reaches a stable state [45], but may suffer from

the vanishing gradient problem, which might hurt performance [46]. To guarantee that our

network reaches a stable state while mitigating the vanishing gradient problem, we used a

ReLU-like function with a slope that decreases after a threshold:

sðxÞ ¼
maxð0; xÞ; x � 6

logð1:5 � xþ 1Þ þ c; otherwise
ð6Þ

(

Where c is set to 6−log(10) to ensure that σ is continuous. We will describe below how

the networks learn to label relevant pixels with a response enhancement. We observed that

this process was hampered if the activation function was bounded from above when curves

were long. In that situation, units coding for all pixels reached the bound and the networks

could no longer differentiate between the target and the distractor curve. The activation

function of Eq 6 ensured that the network differentiated between long target and distractor

curves.

The horizontal gating of feedback units by feedforward units (see Eq 2) was also governed

by a non-linear function. The activity of neurons of the feedforward units was passed through
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a continuous approximation of a step-function:

φ xð Þ ¼
100x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ð100xÞ2
q ð7Þ

Here φ(x) is non-negative because x is non-negative (see Eq 2 for the role of φ(x)).

RELEARNN

A popular algorithm to train recurrent neural networks is backpropagation trough time

(BPTT) [47,48]. The algorithm needs to memorize the consecutive states of every unit because

this information is needed to update the weights. It is non-biological because it is neither local

in time nor in space [49]. We therefore used RELEARNN [32], a learning rule that is local in

time and in space and equivalent to backpropagation in a reinforcement learning paradigm

[36,37]. RELEARNN uses a separate accessory “attentional” network with one accessory unit

for every regular network unit (Fig 4). On each trial, the output layer chooses one of the

Fig 4. RELEARNN for an example stimulus. A. Correct choice by the network. In the first phase, activity propagates in the regular network that has both

feedforward and recurrent connections (squares) until this network reaches a stable state. Here enhanced activity (yellow) spreads over the target curve. In the

second phase, a winning unit is selected and activates the corresponding unit of the accessory network (small circles). From there, activity propagates in the

accessory network (small orange circles) to tag the connections that influence the Q-value of the chosen action. After a few timesteps, activity in the accessory

unit xi
acc becomes proportional to the influence of the activity of the corresponding regular unit xi

1 on the chosen output unit Qa. In the third phase, a reward

is given if the action was correct, or not in case of an error, and a neuromodulator (green cloud, δ) broadcasts the reward prediction error to the network.

Weights are changed according to a four-factor Hebbian learning rule (green connections between the units are increased). B. Incorrect choice by the

network. In this case, the enhanced activity spreads over the wrong curve and reward prediction error is negative because of the wrong choice (red cloud).

Hence, the weights between units that represent the distractor curve are decreased (red connections).

https://doi.org/10.1371/journal.pcbi.1012030.g004
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possible actions. The accessory units represent the influence of the corresponding regular

units on this chosen action. Once an action has been chosen, the winning unit in the output

layer activates accessory units and thereby initiates the propagation of activity in the accessory

network. The strength of a connection from unit A to unit B in the accessory network is pro-

portional to the strength of the connection from unit B to unit A in the regular network so that

the activity in the accessory network (dashed red and green lines in Fig 4) equals the influence

of regular units on the chosen action, once the accessory network converged to a stable state

(Fig 4, see Brosch et al. [32] for details). Accessory units corresponding to regular units with a

strong influence on the Q-value of the chosen action are very active and those that correspond

to regular units that did not influence this Q-value are silent. The network of accessory units

can thereby assign credit (or blame) to the regular units that are responsible for the outcome

of the action. A change in the synapses between the regular units with highly active accessory

units has a pronounced influence on the Q-value of the chosen action.

We distinguish between three phases on a trial (Fig 4). In the first phase, the stimulus is pre-

sented as a pattern of activity across the input neurons. Activity propagates trough the feedfor-

ward, horizontal and feedback connections among regular feedforward and recurrent units

until the network converges to a stable state. At the end of this phase a presynaptic neuron i
and a postsynaptic neuron j will have activity x1i and y1j . At the start of the second phase, an

action is selected, which is represented by one of the regular units in the output layer. The cor-

responding unit in the motor layer of the accessory network is activated and activity is propa-

gated within the accessory network until a stable state is reached (in our experience this phase

can be terminated after a fixed number of timesteps [45]). At the end of the second phase, neu-

rons i and j in the accessory network have activity xacc
i and yaccj , which is proportional to the

influence of the corresponding regular units on the chosen action value (see Brosch et al. [32]

for a proof):

xacc
i /

@Qa

@x1i
ð8Þ

In the third phase, the network receives a reward if the correct action was selected, and no

reward in case of an erroneous response. The reward prediction error is broadcasted through

the network using a neuromodulator and weights are modified according to a four-factor Heb-

bian learning rule:

Dwij ¼ d � x
1

i � y
acc
j � s

0ðy1j Þ ð9Þ

where Δwij represents the change in weight wij, δ is the reward prediction error defined in

Eq (5), x1i and y1j are the activities of neurons i and j in the main network when a stable state

is reached and yacc
j is the activity of neuron j in the accessory network once this network has

also reached a stable state. Note that the weight update of RELEARNN is local in space, as

weights are modified using only pre- and postsynaptic information, and local in time, because

it is not necessary to memorize the activities of the units at every time step.

