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Abstract

Despite advancements in understanding the structure and functions of the Calcium Sensing

Receptor (CaSR), gaps persist in our knowledge of the specific functions of its residues. In

this study, we used phylogeny-based techniques to identify functionally equivalent orthologs

of CaSR, predict residue significance, and compute specificity-determining position (SDP)

scores to understand its evolutionary basis. The analysis revealed exceptional conservation

of the CaSR subfamily, emphasizing the critical role of residues with high SDP scores in

receptor activation and pathogenicity. To further enhance the findings, gradient-boosting

trees were applied to differentiate between gain- and loss-of-function mutations responsible

for hypocalcemia and hypercalcemia. Lastly, we investigated the importance of these muta-

tions in the context of receptor activation dynamics. In summary, through comprehensive

exploration of the evolutionary history of the CaSR subfamily, coupled with innovative phylo-

genetic methodologies, we identified activating and inactivating residues, providing valuable

insights into the regulation of calcium homeostasis and its connections to associated

disorders.

Author summary

CaSR plays a crucial role in maintaining calcium balance in the body. Our study investi-

gates the evolutionary history of CaSR to better understand its function and the impact of

mutations. By using phylogenetic techniques, we identified key residues that are critical

for CaSR’s function. These residues are highly conserved, indicating their importance in

receptor activation and calcium regulation.

We applied machine learning methods to differentiate between mutations that cause

either a gain or loss of function in CaSR, leading to disorders like hypercalcemia and

hypocalcemia. Our analysis highlights specific regions of the receptor that are essential for

its activity, providing insights into how mutations can disrupt calcium homeostasis.
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Introduction

Calcium sensing receptor (CaSR) is a class C G-protein-coupled receptor (GPCR) that main-

tains extracellular Ca2+ homeostasis by sensing calcium ions in the blood and regulating para-

thyroid hormone release and urinary calcium [1,2]. The CaSR is activated by Ca2+ and L-

amino acids such as L-Phe and L-Trp as well as polyamines and polypeptides [3–5]. Like the

other class C GPCRs such as metabotropic glutamate receptors, ligands bind to the extracellu-

lar Venus flytrap (VFT) domain of the receptor [6].

Class C GPCRs are obligate dimers, forming either homo or heterodimers [6]. CaSR forms

a homodimer where each subunit is composed of an extracellular domain (ECD), comprising

a bilobed (LB1, LB2) VFT and a cysteine-rich domain (CRD) connected to a heptahelical

transmembrane (7TM) domain [3,5].

Crystal structures of the ECD [4,7] and cryo-electron microscopy structures of the full-

length CaSR [3,5,8–10] reveal the structural basis for activation mechanisms and ligand bind-

ing sites. L-amino acid binding sites at the interdomain cleft of LB1-LB2 [3–5,11–13] and mul-

tiple Ca2+ binding sites on the VFT domain are shown in the literature. [3–5]. While Ca2+

serves as the primary agonist for the CaSR, L-amino acids enhance receptor activation in con-

junction with Ca2+. However, it’s important to note that L-amino acids alone are insufficient

to activate the receptor independently [14]. Even though Ca2+ alone activates the receptor in

functional assays [14], whether it activates the CaSR in the absence of L-amino acid is still con-

troversial [3,5].

Variants in CaSR may cause malfunctions that result in Ca2+ homeostasis diseases in

humans. More than 400 germline loss/gain-of-function (i.e., LoF and GoF, respectively) muta-

tions cause hypercalcaemic disorders, neonatal severe hyperparathyroidism (NSHPT), familial

hypocalciuric hypercalcemia type-1 (FHH1), and autosomal dominant hypocalcemia type-1

(ADH1), respectively [2]. Many more CaSR variants are anticipated to be identified as more

population-level genetic data become available [2]. Gaining insight into the function of indi-

vidual residues within the receptor structure and their involvement in activation mechanisms

has the potential to enhance our understanding of the probability of variant pathogenicity and

the signaling processes of the CaSR. The examination of receptors within a family and across

different families allows for the identification of the specific function of each residue in a

receptor. However, the comprehensive understanding of the structure and activation mecha-

nisms of several families within the class C GPCRs remains elusive. This is particularly true for

the G-protein coupled receptor family C group 6 member A (GPRC6A) and the type 1 taste

receptors (TAS1Rs; specifically members 1, 2, and 3), which are the most closely related sub-

families to the CaSR.

While all subfamily receptors of class C GPCRs share common domains and structural fea-

tures, the details of responding to different ligands and activating signaling pathways may dif-

fer even between closely related receptors [6]. Gene duplication is the main mechanism that

generates new protein functions across GPCRs [15]. Protein families are evolved by speciation

events following gene duplication [16,17]; thus, sequence comparisons of members within a

subfamily and between subfamilies can show the evolutionarily conserved domains as well as

diverged protein sites that distinguish one subfamily from others. One challenge with this anal-

ysis is that excessive gene duplication events complicate the identification of functionally iden-

tical orthologs in a subfamily. Moreover, the conservation patterns in paralogs (specifically,

outparalogs that have diverged after a speciation event) and distant homologs may help infer

the specific roles of a single residue in protein function. Because the evolutionary pressure on

paralogs and close orthologs is not the same, substitutions allowed in paralogs may not be

acceptable in close orthologs. While orthologs are derived from a single ancestral gene in the
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last common ancestor of the compared species, paralogs are arised from gene duplication

event and generally, paralogs perform biologically distinct functions [18]. Thus, using func-

tionally identical orthologs in sequence comparisons is crucial to inferring the role of each resi-

due in a protein family.

Here, we show the importance of each residue in CaSR by comparing it with the closely

related subfamilies, GPRC6A and TAS1Rs. We identified all orthologous sequences in each

subfamily by building phylogenetic trees and manually curating the duplications/speciations

on the tree to obtain all functionally equivalent orthologs within each subfamily. To obtain

members of a subfamily without requiring computationally expensive phylogenetic tree build-

ing and manual curation steps, we generated highly sensitive subfamily-specific profile hidden

Markov models (HMMs) by using the functionally equivalent orthologs we determined using

phylogenetic tree analysis. We calculated a specificity score for each residue in a subfamily by

calculating scores based on a modified version of the PHACT algorithm [19] scores which

considers independent evolutionary events on the phylogenetic tree while scoring the accept-

ability of an amino acid substitution. We predicted the functional consequence of every poten-

tial substitution in CaSR by using the gradient boosting trees machine learning approach.

Lastly, we investigated how our predictions relate to the activation mechanism of CaSR.

Results

Functionally equivalent orthologs and evolutionary history of CaSR in

Class C

To reveal the evolutionary constraints on protein families, we developed a strategy to precisely

define a protein subfamily. A precise subfamily definition can be achieved by revealing the

evolutionary history of the superfamily. The evolutionary history of gene families can only be

established by reconstructing high-quality phylogenetic trees, which can be used to pinpoint

gene duplication events. Discrimination between gene duplication and speciation nodes

enabled us to define the paralogous and orthologous protein sequences. We further analyzed

the phylogenetic trees to classify the orthologous sequences that are likely equivalent in func-

tion. A subfamily is defined by the human receptor and its orthologs. Within class C GPCRs,

there are twenty-two distinct subfamilies: CaSR, GPRC6A, three taste receptors (TAS1R1-3),

eight metabotropic glutamate receptors (mGluR1-8), GPRC5A-D, GABBR1, GABBR2,

GPR156, GPR158, and GPR179. We used functionally-equivalent orthologs in comparative

analyses between subfamilies, which eventually yielded subfamily-specific signatures that can

be used to define that particular subfamily and its function. Finally, the association between

the signature and function would enable a better understanding of specific molecular mecha-

nisms and the effects of variants, particularly for the protein subfamily of interest. Here, we

aim to reveal the signatures of the CaSR subfamily that is implied in the specific function of

calcium-sensing and downstream signaling.

We have retrieved the complete proteomes of 478 species from the NCBI database. To iden-

tify proteins that belong to the class C GPCR family, we performed a hmmsearch using the

seven transmembrane domain profile (Pfam: 7tm_3) (Fig 1) against the proteomes. While this

search allowed us to retrieve the entire class C GPCRs hitting the hmm profile, it did not pro-

vide subfamily annotations for the 22 subfamilies in class C GPCRs. To select canonical iso-

forms, we performed a profile hmmscan of the PfamA profile against Class C GPCR. To

generate a general HMM profile for each subfamily, we first applied a BLAST search using

each human class C GPCR as a query [20]. For each subject, we blasted them against the

human proteome and retrieved the bidirectional best hits (Core subfamily assignment, Fig 1).
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For proteins that did not have bidirectional mutual best hits, we assigned them to a subfam-

ily based on their homology search against the HMM profiles generated in the previous step

(Subfamily Extension, Fig 1). We produced maximum likelihood (ML) trees of extended sub-

families and filtered inparalogous sequences to obtain functionally identical groups.