Curve-tracing task

We trained the networks with a curriculum to perform the curve-tracing task, a strategy that is

also used to train monkeys. We first presented a stimulus with one blue and one red adjacent

pixel, which were placed randomly on the grid, to train the network to select blue pixels as tar-

get for an eye movement. If the network achieved an accuracy of 85% during a test phase with

500 trials, during which we fixed the weights and switched exploration off, the network was
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trained with a target and a distractor curve with a length of three pixels. When the network

achieved an accuracy of 85%, we added one pixel to the curves until the length of the curves

was 9 pixels. Using this curriculum, we trained 24 networks and judged that they had learned

the task if they achieved an accuracy larger than 85% for curves that were 9 pixels long. All net-

works learned the task, within an average of 19,000 trials. By comparison, monkeys trained on

curve-tracing tasks take weeks to months with thousands of trials per day to learn the task. The

total number of trials they undergo during training hence adds up to the tens of thousands.

We next aimed to gain insight into the strategy of the networks. The curves were drawn

randomly on each trial (see Fig 5A for an example stimulus). The number of possible curves

grows exponentially with their length, and we therefore conjectured that it might be impossible

to memorize all possible input patterns [50]. Instead, we hypothesized that the networks

learned a general rule, which could be based on applying an elemental curve-tracing operation.

To test this hypothesis, we exposed the networks to curves that were longer than those shown

during training. When a network achieved an accuracy larger than 85% for curves of length N,

we switched off exploration and tested curves with lengths ranging from N+1 to N+4. We

found that the networks’ accuracy was above chance levels for curves that were longer than the

curves in the training set (Fig 5B). For example, networks trained on curves up to a length of 9

pixels generalized to curves with a length of 13 pixels (red in Fig 5B) (p<10−6, Wilcoxon

signed-rank test). This generalization emerged during training, indicating that networks

learned to trace connected pixels as a generalized elemental operation [50].

We next examined the activity of units of trained networks and compared it to the activity

in the visual cortex of monkeys that had been trained on a similar curve tracing task [17]. We

first compared the activity of networks units whose receptive field fell on the target curve to

the activity of units whose receptive field fell on the distractor curve. By design, the activity of

the units of the feedforward group is not modulated during curve-tracing, whereas units of the

recurrent group could learn to propagate enhanced activity (Fig 5A and 5C). Indeed, the activ-

ity of units whose RF fall on the target curve is enhanced compared to units whose RF fall on

the distractor curve.

Fig 5A illustrates the flow of activity in the recurrent input layer of one of the networks for

an example stimulus. At t = 0, the stimulus is presented, and the feedforward flow of activity is

complete. Feedforward units with a pixel of the appropriate color in their receptive field are

active but the recurrent units do not yet discriminate between the target and distractor curve.

After a few timesteps, enhanced activity starts to spread from the red cue at the beginning of

the target curve. However, the end of the curve is not yet labeled, and the network doesn’t have

enough information to make the appropriate eye movement. After 40 timesteps, however, the

enhanced activity has spread over the entire representation of the target curve to reach the

blue eye movement target, which is selected by the network.

The gradual spread of enhanced activity across the target curve resembles the spread of

enhanced neuronal activity in the visual cortex of monkeys solving a similar curve-tracing task.

Fig 5D shows the average activity of V1 neurons in the visual cortex of monkeys elicited by a tar-

get curve (orange) and a distractor curve (blue). Initially, the neurons were activated by the

appearance of a contour element in their RF, and this feedforward response was the same for

the target and distractor curves. After a delay of 130ms, recurrent processing caused the V1

representation of the target curve to be enhanced over the representation of the distractor curve

[26].

Once the training of 24 networks had completed successfully, we used a modulation index

[17] to quantify the magnitude of the response enhancement across 345,000 stimuli. The mod-

ulation index represents the difference between the response evoked by the target and
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Fig 5. Propagation of enhanced activity across the representation of the target curve during curve-tracing. A.

Upper, example stimulus presented to one of the networks. The target curve starts with a red pixel. Lower, activity of

recurrent units in the input layer across time. The orange color denotes an increase in activity. Note the spread of

enhanced activity over the representation of the target curve, starting at the red pixel. B. Testing accuracy for curves of

length up to N+4 pixels where N is the maximum length used during training. At the beginning of training, the model

does not generalize to longer curves. At the end of training, a model trained with curves up to 9 pixels long generalized

to curves with up to 13 pixels (p<10−6, Wilcoxon signed-rank test). C. Activity of an example unit in the recurrent

group elicited by the target (orange) or distractor curve (blue), and activity of the corresponding unit in the

feedforward group (brown). The activity elicited by the target curve is enhanced compared to that elicited by the

distractor curve. D. Average activity of neurons in area V1 of the visual cortex of monkeys during a curve tracing task,

when their RF fell on the target curve (orange) or on the distractor curve (blue). Adapted from [26] E. Distribution of

the modulation index across recurrent units of the neural networks. A positive value indicates an enhanced response to

the target curve. F. Distribution of modulation index in area V1 of the visual cortex of monkeys (from [17]) G.

Distribution of the modulation latency across units of the network. The onset of modulation is delayed for units

representing pixels that are farther (7 pixels away), compared to pixels that are closer (2 pixels away) to the beginning

of the curve (p<10−15, Mann-Whitney U test). H. The minimum number of timesteps needed to reach 85% accuracy

increased for longer curves, indicating the need for recurrent processing. Error bars, 95%-confidence intervals. I.

Distribution of the modulation latency across recording sites in monkeys performing the curve-tracing task, adapted

from [18]. Dark green represents RF that were close to the fixation point, and light green represents RF that were

farther from the fixation point.

https://doi.org/10.1371/journal.pcbi.1012030.g005
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distractor curve divided by the average response:

MI ¼
Target � Distractor
ðTarget þ DistractorÞ=2

ð10Þ

A positive modulation index signifies an enhancement of activity evoked by the target

curve relative to that evoked by the distractor curve. We observed that the recurrent units rep-

resenting target pixels had a higher activity than those representing distractor pixels. The

mean modulation index was 1.18, corresponding to an activity enhancement of 292% (Fig 5E).

Neurons in area V1 of monkeys that responded to the target curve also enhanced their activity,

although the average activity increase was weaker (Fig 5F, see also [17]). We note, however,

that the V1 modulation index distribution in the monkeys included neurons that were not

modulated by curve-tracing, resembling feedforward units of the network.

In the visual cortex of monkeys, the enhanced activity spreads iteratively, starting at the red

cue at the beginning of the curve until it reaches the end (Fig 5I). Accordingly, units in the

model representing pixels close to the beginning of the target curve enhanced their activity

before units representing pixels that were farther away. To quantify the time-point of modula-

tion, we used the moment when the difference between the activity elicited by the target and

distractor curve became larger than 70% of its maximum (Fig 5G). An analysis of modulation

latencies across units confirmed that the onset of modulation was significantly later for pixels

farther from the fixation point (7 pixels away), compared to pixels closer to the fixation point

(2 pixels away) (p<10−15, Mann-Whitney U test). The reliance on the spread of activity was

confirmed by examining the minimal number of time steps that the networks needed to solve

the task with curves ranging from 5 to 9 pixels (Fig 5H). The number of timesteps needed to

reach 85% accuracy increased with the length of the curves. For example, the minimal number

of time steps was 2 for curves with a length of 5 pixels and increased to 13 for curves with a

length of 9 pixels. These results confirm that recurrence is needed to solve the task. Interest-

ingly, the networks could also trace longer curves including spirals with up to 25 pixels (Fig

6A) and stimuli with many distractors (Fig 6B and 6C), further confirming the generality of

the solution.

In monkeys, the spread of activity among neurons in the visual cortex is accompanied by

an enhancement of the activity of neurons coding for the target curve in the frontal eye fields,

which is an area involved in the planning and generation of eye movements [51,52]. Interest-

ingly, the spread of enhanced activity was also evident in the model’s output layer, which rep-

resents the selected eye movement (S1 Fig). Hence, the model had learned a strategy of

spreading enhanced neuronal activity along the entire target curve in multiple layers. In the

model, spreading is iterative and relies on horizontal and feedback connections, which makes

the process generalizable across stimuli and curve lengths, in spite of the limited network

depth. The results are also in line with the results by Jolicoeur et al. [11] showing that the reac-

tion times of human observer in a curve-tracing task increase linearly with the length of the

curve that needs to be traced.

We examined whether the task could be solved by a feedforward network with the same

architecture, with 3x3 kernels. However, we found that these feedforward networks did not

solve the task for curves longer than 3 pixels. In previous work [50], we observed that feedfor-

ward networks need to reserve a hidden unit for every possible shape of the target curve, and

this strategy presumably failed, given the large variety of curves.

How did the network learn to trace, i.e. to group pixels into curves, when the only feedback

after each trial is the presence or absence of a reward? To understand the learning process

enabled by RELEARNN, we examined the activity of the accessory network units that
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influence learning. Fig 6D illustrates how the activity propagates among the accessory units

that represent the selected curve, starting from the selected eye movement and then across the

representation of other pixels of this curve, i.e. in the opposite direction of the activity propaga-

tion. The strength of this accessory signal represents the influence of the units of the regular

network on the selected action. If the network happens to select the target curve, the connec-

tions between regular units are strengthened in proportion to the reward-prediction error δ. If

the network erroneously selects the distractor curve, the credit assignment signal ensures that

the recurrent connections among units representing this curve are weakened because δ is neg-

ative. The unique and distinguishing feature of the target curve is that it starts with a red pixel,

and the credit assignment signal of the accessory network ensures that the representation of