The CaSR subfamily produced over five thousand hits, which included vomeronasal and

olfactory receptors that have never been shown to sense calcium. Previous research has shown

that CaSR is classified in the pheromone/olfactory cluster of class C GPCRs [21]. In species

that had multiple proteins assigned to the CaSR subfamily, we constructed an ML tree using

these hits and other human class C GPCR protein sequences. These trees revealed that a signif-

icant number of duplication events occurred in the species after the clade (a group of organ-

isms that includes a common ancestor and all of its descendants) diverged from CaSR. As a

result, we defined this diverged clade as a new subfamily named CaSR-likes. In this subfamily,

there are diverse sequences including vomeronasal, olfactory receptors that are unlikely to

maintain calcium homeostasis, and therefore should not be annotated as calcium-sensing

receptors.

We selected representative sequences from different species for each subfamily of 22 differ-

ent receptor subfamilies and 264 CaSR-like sequences and built an ML tree (Fig 2A). Also, we

built the ML trees of all proteins from CaSR, GPRC6A, taste receptors and merged these trees

to the representative tree of class C GPCRs (Fig 2A). We used 1000 transfer bootstrap to ensure

statistical reliability of the phylogenetic tree. We rooted the ML tree using the GPR158 and

GPR179 as outgroups. There are 22 different class C GPCRs in humans. The resulting phylog-

eny shows that are five major clades: CaSR-related, GABA, mGluR, orphans, and retinoic

acid-induced (RAIG). Orphan receptors, GPR158 and GPR179, formed a clade that was

Fig 1. Summary of the Methodological Framework. 478 complete proteomes were retrieved from the NCBI database.

Each sequence was searched by hmmsearch against the Pfam 7tm_3 domain profile to retrieve all class C GPCRs.

Domain architectures of class C GPCRs were determined by hmmscan against Pfam. A profile was created to identify

canonical isoforms. Species-specific BLAST databases of the canonical isoforms were built. Bi-directional mutual best

hits were detected by blasting each canonical sequence against the species databases (core subfamily assignment). TM

domains of core subfamily sequences were aligned, and ML trees were built to make subfamily profile HMMs. By

hmmsearch against subfamily profile HMMs, other sequences in the subfamilies were found (subfamily extension).

Sequences in each subfamily were aligned, and ML trees were built. Based on the ML trees, paralogs were filtered, and

functionally identical groups were identified.

https://doi.org/10.1371/journal.pcbi.1012591.g001
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diverged from other receptors consistent with previous trees [22] and had a 0.95 transfer boot-

strap expectation (TBE) value. γ-aminobutyric acid-B receptors (GABBR1 and GABBR2)

formed another clade diverging from GPR156 with 0.97 TBE. γ-aminobutyric acid-B receptors

evolved earliest and have a common ancestor with the highest taxonomic rank (33213−-

Bilateria) compared to other subfamilies. The CaSR group (CaSR, CaSR-likes, GPRC6A and

taste receptors) was diverged from metabotropic glutamate receptors (mGluR1-8) and RAIG

receptors (GPRC5A, GPRC5B, GPRC5C, GPRC5D) with 1 and 0.98 TBE values, respectively.

Within the CaSR group, clade CaSRs and CaSR-likes were diverged from GPRC6A and taste

receptors with 1 TBE. Except for TAS1R1 and TAS1R2, all CaSR group subfamilies have a

common ancestor from taxonomy clade 7776-Gnathostomata. TAS1R1 and TAS1R2 were

more specific than other CaSR group subfamilies that evolved from 117571-Euteleostomi. In a

phylogenetic tree, the length of branches signifies genetic changes over time, where longer

branches indicate greater divergence. Employing Welch’s t-Test in our statistical analysis, we

measured these branch lengths to gain insights into the evolutionary conservation of receptor

subfamilies, revealing genetic similarities and differences. Our comparison analysis of branch

lengths [22] among common species in CaSR, GPRC6A, and taste receptors highlights a signif-

icant conservation trend within the CaSR subfamily compared to its closest counterparts

(Fig 2B).

The higher diversity of CaSR-likes relative to CaSRs is reflected in the ML tree (Fig 2A).

Branch lengths of CaSR-likes are longer in contrast to shorter branch lengths in CaSR. Longer

branch lengths show that more variation, and thus divergence, occurred in the CaSR-like

clade. Moreover, extensive gene duplication events occurred in this clade. For instance,

rodents such as Dipodomys ordii (taxid: 10020), Octodon degus (taxid:10160) and snakes such

as Notechis scutatus (taxid: 8663) have more than a hundred receptors matching the CaSR pro-

file. However, these matches include type 2 vomeronasal receptors (V2R) and V2R-likes.

Among mammals, V2R genes exhibit significant variation. While dogs, cows, and primates

except prosimians do not have functional V2Rs, rodents, reptiles, and fish have multiple intact

V2Rs [23]. Since these receptors do not have functional orthologs in mammals, they are likely

to be functionally diverged, and it is crucial to separate them from functionally-equivalent

CaSRs.

Precision in subfamily identification: Constructing subfamily-specific

profile hmms for class c gpcrs based on phylogenetic analysis

In the class C GPCR family, gene duplication events give rise to new specificity, and each

duplicated gene with a new function evolves through further speciation events, producing a set

of orthologous sequences [16,17]. Each subfamily of class C GPCRs shares a relatively con-

served membrane-spanning region but also exhibits a degree of variability that underlies func-

tional differences. At the molecular level, residues that are responsible for certain functional

characteristics such as ligand and coupling selectivity are called specificity-determining resi-

dues [16]. Conservation analysis from multiple sequence alignments (MSAs) can be used to

find residues that are conserved in all subfamilies through evolution as well as specificity-

Fig 2. Evolution of Class C GPCRs. (A) The maximum likelihood phylogenetic tree of Class C GPCRs, spanning

representative species from each subfamily, is shown. Subfamilies are represented as circular layers around the ML

tree. All twenty-two Class C GPCR subfamilies are shown in the inner circle. In addition to these subfamilies,

vomeronasal and other orphan receptors are represented as CaSR-like receptors. All proteins in CaSR, GPRC6A and

TAS1Rs are merged into this representative species tree. (B) Branch lengths from leaf to root of the common species

that exist in all CaSR, GPRC6A and TAS1Rs are taken from the subfamily trees. Welch’s t-Test using the ggstatsplot

package results are shown on the graph.

https://doi.org/10.1371/journal.pcbi.1012591.g002
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determining residues that are only conserved in a subfamily and differ in other subfamilies.

However, the success of this method depends on the sequences that are used to build align-

ments. Therefore, it is vital to use functionally identical orthologs in the analysis.

The seven-transmembrane domains of class C GPCRs are used to build a class-specific gen-

eral profile for this family (Pfam:7tm_3). However, this domain does not contain enough

information to differentiate subfamilies further. Moreover, excessive gene duplication events,

as seen in the CaSR-like clade, require precise phylogenetic analysis to differentiate between

CaSR and CaSR-like sequences. Also, subfamily specific profile HMMs are shown to be prom-

ising methods to detect protein sequences belonging to a protein subfamily, as well as separa-

tion of homologs and non-homologs [24,25]. In this paper, we present a novel approach to

constructing subfamily-specific profile HMMs based on the precisely produced subfamily

alignments and trees. The general idea of the approach is given in Fig 3.

To construct subfamily specific profile HMMs, we first define the target family, its closest

family (phylogenetic neighboring clade), and the rest based on the phylogenetic tree. We

weight the identity score of each amino acid to calculate the emission probabilities. The highest

weight is given to the residues which are only conserved in the target subfamily; hence, they

differentiate one subfamily from the others. A minimum weight is given to the residues that

are conserved both in the target subfamily and its closest clade. We downloaded complete pro-

teomes from UNIPROT [26] and we tested our subfamily-specific profile HMMs’ performance

on independent sequences retrieved from UNIPROT [26]. These sequences were from differ-

ent species and they were not used in calculating the position weights. We assigned sequences

to their corresponding subfamilies by following the same steps as the NCBI dataset [27] used

to build these models. We selected new taxa that were not in the NBCI dataset to test the per-

formance of our profiles, and our subfamily specific profile HMMs correctly identified all

members of a subfamily while avoiding hits to proteins from other subfamilies (Table 1).