Fig 6. RELEARNN mechanisms. A,B. More challenging curve tracing stimuli with long spirals (A) or with many

distractors (B). C. Accuracy of networks trained on the curve-tracing task with one distractor, when tested on the

curve-tracing task with 10 distractors. The networks trained with RELEARNN could solve the task as well, irrespective

of the number of distractors (p = 0.17, Mann-Whitney test). Networks trained with BPTT did not generalize as well

(p<10−5, Mann-Whitney test) and feedforward networks could not be trained on the curve-tracing task, i.e. they were

at chance level. D. Activity of units in the accessory network whose RFs fall on the selected curve (blue traces) or the

non-selected one (orange traces), at different distances from the blue pixel that is the target of the eye movement

(continuous and dotted traces show the activity of accessory units representing pixels nearer to and farther from the

saccade target, respectively). Hence, the credit assignment signal propagates in the opposite direction than to the

enhanced activity, starting from the selected eye-movement target. This credit assignment signal is absent from the

representation of the distractor curve. E. Activity of units at the beginning of the selected and non-selected curves in

the accessory network, for curves that were one (left panel) or five pixels longer (right) than the curves used during

training. If the length of the curve was similar to that in the curriculum, the credit assignment signal propagated to the

beginning of the selected curve (red fixation point on correct trials) and training is effective. However, if the curves are

much longer, the credit assignment signal does not spread to all other pixels of the selected curve and training fails.

https://doi.org/10.1371/journal.pcbi.1012030.g006
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this red pixel becomes the source of activity propagation in well-trained networks during

learning.

The analysis of the spread of activity within the accessory network also provided insight in

the role of the curriculum. If the network has been trained with curves up to a certain length

N, and is tested with curves that have N+1 pixels, the credit assignment signal reaches the fixa-

tion point if the model selects the appropriate eye movement and the relevant connections

increase in strength (Fig 6E, left). However, when we presented curves with N+5 pixels, the sig-

nal at the beginning of the curve did not discriminate between the target and distractor curves

and learning did not occur (Fig 6E, right). Hence, training was more efficient with a curricu-

lum in which we gradually increased the length of the curves.

RELEARNN provides a biologically plausible approximation to BPTT [32] and we trained

24 networks with BPTT to perform the original curve-tracing task and tested generalization to

the version with many distractors. The architecture of the networks trained with BPTT was the

same as those trained with RELEARNN and their accuracy was reduced for the stimuli with

many distractors (Fig 6B). This drop in accuracy was caused by the proximity between the red

pixels of the target curve and blue pixels of nearby distractors, which were erroneously selected

for an eye movement. This drop in accuracy did not occur for networks trained with

RELEARNN, indicating that RELEARNN caused better generalization to stimuli not shown

during training.

Let us briefly summarize how the networks learn to solve the curve-tracing task. Upon pre-

sentation of the stimulus, the network starts with a feedforward processing phase which does

not discriminate between the target and the distractor curve. This early activity pattern has

been called ‘base representation’ in previous work [15]. During the later, recurrent processing

phase, units learn to propagate enhanced activity along the representation of the target curve,

starting at the fixation point with its unique color. This enhancement of activity cannot spill

over from the target curve to nearby curves because feedforward neurons that respond to

image locations without pixels are silent. The activation of these feedforward neurons is neces-

sary before the recurrent units activate. In other words, the gating process of the base represen-

tation ensures that enhanced activity can only spread along the representations of connected

pixels.

Search-then-trace task

Having established that the networks learn to trace curves, we explored more complex multi-

step visual routines that require the succession of multiple elemental operations, and the trans-

fer of information between them. The search-then-trace task required a visual search for a

colored marker followed by curve-tracing. In the task for the model, the color of relevant

markers was brown or red and the color of the target marker was cued by activating one of

two input units (color cue in Fig 7A). The network had to trace the target curve starting at this

marker and to select an eye movement to the blue pixel at the other end of this curve.

We trained the network using a curriculum that was similar to the one used for the trace

task. First, we presented a stimulus with a blue pixel connected to a red pixel randomly placed

on the grid. If the network achieved 85% accuracy during a 500 trials test phase with weights

fixed and no exploration, we presented a target and a distractor curve with a length of three

pixels, where one of the two curves started with a brown pixel and the other one with a red

pixel. If the network achieved 85% accuracy during the test phase, we added one pixel to the

curves and repeated this until the curves were 9 pixels long.

We trained 24 networks and 79% of them learned the task within an average of 40,000 trials,

which is less than the number of trials that monkeys performed during weeks of training
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the search operation. From here, the enhanced activity spread along the curve (trace operation). B. We tested how well the models generalized to curves that

were longer than those presented during training. Generalization was better for networks that had been trained on longer curves (x-axis). E.g. networks trained

on curves up to a length of 9 pixels generalized to curves with 13 pixels (p<10−6, Wilcoxon signed-rank test). C. Normalized response enhancement for the

target marker and target curve. Each curve is normalized by its maximum over time. First the activity of the unit with a RF at the location of the target marker

was enhanced (search operation, red curve). Thereafter, enhanced activity propagated across the target curve connected to it (trace operation, green curves). D.