Fig 3. Subfamily Specific HMM Models. Based on the phylogenetic tree, the target, the closest, and the rest groups were determined. Initial HMMs were built

without using priors. Representative amino acids in each group are selected, and their scores are calculated. According to groups, representative amino acids,

and conservation scores, we calculated weights to change the emission probabilities of initial HMMs.

https://doi.org/10.1371/journal.pcbi.1012591.g003

Table 1. Subfamily Specific Profile HMM’s Performance.

Subfamily HMM Test Cases True Positives False Positive False Negative True Negative

CaSR 81 81 - - 232

GPRC6A 62 62 - - 251

TAS1R1 75 75 - - 238

TAS1R2 21 21 - - 292

TAS1R3 74 74 - - 239

https://doi.org/10.1371/journal.pcbi.1012591.t001
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Uncovering molecular distinctions: revealing specificity-determining

residues in casr and its closest relatives GPRC6A, TAS1R1-3

CaSR is distinguished from other subfamilies of class C GPCRs by its oversensitivity to substi-

tutions that can result in either GoF or LoF mutations. This sensitivity is due to its critical role

in maintaining systemic calcium homeostasis and its high responsiveness to very slight

changes in extracellular Ca2+ concentrations [28]. As CaSR is the most conserved among

CaSR-likes, GPRC6A, and TAS1Rs, it is reasonable to anticipate that certain positions may

experience a relaxation of purifying selection in CaSR-likes, GPCR6A, or TAS1Rs. However,

CaSRs exhibit a greater number of positions that are subject to negative Darwinian selection

compared to other sub-families. Conversely, at some positions, the same amino acid may

retain functional significance in both subfamilies, and at others, a position remains important

in each subfamily, but different amino acids are favored in each duplicate.

Specificity-determining residues that are conserved in subfamily, but differ from its sister

clade can be predicted by directly comparing ancestral family sequences and calculating their

divergence scores [29]. However, using MSAs alone does not account for the number of substi-

tution events. For example, a single substitution event in the common ancestor of the bony

fish clade of the CaSR subfamily can be inherited into multiple descendants’ sequences. Assess-

ing this single substitution event as it repeats in each sequence independently results in over-

counting of these changes. Due to this mistake and overcounting the effect of one single

mutation repeatedly, the position is considered (i) to tolerate that particular amino acid and

(ii) functionally less important. In contrast, a single evolutionary event might have been com-

pensated by other substitutions in the same evolutionary node. Such a substitution might not

be tolerated in the other clades of the subfamily.

Another consideration to identify and order specificity-determining residues is treating

substitution events on the phylogenetic tree unequally. When an amino acid in CaSR remains

the same but can differ in the nearby CaSR-likes subfamily, it indicates that the amino acid has

a CaSR-specific role. We expect the SDP score of such an amino acid to be high compared to

others. If an amino acid is conserved in both CaSR and remote subfamilies like taste receptors

but likely to be substituted in CaSR-likes, it suggests that the amino acid plays a common func-

tional role in both CaSR and other subfamilies. For such an amino acid, the SDP score must be

low, since it is not a specific position for CaSR.

To consider these two important factors, we designed an approach to identify and prioritize

residues by specificity, which differentiate a subfamily from others in the CaSR group (CaSR,

GPRC6A and TAS1Rs) (Fig 4A). Our approach is based on the idea presented in the function-

ally divergent residues method [29] along with adaption of the PHACT method [19]. We iden-

tified specificity-determining residues by tracking substitution events from the root of the tree,

counting independent events within subfamily clades, and comparing probabilities across sub-

family clades. Our approach, detailed in materials and methods (Algorithm 3), prioritizes resi-

dues that are variably conserved in sister subfamily nodes but highly conserved in the target

subfamily node, signifying their specificity to the target subfamily.

We calculated specificity scores for each CaSR, GPRC6A and TAS1Rs. We have found that

CaSR has residues with high SDP scores on different domains (Fig 4B). Cytoplasmic domain

and extracellular loop include less specific residues compared to other domains. Specificity

score distributions show that CaSR has more specific residues compared to other subfamilies

(Fig 4C). On the VFT domain, specific residues are clustered in different regions (Fig 5). We

found a cluster of specific residues on the interdomain cleft between LB1-LB2 which is the L-

amino acid binding site in other class C GPCRs [3]. It suggests that this region is the primary

Ca2+ binding site in CaSR, consistent with [14]. We found two different clusters of specific
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residues on the ECD. First cluster was on the LB1 domain and on the LB1-LB1 dimer interface.

LB1 domain plays a role in anchoring ligands and initiating domain twisting by conforma-

tional changes at the interface between LB1 regions [3,5]. The second cluster was found at the

cytosolic side of the LB2 and at the interface between LB2-CRD, where Ca2+ ions bind [3–5].

Interaction between LB2 subunits is required for CaSR activation that propagates to large-

scale transitions of the 7TMDs [3,5]. Specific residues on the LB1 domain, LB1-LB1 dimer

interface, and LB2-CRD interface indicate that they provide the structural conformational

changes upon ligand binding to the interdomain cleft. Mutations located in these regions are

associated with LoF and GoF mutations [2]. Other specific residues are found on the CR,

extracellular loop 2 (ECL2) and TM domains. On the ECL2 acidic residues D758 and E759 are

specific to CaSR. The intersubunit electrostatic repulsion between the ECL2 regions could

Fig 4. Specificity Determining Position Scores. (A) The calculation of SDP scores uses the phylogenetic tree and the probability distribution of amino acids at

each ancestral node. (B) The SDP score distributions of CaSR among different domains and the SDP score distributions of each subfamily are shown. (C)

Welch’s t-Test shows that CaSR has more residues with higher SDP scores compared to GPRC6A and TAS1Rs.

https://doi.org/10.1371/journal.pcbi.1012591.g004
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facilitate the activation of CaSR [3,5]. In the agonist+PAM bound state the ECL2 is moved by

the interaction among E759, W590, and K601. Deletion of D758 and E759, and single muta-

tions of K601E and W590E disrupt CaSR activity; however, Δ758–759 mutant was expressed at

the cell surface with comparable levels to that of wild type (WT) while W590E and K601E

mutants were expressed on the cell surface lower than the WT level [3]. We found that residues

W590 and K601 are not specific to CaSR. The TM domains of two protomers of CaSR come

into close proximity upon receptor activation [5].

The interaction between TM4-5 of each subunit in the inactive state is essential [14], while

the interaction between TM6-TM6 is crucial for the active state [3,8,14]. The structural find-

ings and the presence of CaSR specific residues on each TM domain suggest that CaSR is spe-

cialized in both dimerization and ligand binding. Specific residues on the TM domain are

likely play a role in the regulation of conformational changes observed during activation upon

Fig 5. Specific conserved residues mapped onto structures. The cryo-EM structure of human CaSR bound with Ca2+and L-Trp (PDB:7DTV)

and homology models of GPRC6A, TAS1R1, TAS1R2 and TAS1R3 are colored based on SDP scores. Residues with a high SDP score (above 5.0)

are shown as spheres. Domains on the human CaSR structure (PDB: 7DTV) are labeled and colored according to their SDP scores on the right-

hand side.

https://doi.org/10.1371/journal.pcbi.1012591.g005
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ligand binding and inactive states. Residues inside the dimerization interface and interacting

with the ligand are quite sensitive substitutions because they can induce malfunctions in the

receptor easily. On the other hand, GPRC6A and taste receptors are more tolerant to substitu-

tions, and they are not very specialized respond to a single ion. GPRC6A and taste receptors

are activated by a broad spectrum of ligands [30,31]. Even though the ligand of GPRC6A is

controversial in the literature, multiple ligands such as osteocalcin (Ocn), testosterone, basic

amino acids and cations such as L-Arg, L-Lys, L-Orn, calcium, magnesium, and zinc are sug-

gested to bind GPRC6A [31]. Taste receptors bind to different ligands, including sugar, L- and

D-amino acids, sweet proteins, and artificial sweeteners [32].

On the TM region, we also find the CaSR specific cholesterol recognition/interaction

amino acid consensus (CRAC) motif (L783, F789, S820) that is defined by the consensus (L/V)

X1–5YX1–5(R/K) and is often present at junctions between membrane- and cytosol-exposed

domains and shown in the mGluR2 receptor [33]. Phylogenetic analysis shows that TAS1R3

evolved earliest (7776 Gnathostomata) among TAS1Rs, TAS1R1and TAS1R2 subfamilies have

a common ancestor 117571 Euteleostomi. TAS1R3 forms heterodimers with TAS1R1 and

TAS1R2 [30,32,34]. Interactions between the cytosolic terminus of the extracellular CRD is

needed for TAS1R3 dimerization. TAS1R1 and TAS1R2 recognize a broad spectrum of L-

amino acids that bind to the intercleft between LB1-LB2 and induce the positional shift of the

CRD regions; however, TAS1R3 loses the corresponding function [34]. Our analysis showed

that TAS1R1 has specific residues on the LB1, LB2 and extracellular loop regions. Also,

TAS1R2 has specific residues on the LB1, LB2 and CR domains. On the other hand, in

TAS1R3, we found specific residues only on the LB1 and one on the CR domain. Since

LB1-LB2 domains create a cavity for ligand binding, specific residues on the LB1-LB2 domains

of TAS1R1 and TAS1R2 may contribute to domain transformation upon ligand binding.

However, the number and distribution of specific amino acids suggest that taste receptors are

not under the same strict selective pressure as CaSR.

Gradient boosting trees machine learning approach to predict the

mutation types in CaSR

Due to the high conservation of the CaSR subfamily, substitutions on the receptor may lead to

varied outcomes, including disruption of receptor function and the potential for either GoF or

LoF mutations. GoF mutations typically enhance CaSR activity and lead to an increase in the

sensitivity to extracellular calcium. LoF mutations reduce or eliminate the function of CaSR.

However, predicting the functional consequences of a substitution is challenging. Evolutionary

conservation of a residue among subfamilies might reflect the common structural constraints,

but it does not distinguish between LoF and GoF mutations. In addition, at certain positions,

substitution of different amino acids causes either LoF or GoF mutations [23]. We hypothe-

sized that “activating” mutations are more likely to be tolerated in neighboring clades such as

GPRC6A and TAS1Rs, but not in CaSR. Generally, LoF (inactivating) mutations are not toler-

ated in the larger clade of these receptor subfamilies. To test this hypothesis and to determine

whether we can discriminate between GoF and LoF mutations in CaSR, we analyzed 94 GoF

and 243 LoF mutations, categorized based on their clinical outcomes from the literature [2].

We utilized a tree boosting machine learning algorithm, XGBoost [35] which incorporates

multiple features such as conservation scores, physico-chemical properties of amino acids, and

domain information.

Our algorithm uses sequence-based features, identity scores from MSAs, physico-chemical

properties of amino acids, and domain information as input features (Fig 6A). Since we calcu-

lated our feature values from the MSAs, we divided our dataset into training, validation and
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test datasets before we created feature matrices to prevent information leakage. We performed

50 replications with different random splittings of datasets to obtain a more robust model

performance.

The ROC and PR curves are used to understand the performance of a binary classifier that

assigns each element of data into two groups. The ROC curve is a graphical plot that shows the

false positive rate versus the true positive rate for different threshold values between 0 and 1. A

PR curve is a plot of the precision and the recall for different threshold values, and it is useful

for imbalanced datasets. We used the areas under the ROC and PR curves (i.e., AUC and

AUPR, respectively) to compare the performances of the model on the train and test datasets

for 50 replications. Higher AUC and AUPR values are associated with better performance.

Fig 6. Gradient Boosting Trees Machine Learning Approach to Predict the Mutation Types in CaSR. (A)Model

architecture. We took 94 GoF and 243 LoF mutations from the literature. We divided subfamily alignments and

mutations randomly as 80% training and the remaining 20% test data before creating feature matrices to prevent

information leakage. 25% of the training data was randomly picked as the validation data five times for cross-

validation. For each dataset split we used the sklearn train test split model with stratify option to keep the LoF to GoF

ratio almost the same in the datasets. We used MSA of CaSR, CaSR-likes, GPRC6A and TAS1Rs to generate features as

well as amino acid physico-chemical features and domain information. We performed 50 replications. (B) The

performance and feature importance of XGBoost algorithm. The AUROC and AUPR values of 50 replications are

shown. The average AUC levels of 50 replications are 0.83 and 0.78 for the train and test respectively. The average

AUPR levels of 50 replications are 0.93 and 0.9 for the train and test, respectively. Contributions of Shapley values for

type of pathogenicity classification to the model output for XGBoost. aa0: the amino acid found in the human CaSR,

aa1: substituted amino acid, AF: average flexibility, TMT: TM tendency, ZP: Zimmerman polarity, B: BLOSUM62,

AWR: atomic weight ratio, TM: transmembrane domain. Further details about these features can be found in materials

and methods section.

https://doi.org/10.1371/journal.pcbi.1012591.g006
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AUC and AUPR over all replications were shown in (Fig 6B). Our average AUC values for

training and test among 50 replications are 0.83 and 0.78 (Fig 6B). Our average main AUPR

values for training and test among 50 replications are 0.93 and 0.9, respectively (Fig 6B). Addi-

tionally, we categorized amino acids that are observed in the CaSR MSA as neutrals. To date,

no pathogenic substitution has been reported in the literature for these amino acids that we

identified as neutral. After we reported our algorithm performance, we trained our algorithm

with the whole dataset. We tested our algorithm with previously unseen test cases from the lit-

erature (Table 2). We provided all predictions (S2 and S3 Tables) and visualized them in the

form of a heatmap for every other amino acid at each position until the disordered region

(position 892) of the human CaSR (Fig 7A). We mapped known CaSR LoF and GoF mutations

on the cryo-EM structure of human CaSR bound with Ca2+ and L-Trp (PDB:7DTV)[5] (Fig

7B). SHAP (SHapley Additive exPlanations) values provide a way to decode the inner work-

ings of a machine learning model like XGBoost. These values calculate the average contribu-

tion of each feature to the overall prediction, taking into account any interactions between the

features. Based on the SHAP values, the conservation scores of human CaSR amino acids in

other subfamilies play a significant role in the model’s prediction, as shown in Fig 7B. If the

amino acid is also conserved in GPRC6A and taste receptors (in fact, conservation score in

TAS1R3 has the highest contribution), the model predicts a substitution of that amino acid as

LoF. On the contrary, when an amino acid is conserved exclusively in CaSR, substituting that

amino acid is predicted to result in a GoF. New test cases (Y825F, A840V, L696V, I139T) men-

tioned in Table 2 have been accurately predicted to cause GoF mutations. These specific

amino acids are conserved either solely in CaSR or in GPRC6A and CaSR-like receptors, but

not across all receptor types. Notably, the A840V substitution leads to a GoF mutation, as

Table 2. Model’s predictions for the new CASR GoF and LoF mutations from literature. The correct predictions

are indicated by a star symbol (*) next to them.

Mutation Cause Prediction

p.I857S [36] hypocalcemia gain-of-function*
p.Y825F [37] hypocalcemia gain-of-function*
p.P393R [38] hypercalcemia loss-of-function*
p.C60G [39] hypercalcemia loss-of-function*
p.D99N [40] hypercalcemia loss-of-function*
p.T186N [41] hypocalcemia loss-of-function

p.A840V [26] hypocalcemia gain-of-function*
p.S448P [42] hypercalcemia loss-of-function*
p.L696V [43] hypocalcemia gain-of-function*
p.D433Y [44] hypercalcemia loss-of-function*
p.S147L [45] hypercalcemia loss-of-function*
p.D398N [46] hypercalcemia loss-of-function*
p.K805R [47] hypercalcemia gain-of-function

p.C60Y [48] hypercalcemia loss-of-function*
p.L606P [49] hypercalcemia loss-of-function*
p.H41R [50] hypercalcemia gain-of-function

p.A110D [51] hypercalcemia gain-of-function

p.I139T [52] hypocalcemia gain-of-function*
p.Q164R [53] hypercalcemia loss-of-function*
p.T699N [54] hypercalcemia gain-of-function

p.R701G [54] hypercalcemia loss-of-function*
p.T808P [54] hypercalcemia loss-of-function*
https://doi.org/10.1371/journal.pcbi.1012591.t002
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Fig 7. LoF and GoF Mutation Predictions. (A)Visualizing the results of our XGBoost model. The heatmap displays

the XGBoost model’s predictions for each of the 20 amino acids at every position except disordered regions (892–1078)

within the human CaSR. Above the heatmap, the domains of the CaSR are shown. Within these domains, circles

represent all known LoF and GoF mutations documented in the literature. Circles denoting GoF mutations are colored

purple, while those representing LoF mutations are colored blue. Below the heatmap bar graphs show the number of
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valine is conserved in GPRC6A. These analyses reinforce our hypothesis that residues con-

served in CaSR, but not in other subfamilies, are more likely to induce GoF mutations. Addi-

tionally, amino acids conserved within closely related subfamilies might disrupt the

functioning of other subfamilies. On the other hand, the new LoF cases shown in Table 2

(D99N, C60G, Q164R, T808P) show that reference amino acids are conserved across

subfamilies.