In the visual cortex of monkeys, the representation of the target marker is enhanced (red) before the enhanced activity spreads over the V1 representation of the

target curve (green; adapted from [25]). E. Distribution of the latency of the response enhancement across 260,000 stimuli and 19 networks. The latency of the

modulation related to the search operation was shorter than that related to curve-tracing (p<10−15, Mann-Whitney U test). F. Distribution of the latency of

response enhancements across V1 neurons in monkeys solving the search-then-trace task (adapted from [25]).

https://doi.org/10.1371/journal.pcbi.1012030.g007
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before they could do the task. Just as in the curve-tracing task, the networks learned a solution

in which they generalized across different shapes of the curves and for both marker colors.

Trained networks generalized to curves that were 4 pixels longer than the ones presented dur-

ing training (Fig 7B, red curve, p<10−4, Wilcoxon signed-rank test).

How does the network learn to transfer information between elemental operations such

that the output of an operation can be used at the input of the next one? In the visual cortex of

monkeys, this information transfer appears to take place by the persistence of enhanced neuro-

nal activity in early visual cortex between the elemental operations. In the search-then-trace

task, the visual search for the marker with the cued color enhances the activity of neurons with

a RF at this marker (Fig 1A), as if it is ‘written’ to a cognitive blackboard represented in early

visual cortex [4,16,53]. The subsequent tracing operation can ‘read’ this position and use it as

the start for the curve-tracing operation.

Interestingly, the model discovered a similar method to transfer information between the

successive search and trace operations. In the model, recurrent processing started with an

enhancement of the representation of the target marker in the recurrent input layer (Fig 7A).

After training, the horizontal connections in the recurrent input layer between the color cue

units and the retinotopic units of a same color are strengthened compared to those between

the other colors, and the enhanced activity propagated through those connections to the reti-

notopic unit with the same color as the cue. This strategy solved the search operation. As in

the trace operation, the gating by the feedforward units of color cue units and retinotopic units

ensured that the enhanced activity due to the search operation is confined to units that repre-

sent features that are present in the stimulus.

After the search operation, the enhanced activity propagated across the representation of

the target curve (Fig 7A, green traces in Fig 7C). As in the curve-tracing task, the time course

of activity propagation in the output layer was similar to that in the visual layers of the model

(S1 Fig). We next examined the time course of enhanced activity of the units across 260,000 sti-

muli and the 19 networks that learned the task. This analysis revealed that the early enhance-

ment of the activity of units with a RF on the target marker (red in Fig 7E), followed by the

propagation of enhanced activity across the target curve (green in Fig 7E) was a general fea-

ture. Fig 7F shows similar results in area V1 of the visual cortex of monkeys performing a

search-then-trace task [25]. Also in the monkey visual cortex, the marker with the relevant

color is first labeled with enhanced activity, before activity spread across the V1 representation

of the target curve.

These results, taken together, indicate how RELEARNN, a biologically plausible reinforce-

ment learning rule, can train networks to execute a visual routine composed of multiple ele-

mental operations and to use persistent enhanced activity to transfer information from one

element operation to the next.

Trace-then-search task

We next used the trace-then-search task to examine if the network could learn a different

visual routine composed of the same elemental operations that need to be applied in the oppo-

site order. First, the agent had to trace the curve connected to the fixation point, which was

now blue. This target curve ended with a marker that was either red or brown which was the

color that the model had to search because it had to select the pixel with this color on the side

of the grid (Fig 1C).

We adapted the curriculum by first training the networks on simple curve-tracing tasks in

which the target curve started with a blue pixel, and the two curves ending with a red and a

brown marker. When the networks had learned to trace curves with a length of 9 pixels, we
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added the two colored pixels outside the grid and required the model to select the pixel with

the same color as the target marker for an eye movement.

Of the 24 networks trained on this task 66% learned it, after an average of 37,000 trials. As

in the previous tasks, the networks learned a general solution, which did not depend on the

position or color of the marker or on the shape of the curve. Trained networks also performed

the task for curves that were 4 pixels longer than the curves of the curriculum (Fig 8B,

p = 1.4�10−4 for curves with a length of 13 pixels, Wilcoxon signed-rank test).

Trained networks first spread activity along the target curve until its end was reached (Fig

8A and 8C) and the target color could be identified. The enhanced activity then spread to col-

ored eye movement target, as the outcome of the search operation. Hence the networks

learned to first perform a trace operation, followed by a search operation. As in the previous

tasks, the time course of modulation in the output layer followed a similar pattern as in the

input layer (S1 Fig). The progression of activity was also evident when we examined the activ-

ity across 230,000 stimuli in the 16 networks that were trained successfully. The green trace in

Fig 8E illustrates the time-point in which the activity of the representation of the last, colored

pixel of the curve was enhanced, which corresponds to the output of the curve-trace operation

(green curve). Thereafter, the representation of the colored eye-movement target was

enhanced, corresponding to the realization of the search operation (red curve in Fig 8E). The

results are qualitatively like those in the visual cortex of monkeys trained on the trace-then-

search task, where the enhanced neuronal activity first spread along the target curve (Fig 8F,

green trace), before the V1-representation of the colored disk that was the target of the eye

movement was enhanced (Fig 8F, red curve).