To compare our model’s performance, we retrieved 922 missense CaSR mutations from

gnomAD v4 [55]. We filtered mutations with known significance. We classified ’pathogenic,’

’likely pathogenic,’ and ’pathogenic/likely pathogenic’ annotated mutations as pathogenic,

while those annotated as ’benign,’ ’likely benign,’ and ’benign/likely benign’ were classified as

benign. We categorized mutations predicted by our model and LoGoFunc [56] as ’pathogenic’

(including both GoF and LoF mutations) and ’benign’ (neutral predictions). We omitted

’ambiguous’ predictions from the AlphaMissense [57] tool to ensure clarity in our comparison.

We obtained better results compared to others (S1 Fig). We also compared our tool’s gain and

loss prediction performance with the LoGoFunc tool [56]. We used 22 mutations that had not

been previously encountered during our model’s development. Our approach demonstrated

an accuracy of 0.77 and an F1 score of 0.83, while the LoGoFunc tool exhibited an accuracy of

0.77 and an F1 score of 0.85 (S1 Table).

Another important feature is the structural location of the amino acid. Our findings indi-

cate that if the amino acid is located in the TM domain, a substitution would result in a GoF

mutation. It is known that the majority of GoF mutations are located in the TM domain, as

shown in Fig 7B. The presence of certain amino acids on the TM domain of CaSR suggests

that they play a crucial role in its activation mechanism. Even though substituting those amino

acids might be acceptable in GPRC6A and taste receptors, they might lead to the lock of TM

domains and result in the overactivation of CaSR.

To gain insight into the activation mechanism of the CaSR and its association with activat-

ing and inactivating mutations, we analyzed the complex network of residue-residue connec-

tions by comparing active state CaSR structures with inactive state structures. For the

monomer activation network, we modified the residue-residue contact score (RRCS) algo-

rithm [58] to detect atom level contact changes in identical amino acids in different states. We

made this change for two main reasons. First, class C GPCRs do not exhibit large structural

changes during receptor activation [59], like other GPCR classes. Therefore, residue level

changes do not provide enough resolution for understanding the mechanism, especially for

the TM domain. Second, residue level changes can only highlight certain important positions

while investigating atom level contact changes enables us to understand the impact of more

residues. For the changes observed within the dimerization interface, we used the original

algorithm. To build the networks, we identified significant contact changes observed in two

receptor states during activation both in the individual protomer and at dimer interface. (Fig

7C). Significantly, the residue pairs involved in CasR activation were more abundant in critical

locations such as the loop of lobe 1 inside the VFT domain, the interdomain cleft, the CR

domain, and the TM domains (Fig 7C).

GoF, LoF and neutral predictions among the 19 possible substitutions. (B) Mutations on the human CaSR structure.

LoF- and GoF-associated mutations are shown on the cryo-EM structure of human CaSR bound with Ca2+ and L-Trp

(PDB:7DTV) as blue and red spheres, respectively. (C) Increased residue-residue contacts are shown on the cryo-EM

structure of human CaSR bound with Ca2+ and L-Trp (PDB:7DTV) on the left. Interdomain and intrasubunit

interactions are shown as red and blue lines, respectively on the right. LoF- and GoF-associated mutations among the

interacted residues are shown as blue and purple spheres, respectively. Switch residues are shown as yellow spheres.

https://doi.org/10.1371/journal.pcbi.1012591.g007
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Recent studies have highlighted the role of domain twisting in the CaSR homodimer’s acti-

vation process, initiated by intersubunit domain contacts and conformational shifts at the

interface between the lobe 1 regions (Ling et al., 2021) [5]. In this study, we have noticed a

notable augmentation in the level of contact between two pivotal amino acid residues, L125

and Y20, located within the loop region of LB1 domains in the homodimeric structure. Nota-

bly, the substitutions of L125F and L125P led to mutants that exhibited a GoF phenotype. In

the TM6 domain, we observed increased RRCS between residues in the dimer, with particular

attention to A824 and P823. Significantly, residue A824, which exhibits specific conservation,

has been associated with GoF mutations in the A824P and A824S [2]

We identified a notable increase in RRCS between residues within the CR domain. Specifi-

cally, these interactions have been observed between two subunits of the dimer and involve the

following interactions: E556-D578, E556-S580, and E556-K552. Although only residue S580

demonstrated specificity for CaSR, other acidic residues either exhibited tolerance towards

replacements with other acidic residues or remained conserved across all subfamilies of CaSR.

Nevertheless, it is important to acknowledge that the substitution of E556K resulted in a muta-

tion with enhanced activation. The results indicate that the interactions between these particu-

lar residues are of utmost importance in maintaining the receptor’s active conformational

state. This conclusion is consistent with previous structural investigations that have demon-

strated the convergence of LB2, CR, and TM domains in both subunits during the twisting of

CaSR, leading to a more condensed conformation in the active state of CaSR (Chen et al.,

2021; Ling et al., 2021) [3,5]. In contrast, we have also observed distinct residues linked to LoF

mutations. These residues exhibit enhanced interactions within a single subunit, predomi-

nantly located in the LB1 and LB2 sections of the VFT domain, specifically in proximity to the

Ca2+ binding sites (Fig 7C). Residues that induce LoF upon mutation are primarily located

within the core of the VFT domain. This implies that any modification in amino acids could

potentially induce structural alterations, ultimately resulting in misfolding or disruption of the

activation mechanism and consequent LoF.

Discussion

In this study, we showed the evolution of CaSR by developing a methodology for precisely

defining functionally equivalent orthologous sequences across species and therefore subfami-

lies. We built a high-quality phylogenetic tree of CaSR with its closest subfamilies, GPRC6A

and TAS1Rs. Statistical analysis of branch length distances from this phylogenetic tree showed

that CaSR is evolutionarily more conserved compared to GPRC6A and TAS1Rs. While

GPRC6A and taste receptors can bind to a diverse range of ligands and are able to tolerate sub-

stitutions at most of the positions, CaSR requires a delicate balance for proper functioning.

The high evolutionary conservation and specificity of CaSR in contrast to the closest sub-

families are reflected in the SDP score analysis. CaSR has specific residues clustered in different

regions of the receptor. They are located on Ca2+ and L-Trp binding sites on the VFT, as well

as on the dimerization sites between two sub-units of the homodimer. Specific residues on the

dimer interfaces indicate that dimerization maintained by interactions between different sub-

units is required for ligand binding and the correct activation of the CaSR. Ca2+ ion binding

and interactions between LB2-CR domains and conformational changes in LB1 domain were

suggested to be required to activate CaSR [3–5]. Mutational analysis at some positions on the

LB1 domain has been shown to reduce the effect of Ca2+-stimulated intracellular Ca2+ mobili-

zation in cells [3,5]. In contrast, substitutions caused negative charge neutralization on the

ECL2 result in prompting the activation of CaSR [5]. Our results suggest that residues with

low SDP scores on any domain are required for a common activation mechanism since they
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are conserved across functionally different receptor subfamilies. However, residues with high

SDP scores cause malfunctions in the CaSR. Any substitution in a residue with a high SDP

score might either cause over or less activation. Deep mutational scanning approaches or new

methods that simultaneously profile variant libraries [60] are needed to provide further evi-

dence to functionally assay all possible missense mutants.

To predict the functional consequence of a mutation in human CaSR, we used the Extreme

Gradient Boosting (XGBoost) method. XGBoost is able to perform well on small datasets by

incorporating a variety of regularization methods to control the model complexity, which

helps to prevent overfitting. We have a small and unbalanced dataset in that the number of

GoF mutations was very low, therefore it is prone to overfit. To prevent overfitting while

achieving high predictive performance, we used a simple method along with regularization

parameters. Moreover, we tried to keep the ratio between the number of LoF and the number

of GoF mutations for training and test sets as close as possible. To ensure robust performance,

we iterated through the train-validation-test splitting procedure fifty times. To increase predic-

tive performance, we could use more complex methods, such as deep learning, but they require

larger datasets. Studies that used deep learning or ensemble methods for similar assessments

are different in terms of prediction, in which they predict the type of mutation as either patho-

genic or neutral [61–64]. Even though there are a number of mutations of human CaSR in the

Clinvar, the functional consequences of most of them are not known. We obtained missense

variants from gnomad v4 and compared our predictions with AlphaMissense [57] and LoGo-

Func [56]. While Alphamissense tends to predict benign, LoGoFunc tends to predict patho-

genic outcomes even for variants that are actually neutral. LoGoFunc uses multiple features

categorized into gene-level, protein-level and variant-level. They include scores of other tools,

amino acid types, mode of inheritance etc. They make LoGoFunc a powerful tool to predict

the pathogenicity, yet it overestimates pathogenicity for CaSR.