These results indicate that RELEARNN can train networks to carry out elemental opera-

tions in different orders depending on the task at hand, which is remarkable for a biologically

inspired learning rule in which the only external feedback that the networks receive about the

outcome of the decision is a reward upon a correct choice.

Discussion

We studied how visual reasoning tasks can be learned by trial and error, using a biologically

plausible learning rule. We took inspiration from previous work on visual routines, which are

built from elemental operations [1,5,31]. Studies of the visual cortex revealed that elemental

operations, like curve-tracing and visual search, are associated with the enhancement of neuro-

nal activity elicited by target elements over distractor elements. Specifically, curve-tracing is

associated with the spread of enhanced activity across a target curve and visual search results

in an activity enhancement of the representation of the target of search (see also ref. [53,54]).

We found that the neural networks trained to trace curves or to carry out visual routines rely-

ing on search and curve-tracing developed a similar strategy. They learned to successively label

task-relevant image elements with enhanced neuronal activity. We also studied how these net-

works learned to transfer information between one elemental operation and the next. We

observed that the strategy of labeling image elements with enhanced activity provides a mecha-

nism for information transfer, because the focus of enhanced activity that was the result of one

operation could be used to start the next elemental operation. Note that this mechanism is

equivalent to the binding of parameters to subroutines in a computer program. The solutions

found by the networks thereby provide new insights into how the transfer of information

between successive cognitive operations, an essential ingredient of visual routines (see ref. [31]

for an inventory), can be learned by trial and error.

An important difference between the artificial neural networks trained by us and the visual

system of humans and monkeys is in their prior visual experience. The humans and monkeys
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Fig 8. Model performance in the trace-then-search task. A. Example stimulus shown to one of the networks. Upper, an example stimulus. Lower, the spread

of enhanced activity is shown in orange. It first spreads over the curve starting at the blue cue and reaches the target marker at the other end, cuing the color

that needed to be selected during the search operation. B. Testing accuracy for curves of length up to N+4 pixels where N is the maximum length in the

curriculum. The generalization performance improved when the network learned to trace longer curves (p = 1.5�10−4 for curves of 13 pixels, Wilcoxon signed-

rank test). C. Normalized response enhancement for target pixels, averaged across units. Each curve is normalized by its maximum over time. First the curve

connected to the fixation point is labeled with enhanced activity (trace operation, green curves) and then the units that represent the correct eye movement

target, i.e. with the same color as the target marker, enhanced their activity (search operation, red trace). D. In the visual cortex of monkeys, the response

enhancement also first labels the segments of the target curve (green trace), before it labels the position of the eye movement target (red trace; adapted from

[25]). E. Distribution of the modulation latency across model units (230,000 stimuli and 16 networks). The response modulation of trace operation precedes

that of the search operation (p = 1.5�10−5, Mann-Whitney U test). F. Distribution of the modulation latency across recording sites in monkeys solving the

search-then-trace task (adapted from [25]).

https://doi.org/10.1371/journal.pcbi.1012030.g008
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tested in previous work in curve tracing and visual routines knew how to segment and attend

to objects, given their previous experience. Humans struggle to learn new visual tasks when

such sources of prior knowledge are removed from the visual stimuli [55]. Furthermore, mon-

keys can only be trained to trace curves using rewards as the incentive, which takes weeks to

months with thousands of trials per day. Hence, the total number of trials while training a

monkey adds up to tens of thousands, which is comparable to the number of trials that were

necessary for models trained with RELEARNN. The models of the present study had to learn

the task structure, how to trace a curve and to search for an item of a particular color without

any prior knowledge. To train these models on visual routines, we used curriculums in which

the complexity of the task gradually increased, resembling the curriculums used to train mon-

keys on visual routines [25,26].

The model architecture included a feedforward group of units that is only sensitive to input

from lower layers, and a recurrent group that also receives feedback connections from higher

layers and horizontal connections from units in the same layer. Such a division of labor

between feedforward and recurrent units is advantageous, because it separates attentional

effects from the representation of low-level features like stimulus contrast [56], and has also

been used in previous studies. Indeed, several models [54,57–59] studied neural networks with

a feedforward pathway for feature detection and a feedback pathway for attentional selection.

Similar observations have been made in the visual cortex, where some neurons are influenced

by curve-tracing and other neurons are not [56]. The neurons that are and are not sensitive to

recurrent processing are clustered in different layers of cortex, as has been observed during

curve-tracing and figure-ground segregation tasks [27,60]. Neurons that are most sensitive to

the feedforward input are enriched in layers 4 and 6, whereas the influence of figure-ground

segregation and visual attention is more pronounced in the superficial layers 2 and 3 and in

layer 5 [27,60]. Thus, the feedforward group could correspond to neurons in layers 4 and 6

while the recurrent group could correspond to neurons in layer 2, 3 and 5. This view is sup-

ported by recent experimental evidence for the existence of separate channels for feedforward

and feedback processing, suggesting that these influences might be mediated by partially non-

overlapping neuronal circuits [61].

Network units in the lower layers of the network had small receptive fields, and exhibited

activity profiles that resembled the responses of V1 neurons in monkeys. Furthermore, the

output layer integrated evidence for eye-movement decisions, and activity resembled that of

neurons in the frontal eye fields [51,52]. The model thereby provides insight into how a hierar-

chical model with feedforward, feedback and lateral connections can implement and learn

multistep visual routines. Nevertheless, the network was much simpler than the pathways

between the visual and frontal cortex in the primate brain, and the comparisons between the

network and primate cortex are therefore only loose. A more direct mapping of network units

onto specific types of neurons, cortical layers or even onto specific areas in the primate brain

would require a more detailed model.

A study by Grossberg and Raizada [62] examined the propagation of enhanced activity

along the representation of a target curve through horizontal connections in a model of the

visual cortex. Their model addressed the connectivity between cortical layers and predicted

that the attentional effect would be relatively homogeneous across these layers, which does not

match the observation that the attentional response enhancement is pronounced in the super-

ficial and deep layers and weaker in layer 4 and 6 [27].

More recently, Marić & Domijan [63,64] configured a winner-take-all model to trace

curves, also using separate feedforward and recurrent units. Their model could explain why

tracing proceeds faster for target curves that are farther from a distractor curve than for target

curves that are near a distractor, in accordance with psychophysical and neurophysiological
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data [18,65]. To propagate the enhanced activity, the model used a comparison between the

activity levels of recurrent and feedforward units, whereas in the present model the activity

propagation by recurrent units is gated by the feedforward units. This gating process prevents

that recurrent activity spills over to units that represent the blank screen, helping with the

selectivity of the propagation of activity among units representing connected image elements.

The model of Marić & Domijan [63] also included units that were selective for the orientation

of contours and it could therefore even trace target curves that crossed a distractor, based on

the collinearity of contour elements. Orientation selectivity was lacking from the models stud-

ied by us, but future work could examine whether RELEARNN can train networks with orien-

tation selective units to group collinear contour elements and disregard crossing distractor

curves. It would also be interesting to test the spread of enhanced activity in artificial intelli-

gence models with deeper feature hierarchies [66,67].

Linsley et al. [68] trained a recurrent neural network on a pathfinder task, which resembles

curve-tracing, but now the curves consists of shorter, disconnected line elements. Their net-

work had to determine whether two dots were on the same path. The authors demonstrated

that a recurrent unit, called h-GRU [69], which activates based on feedforward connections

but also integrates horizontal input, was useful to solve the task. Unlike the present study, the

authors used backpropagation through time, which is a non-local learning rule that requires a

teacher, unlike RELEARNN, which is a biologically plausible (also see [46]).

Whereas the models mentioned so far used enhanced activity to label image elements that

are part of the same curve, Chen & Weng [70] modeled synchronous oscillations for percep-

tual grouping, in accordance with earlier theories on the role of oscillations in feature binding

[71]. However, more recent neurophysiological studies demonstrated that synchrony and

oscillations do not play a role in contour grouping [72], undermining their role in perceptual

organization [73].

Our model extends previous modeling studies by demonstrating (1) the learning of visual

routines based on curve-tracing and visual search and (2) how networks can be trained to exe-

cute visual routines using the biologically plausible RELEARNN rule. RELEARNN is equiva-

lent to the Almeida-Pineda algorithm [36,37] and is local both in space and in time so that all

the information that is necessary for the synaptic changes are available at the synapse. The

learning rule relies on two networks. The first network is active during the processing of the

stimulus when activity propagates through feedforward and recurrent connections. The sec-

ond network is an accessory network, dedicated to help with the learning process. Activity in

the accessory network is initiated by the action that is selected in the output layer and it then

propagates through the network, emphasizing the synapses that have a strong influence on the

activity of the winning output unit. Future neuroscientific work could test whether the pro-

posed mechanisms are indeed implemented in the brain [74,75]. Firstly, the weights in the

accessory network are proposed to be proportional to those of the main network. Previous

work demonstrated that such symmetrical weights emerge during learning using the proposed

learning scheme [76] and recent studies have suggested that the brain may even have special-

ized learning rules to promote this reciprocity [77]. In the brain, the approximate reciprocity

of connections may hold at the level of cortical columns, but not at the level of individual neu-

rons. Hence, the units in the simulated networks should be identified with cortical columns

that consist of hundreds of cells and not with individual neurons.

In RELEARNN activity propagation occurs via regular recurrent units and the accessory

units propagate a credit assignment signal. Both types of activity propagation are presumably

related to visual attention at a psychological level of description. Some support for such differ-

ent attentional networks comes from a study in area V4 of the visual cortex of monkeys by

Steinmetz et al. [78], who used a task in which the animals had to visually search for a target
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item and had to make an eye movement to an opposite location in space. Some V4 neurons

enhanced their activity when their RF was on the target of search, which would correspond to

the regular recurrent units of the present study. Other V4 neurons enhanced their activity if

their RF was on the target for the eye movement, which may correspond to the accessory units

that play a role in movement selection and learning. The present work suggests that the propa-

gation of enhanced activity by the regular units and the propagation of credit assignment sig-

nals by accessory units, in the opposite direction, might be separable functions of the

attentional networks. We do realize, however, that the distinction between these two forms of

attention is speculative and that much remains to be learned about the flow of attentional

selection signals in brain circuits.