Given the constraints of the small dataset and limited additional data, we carefully selected

and processed the features for our model’s training. Features that are used to train a machine

learning model heavily determine its performance. The more features we use, the more infor-

mation the model has to learn from, which can lead to improved predictive performance.

However, having too many features can also lead to overfitting. Moreover, the quality of the

features is more important than the quantity. One important evolutionary process that can

affect the functional consequences of a substitution is co-evolution. From the MSA of CaSR

proteins, we manually selected six positions, p.180,p.212,p.228,p.241,p.557 and p.883, that are

in our dataset and co-evolved. We masked the co-evolved amino acids from the MSA and

repeated all the steps outlined in the machine learning process. Our average AUC values for

training and test among 50 replications were 0.83 and 0.77, respectively and our average

AUPR values were 0.93 and 0.89. Despite not experiencing an improvement in performance,

we found that the amino acid changes p.I212T, p.F180C, and p.I212S were now predicted to

cause LoF, contrary to their previous prediction of causing GoF. We cannot accurately assess

the impact of co-evolution on performance because there is a lack of effective tools for identi-

fying co-evolved positions and our dataset contains only a limited number of co-evolved posi-

tions, but we anticipate that it is an important feature to differentiate GoF and LoF mutations.

There are other limitations that may affect the interpretation and applicability of our find-

ings. In-species variability and potential sequencing errors present significant challenges. In-

species genetic diversity can lead to varying effects of similar mutations across different indi-

viduals or populations, complicating the prediction of their functional outcomes. Further-

more, sequencing errors, which may occur during data acquisition, may cause incorrect

mutation identification. These limitations can lead to flawed analyses and misinterpretations

of the mutation’s impact on receptor functionality. These factors highlight the necessity for
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rigorous validation of genetic data and careful consideration of genetic diversity in extrapolat-

ing our results to broader applications.

We built subfamily-specific profile HMMs to get all functionally-equivalent orthologs while

excluding other proteins. To generate these HMM models, we manually decided target, closest

and rest groups based on the phylogenetic tree of CaSR group. Based on the nature of a phylo-

genetic tree, the selection of these groups is changed, so that this process can be further auto-

mated. We did not anticipate that our specific models would match any receptors from other

classes of GPCRs, since they are evolutionarily more distant to CaSR group. We expect that

our subfamily specific profile HMMs can be used to obtain orthologs in different protein fami-

lies for the upcoming genomes. They can be particularly useful for studying protein families

with many duplications and orphan protein families, where it can be difficult to identify true

members. These models are particularly important to avoid computationally expensive and

expertise-required phylogenetic tree reconstruction and analysis.

Materials and methods

Class C Proteins and their domain architectures

478 complete eukaryotic proteomes were downloaded from the NCBI genomes website

(https://ftp.ncbi.nlm.nih.gov/genomes/archive/old%20ref%20seq/) in 2018. A hmmsearch of

HMMER software [65] (http://hmmer.org/) was run for each proteome against the Pfam

7tm_3 profile [66]. Sequences with significant 7tm_3 hit based on hmmsearch results (above

the default threshold) were compiled from proteomes. A hmmscan of HMMER software [65]

(http://hmmer.org/) was run for these sequences against the Pfam-A 32.0 database [66]. Based

on the results of the hmmscan, the longest isoform was taken and saved in a separate file

named by taxonomic ID, however, canonical sequences were obtained for human (based on

the given canonical proteins on the UniProt website [67]. Because plants do not have GPCRs,

they were eliminated from the analysis. For single isoform sequences of each proteome, a

BLAST database was built [20].

Subfamily definition and subfamily specific models

Each protein sequence of each taxon was queried through BLASTP against each prepared

BLAST database [20]. Reciprocal mutual best hits of each human class C GPCR were collected

in a file named gene id. reciprocal mutual best hits of each class C GPCR and remaining

human class C GPCRs were collected and 7TM domains of these sequences were taken based

on hmmscan results (the longest sequence that hit the 7tm_3). Sequences were aligned using

the MAFFT v7.221 E-INS-I algorithm with default parameters [68]. A maximum likelihood

based phylogenetic tree of each subfamily of class C GPCR was built using RAxML version

8.2.12 with automatic protein substitution model selection (PROTGAMMAAUTO) and 100

rapid bootstrapping parameters [69]. The most common highest taxonomic level was added to

the phylogenetic tree with the ETE toolkit [70]. Based on the phylogenetic tree, sequences

belonging to the corresponding subfamily were taken, and a profile HMM was built. The sub-

family assignment process begins by scanning each sequence with a 7tm_3 domain against

profile Hidden Markov Models (profile HMMs). After the sequence is scanned, the subfamily

is determined based on three conditions: (1) The maximum score value of the hmmscan must

belong to the given subfamily. (2) E-value is a measure of the significance of a match in a data-

base search, and the lower the E-value, the more significant the match is. The E-value of the

sequence must be the lowest. (3) The sequence must belong to the most common highest taxo-

nomic level of the given subfamily. Taxonomic level refers to the classification of an organism

within a biological classification system. If a sequence meets these three conditions, it is
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assigned to the corresponding subfamily. After this, the full length sequences of each subfamily

were then aligned using the MAFFT v7.221 algorithm [68] and trimmed using the gappy-out

method of the trimAl tool [71].

Paralog filter

There were a number of duplications in the CaSR subfamily. For example, Dipodomys ordii

has 116 CaSR sequences. To reduce the number of sequences, human CaSR and other human

class C GPCR proteins sequences compiled with CaSR sequences of each taxon and aligned

with the MAFFT v7.221 auto algorithm [68], and the gappy-out method of the trimAl tool was

used to trim the MSA [71]. The ML tree was built using RAxML-NG v0.9.0 with ML tree

search and bootstrapping (Felsenstein Bootstrap and Transfer Bootstrap) parameters [72].

Based on the ML tree, proteins that were diverged from the common ancestor of the human

CaSR clade were classified as CaSR-likes. Proteins that were clustered with the human CaSR

were accepted as CaSRs. After we assigned all proteins to their subfamilies, we built final ML

trees for CaSR, GPRC6A, and TAS1Rs. We added human CaSR sequence to the GPRC6A and

TAS1Rs subfamilies, and human GPRC6A sequence was added to CaSR subfamily as an out-

group. We aligned subfamily sequences with the MAFFT v7.221 einsi algorithm [68] and built

the ML trees by using RAxML-NG v0.9.0 with the JTT model parameter [72]. We labeled the

duplications at each node on the ML trees. Based on the duplications, we manually checked

the trees and removed a clade that was a subset of its sister clade by using the ETE toolkit [70].

We took each branch and node length from leaf to root of the tree by using common species in

all CaSR, GPRC6A and taste receptor trees to calculate subfamily conservation by using

Welch’s t-Test by using the ‘ggstatsplot’ package [73].

Subfamily Specific Profile HMMs

After we took all receptors from CaSR, CaSR-like, GPRC6A, and taste receptors, we aligned

them by using MAFFT v7.221 auto algorithm [68]. For each subfamily we removed the posi-

tions from the MSA that correspond to a gap in the human receptor. Then, we divided the

MSA into subfamily alignments. We generated an HMM profile from the gap-removed align-

ment of each subfamily. The “pnone” option of the HMMER package was used in the HMM

profile construction step, and thus the obtained probability parameters are simply calculated

by employing observed frequencies. The constructed HMM profiles for any target subfamily,

even with the “pnone” option, still hit the sequences from other subfamilies. On the other

hand, we aim to obtain profiles such that they can correctly identify the elements of the target

subfamily while not hitting any proteins from the remaining ones. To achieve this, we use a

position-weighting approach. After determining the weight per position, we update the emis-

sion probabilities by taking these weights into account. The weights are computed by a detailed

analysis of the conservation dynamics of each subfamily. As the initial step, we defined the tar-

get, the closest and the rest groups based on the ML tree. By considering the distance between

the root node of each subfamily and the target one, we determined the closest group. The

remaining parts of the tree were taken as the rest. To obtain specific HMM profiles for each

subfamily, we considered five different scenarios that show variety in terms of the subfamilies

in the target, close and rest groups.

• CaSR is the target group, CaSR-likes are the closest group, and GPRC6A and taste receptors

(TAS1Rs) are the rest.

• GPRC6A is the target group, TAS1Rs are the closest group, CaSR and CaSR-likes are the

rest.
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• TAS1R1 is the target group, TAS1R2 is the closest group, and TAS1R3 is the rest.

• TAS1R2 is the target group, TAS1R1 is the closest group, and TAS1R3 is the rest.

• TAS1R3 is the target group, TAS1R1 and TAS1R2 are the closest group and GPRC6A is the

rest.

Our main idea is finding the positions that can help discriminate the target family from the

others and assigning a high weight to these positions. Similarly, we assign a low weight to the

positions that are conserved for all subfamilies since they can cause incorrect hits. The details

of how we compute the weight per position is given in Algorithms 1, Algorithm 2 and S2 Fig.

In Step 1 of Algorithm 1, we show how to select the representative amino acids per group

and assign a score to each group based on the amino acid frequencies obtained from MSA for

any position k. For the target group, the most frequent amino acid, RT, is chosen as the repre-

sentative one. For the closest and rest groups we first check if the group is composed of a single

subfamily or multiple subfamilies. If the group is composed of a single subfamily, we select the

most frequent amino acid as the representative and scores are taken as the frequency of this

amino acid. Otherwise, we first check whether the most frequent amino acid for at least one

element of the group is RT. If it is, RT is chosen as the representative amino acid for the corre-

sponding group and its frequency is assigned as a group score. If not, the amino acid with the

highest frequency for most of the elements is chosen, and the score is computed by taking the

average of the frequencies of the representative amino acids in the subfamilies of the corre-

sponding group.

Algorithm 1 –Step 2 shows the details of how we assign type, which represents whether the

position can be used to discriminate the proteins in target and compute the initial score for

any position k. To calculate the initial score, we defined six different categories and four differ-

ent position types based on the representative amino acids that we identified in Step 1 of Algo-

rithm 1. Type I, IV, III, II correspond to the positions ordered with respect to the highest to

the lowest final weight.

• Category I (lines 12–18): Representative amino acids in the closest and rest groups are gaps.

If the representative amino acid in the target group is also gap, then the initial weight type is

Type II. Otherwise, the initial weight type is Type I since this position can be used to dis-

criminate between target from close and rest groups.

• Category II (lines 19–25): The representative amino acid in the target group is gap. If the rep-

resentative amino acid in the closest or rest group is not gap, then the initial weight type is

Type I. Otherwise, the initial weight type is Type II.

• Category III (lines 26–56): Representative amino acids in the target, closest and rest groups

are different from each other. We check boundary conditions to see whether each group is

conserved. If all scores per group are greater than or equal to a predefined threshold value,

the position type is I. If any of them is smaller than the threshold, we check whether amino

acid substitutions between the representative amino acids are probable with respect to the

BLOSUM score. If the BLOSUM score between the representative amino acids of target and

close or target and rest is less than the predefined threshold, we again assign Type I. Other-

wise, the type is IV.

• Category IV (lines 57–59): The representative amino acids in the target and the representa-

tive amino acids in the closest groups are the same. The type is II. These positions are the

main reason for the wrong hits, so we assign the lowest weights to the positions in this

category.
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• Category V (lines 60–70): The representative amino acid in the target group is the same with

the representative amino acid in the rest group, but it is different from the representative

amino acid in the closest group. If the conservation level of the rest is less than the threshold,

the type is III, otherwise, to prevent wrong hits from the rest group to the target, we label the

position as Type II.

• Category VI (lines 71–80): The representative amino acid in the closest group is the same

with the representative amino acid in the rest group, but the representative amino acid in the

target group is different. The type is I if it satisfies the boundary conditions; otherwise, the

type is II.

The predefined thresholds thr1 and thr2 are chosen by considering the conservation dynam-

ics of target, close and rest, respectively. For example, for CaSR, thr1 = 0.98 and thr2 = 0.8. For

GPRC6A and TAS1Rs, we took both thr1 and thr2 as 0.8. The final threshold that is used to

determine whether two amino acids are close to each other in terms of the BLOSUM score,

thrbls, is chosen as 0.5. Here, we do not directly use BLOSUM scores of two amino acids,

instead we normalize each row of the log odd ratio of the BLOSUM matrix by dividing it by

the maximum element of the corresponding row. Thus, the maximum value of the matrix is 1

when the amino acid is conserved and the value decreases with respect to the closeness of

substituted amino acids.

After we check each category and assign types to the positions, we calculate the initial scores

that will be used to compute the final weight based on the position type. For Types I, III and

IV, the initial score is the sum of scores for each group. On the other hand, for Type II, the ini-

tial score is computed as one over the sum of individual group scores. Here we aim to assign

the lowest weight to Type II since it consists of the positions that can cause wrong hits to target

because of similar conservation and amino acid patterns with close and/or rest groups.

After determining the types and initial score of each position, the next and final step is to

decide the final weight that will be used to modify the emission probabilities of the default

HMM profiles. Details of this process are given in Algorithm 2. The weight of each type will be

in the following order from highest to lowest: Type I, Type IV, Type III and Type II.

The maximum or minimum weight for each category is predefined through an empirical

process over the sequences that are used in our algorithm design process. As mentioned in the

Results section, the sequences tested in our approach were from different species and they

were not used in calculating the position weights. Type I refers to positions that show the most

subfamily-specific patterns, which is why we assign a weight greater than or equal to c1(c1�1)

to the sequences in this category. The position with the smallest initial score takes c1, and other

positions take a weight proportional to their ratio to the smallest initial score in Type I.

Specifically, c1 = 1 for CaSR, GPRC6A, TAS1R1 and TAS1R3 and c1 = 1.5 for TAS1R2.

Type IV positions are expected to contribute the most after Type I. We determine a maxi-

mum weight value, c2, for this category. The maximum weight of Type IV positions, c2, is

equal to the mean value of the weights of Type I positions (line 4 of Algorithm 2) for all target

subfamilies. Positions labeled as Type IV show patterns that can be used to discriminate sub-

families. However, since the conservation level at these positions can be low, we want to assign

a high weight that does not exceed that of Type I. The highest initial score in this category can

be as informative as Type I, so we assign the average value of Type I to that position. Other

positions in this category take a weight depending on their ratio to the position with the high-

est score in Type IV.

The maximum weight of Type III positions, c3, is taken as the minimum weight of Type IV

positions for GPRC6A and 0.5 for TAS1Rs. For CaSR, since it is a highly conserved family and
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Type I and IV positions are much more important compared to the other types, we decreased

the maximum weight of Type III positions further by taking the minimum of Type IV over 2.

Finally, Type II positions take the lowest score as the highest weight, c4, is again determined

by considering the conservation pattern of the target. We took c4 = 0.2 for GPRC6A and

TAS1R2, c4 = 0.25 for TAS1R1 and TAS1R3. For CaSR, the highest weight of Type II positions

is restricted by the minimum weight of Type III positions over 2. As mentioned earlier, this

type includes positions that show similar conservation patterns and cannot be used to distin-

guish between the elements of the target and other groups. However, they are necessary to

detect sequences belonging to any of these five subfamilies, so we assign them a minimal con-

tribution to the score. Other positions in the Type III and Type II categories take a weight

depending on their ratio to the position with the highest initial score in Type III and II, respec-

tively, as shown in Algorithm 2.