When the activity in the regular and accessory networks is combined with the reward pre-

diction error, which can be mediated by a globally released neuromodulator such as dopamine,

all the information for the synaptic update is available locally at the synapse. In previous work

RELEARN was shown to train networks in the curve-tracing task [32] and here we showed

that it is powerful enough to train networks on more complex, multistep tasks.

It is of interest that the networks developed strategies like those observed in the visual cor-

tex of monkeys. During curve-tracing, recurrent units in the lower and higher layers propa-

gated enhanced activity along the representation of the target curve, and it did not perform a

sequence of discrete attention shifts, as was proposed by a previous model [31]. The gradual

propagation of neuronal activity resembles how curve-tracing is implemented in the visual

cortex of monkeys, where the neurons with RFs on the target curve successively enhance their

activity, starting at the beginning of the curve until the end of the curve is reached. These

responses enhancements are coordinated across multiple cortical areas including the frontal

cortex, where the correct eye movement is selected [52]. Furthermore, the model implemented

visual search by enhancing the activity of units coding for the relevant color, which then ulti-

mately led to an enhanced representation of the location where this color was found, just as is

observed in the visual cortex [19–24]. Finally, this propagation of enhanced activity was used

by the model to transfer information from one elemental operation to the next, just like in the

visual cortex of monkeys.

We here used a relatively simple search task for a specific color and we did not investigate

whether the networks would exhibit increased processing delays in the presence of multiple

color distractors or faster processing if the target is salient, which occurs in psychophysical

experiments with human observers (e.g., [79]). Modeling accuracy and reaction times of

human observers during visual search using network architectures like the one used here

could be an interesting topic for future research.

Future modeling studies may also examine tasks in which the surfaces of 2D objects need to

be grouped in perception. For example, Jeurissen et al. [80] found that the time it takes to

determine whether two dots are on the same surface increases with the distance between the

dots. The same principle that enables our network to trace curves could be expanded to enable

networks to group 2D image regions, which are important in real-life scenarios, and the prin-

ciples of region labeling might even be generalized to more complex situations that require

semantic segmentation. Whereas we trained neural networks to carry out specific visual rou-

tines, it will be of interest to also explore scenarios in which elemental operations need to be

organized in different sequences for a larger variety of tasks, e.g. considering the flexibility of

humans who use a map to navigate. Future studies could also examine whether training on dif-

ferent tasks is possible if networks are deeper, so that the representations that select successive

elemental operations that are part of a routine might emerge at higher network levels [3].

In conclusion, the new model architecture illustrates the versatility of networks that spread

enhanced activity to solve elemental operations and to glue them together into visual routines,
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ensuring the transfer of the relevant parameters. The similarity between the network activity

and neurons in the visual cortex indicate that the approach provides insight into how the cir-

cuits in the visual brain can configure themselves during learning, based on biological plausi-

ble learning rules that combine attentional and neuromodulatory signals. Future studies could

expand this approach to further elucidate how feedforward, feedback and horizontal connec-

tions are used to enhance the cognitive capabilities of brain networks.

Methods

Data analysis

We trained 24 networks for each task, which was the maximal number of networks that we

could train in parallel. For the further analysis, we only kept networks that learned the tasks

for curves up to 9 pixels long. We froze the weights after training and set the exploration rate �

to 0. We presented 15,000 randomly generated stimuli to each network and analyzed the activ-

ity of the units for these stimuli, including only correct trials in the analysis.

We placed the markers that related to the search tasks outside the main input grid, because

incorporating them led to reduced stability. We note, however, that this stimulus design does

not alter the structure of the tasks, or the need to transfer information between subroutines to

correctly solve the search-then-trace and the trace-then-search tasks.

Parameters

All networks were initialized and trained with the same parameters. They are summarized in

Table 1.

Supporting information

S1 Fig. Time course of activity modulation in the output layer. In the output layer, the

enhancement of activity of units with RFs on the target curve followed the same time course as

neurons in the lower layers. Hence, the time required for spreading activity in the visual layers

predicts the reaction time. These results are compatible with the reaction time measurements

in humans by [11]. They demonstrated that the reaction time increases in proportion to the

length of the curve that needs to be traced.
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Table 1. Model parameters.

Parameter Value

Learning rate δ 0.02

Exploration rate � 0.05

Weights between hidden layers Sampled from U(0,0.1)

Weights between the last hidden and the output layers, same receptive field Sampled from U(0,0.1)

Weights between the last hidden and the output layers, different receptive field Sampled from U(-0.01,0)

Here U(x,y) refers to the uniform distribution on the interval [x,y].
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