ALGORITHM 1: REPRESENTATIVE AMINO ACID AND INITIAL SCORE FOR POSITION
“k”
Input: Representative amino acid of target subfamily, RT; the fre-
quency of RT in the target, ST; the most frequent amino acid of subfam-
ily i, (i = 1,. . .,N) and its frequency, ai,Fi, respectively; target,
close and rest groups, t,c, and r, respectively; the number of subfam-
ilies in close and rest groups, nc and nr, respectively; conservation
threshold for target and close/rest groups, thr1 and thr2; the thresh-
old for Blosum scores, thrbls.
STEP 1: Choose representative amino acid and related frequency for
each group
1 for j2{c,r}
2 if nj = 1
3 Rj = ak where k is the subfamily in group j
4 Sj = Fk
5 else
6 if RT 2 {aj,j = 1,. . .,nj}
7 Rj = RT
8 Sj = Fk where k is the subfamily with the most frequent amino acid is
RT
9 else
10 Rj = ak where k is group with highest frequency

11 Sj ¼
Pnj

s¼1
Fs

nj

STEP 2: Assign position type and initial score to position “k”
Category 1
12 if Rc = Rr and they are gap
13 if RT is gap
14 typek = II
15 scorek ¼ 1P

i2fT;c;rg
Si

16 else
17 typek = I
18 scorek = Σi2{T,c,r}Si
Category 2
19 else if RT is gap
20 if Rc is gap or Rr is gap
21 typek = II
22 scorek ¼ 1P

i2fT;c;rg
Si

23 else
24 typek = I
25 scorek = Σi2{T,c,r}Si
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Category 3
26 else if RT6¼RC6¼Rr
27 if RT,Rr and Rc are not gaps
28 if ST�thr1 and Sc,Sr�thr2
29 typek = I
30 scorek = Σi2{T,c.r}Si
31 else if Blosum(RT,RC)�thrbls and Blosum(RT,Rr)�thrbls
32 typek = I
33 scorek = Σi2{T,c,r}Si
34 else
35 typek = IV
36 scorek = Σi2{T,c,r}Si
37 else if Rc is gap
38 if ST�thr1 and Sr�thr2
39 typek = I
40 scorek = Σi2{T,c,r}Si
41 else if Blosum(RT,Rr)�thrbls
42 typek = I
43 scorek = Σi2{T,c,r}Si
44 else
45 typek = IV
46 scorek = Σi2{T,c,r}Si
47 else if Rr is gap
48 if ST�thr1 and Sc�thr2
49 typek = I
50 scorek = Σi2{T,c,r}Si
51 else if Blosum(RT,Rc)�thrbls
52 typek = I
53 scorek = Σi2{T,c,r}Si
54 else
55 typek = IV
56 scorek = Σi2{T,c,r}Si
Category 4
57 else if RT = Rc
58 typek = II
59 scorek ¼ 1P

i2fT;c;rg
Si

Category 5
60 else if RT6¼Rc and RT = Rr
61 if Rc is gap
62 typek = III
63 scorek = Σi2{T,c,r}Si
64 else
65 if Blosum(RT,Rc)�thrbls and Sc�thr2
66 typek = III
67 scorek = Σi2{T,c,r}Si
68 else
69 typek = II
70 scorek ¼ 1P

i2fT;c;rg
Si

Category 6
71 else if RT6¼Rc and Rc = Rr
72 if ST�thr1 and Sc,Sr�thr2
73 typek = I
74 scorek = Σi2{T,c,r}Si
75 else if Blosum(RT,Rc)�thrbls
76 typek = I
77 scorek = Σi2{T,c,r}Si
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78 else
79 typek = II
80 scorek ¼ 1P

i2fT;c;rg
Si

ALGORITHM 2: COMPUTE WEIGHT FOR ALL POSITIONS OF TARGET SUBFAMILY “s”
Input: Types for each position k (k = 1,. . .,K), typek; initial score for
each position k of type t, scoret,k; number of type i positions, ni
where n1 þ n2 þ n3 þ n4 ¼ K; a predefined constant value as max weight of
Type i positions, ci; the target subfamily, S.
Weight of Type I positions

1 for p1 = 1:n1
2 weightp1

¼
score1;p1

minl¼1;...;n1
ðscore1;lÞ

c1

Weight of Type IV positions
3 for p2 = 1:n2
4 c2 ¼ meanðweightp1

Þp12f1;...;n1g

weightp2
¼

score2;p2
maxl¼1;...;n2

ðscore2;lÞ
c2

Weight of Type III positions
5 for p3 = 1:n3
6 weightp3

¼
score3;p3

maxl¼1;...;n3
ðscore3;lÞ

c3

Weight of Type II positions
7 for p4 = 1:n4
8 weightp4

¼
score4;p4

maxl¼1;...;n4
ðscore4;lÞ

c4

9 if S = = GPRC6A
weightp1 = weightp1*2

Subfamily specific position scores

From the alignment we used to make subfamily specific profile HMMs, we randomly selected

264 CaSR like sequences (same number of sequences as CaSRs) and took all CaSR (264 pro-

teins), GPRC6A (242 proteins) and TAS1Rs (TAS1R1 has 210, TAS1R2 has 173 and TAS1R3

has 273 proteins). We built an ML tree by using IQ-TREE multicore version 2.0.6 [74] with

automatic model selection [75] (-m MFP) and ultrafast bootstrap [76] (-bb 1000) parameters.

For CaSR, GPRC6A, and TAS1Rs, we removed the positions from the MSA that correspond to

a gap in the human receptor respectively. By using gap removed alignments and the ML tree,

we did ancestral sequence reconstructions for each subfamily with IQ-TREE multicore version

2.0.6 with the -m JTT+R10 model parameter [74]. We showed specific residues that have a

SDP score higher than 5 on the structures. We used the cyro-EM structure of CaSR

(PDB:7DTV) and Swiss models [77] for GPRC6A and taste receptors since they do not have

experimental structures. To visualize structures and residues, we used the UCSF Chimera tool

[78].

We calculated SDP scores by a method extended from [29] by considering phylogenetic

trees and a phylogeny-based scoring approach, adjPHACT, based on the methodology of the

PHACT algorithm. The details of how we compute the SDP score for any position k can be

found in Algorithm 3. PHACT examines the evolutionary history of proteins from the maxi-

mum likelihood phylogenetic tree and predicts the pathogenicity of a substitution. It uses ML

tree and probabilities of observing amino acids at the tree nodes from the ancestral sequence

reconstruction to determine the number of substitutions occurred through evolution. Addi-

tionally, it uses the branch lengths to assess the evolutionary closeness of species. PHACTcom-

putes the tolerance for each amino acid for the query species (human) through a tree traversal

approach. By checking the probability differences, PHACT detects the location of amino acid

substitutions and computes the weighted sum of positive probability differences based on the
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distance between the node of change and human. On the other hand, here we aim to deter-

mine the acceptability of each amino acid per subfamily. To achieve this, we modify PHACT

by starting the tree traversal from the root node and eliminating the node weighting approach.

At the end, we have a probability distribution per position for each subfamily, which is com-

puted by considering the independent events. Again, we determine the representative amino

acid for the target subfamily by picking the most frequently observed amino acid and its

adjPHACT score. For the remaining subfamilies, we keep the adjPHACT score of the repre-

sentative amino acid of the target and the representative amino acid of the corresponding sub-

family. Then, similar to [29] we check whether the same amino acid is conserved across all

subfamilies. On the other hand, our approach differs from [29] in terms of considering multi-

ple subfamilies and using adjPHACT scores, which employ phylogenetic trees and ancestral

reconstruction probabilities. In our approach, we compute the contribution of each subfamily

to the SDP score by checking whether the representative amino acid of target has a high

adjPHACT score in that subfamily (line 2–7). In the final SDP score for any position k is com-

puted by considering the distance between target and other subfamilies (which is computed by

considering the distance between root nodes), the conservation level of the target subfamily in

terms of independent amino acid alterations and the individual score coming from each sub-

family (line 10).

ALGORITHM 3: SDP SCORE FOR POSITION “k”
Input: Amino acid with the highest adjPHACT score in the target group,
aT; the adjPHACT score of aT in the target, PTaT; adjPHACT score of aT in
subfamily I (i = 1,. . .,n), PiaT; distance between target subfamily and
subfamily I, di; amino acid with the highest adjPHACT score in the sub-
family I, ai; adjPHACT score of ai in subfamily I, Piai.
1 for i = 1:n
2 Check whether the subfamily i is conserved
cons ¼ � ðPiai � 0:5Þ þ ðPiai > 0:5Þ

3 Specificity contribution of each subfamily Si = 0
4 if cons = = 1 and ai = = aT
5 Si ¼ � expðPiaT Þ
6 else if (cons = = −1 and ai = = aT) or ai 6¼aT
7 Si ¼ expð1Þ � expðPiaiÞ
8 end
9 The overall weight,
o ¼ 1 � maxi¼1;::;nðPiaT Þ.
10 The SDP score for position k,

SDP ¼ expðPTaT Þ þ o
Xn

i¼1

1

Di
Si

 ! !PTaT

Evolution of Class C GPCRs

We selected representative sequences from different taxonomic levels for each subfamily and

264 CaSR-like sequences. We aligned them with the MAFFT v7.221 einsi algorithm [68]. We

built the ML tree by RAxML-NG-0.9.0 with the model JTT and transfer bootstrap expecta-

tion–bs-metric fbp, tbe parameters [72]. We merged the ML trees of CaSR, GPRC6A and taste

receptors by checking clades using the ETE toolkit [70].
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Identification of the CaSR Activation Network

To reveal the network that is important for CaSR activation, we measured changes in contact

scores between residues between active and inactive receptor states. For a single protomer, we

manipulated the PDB files to represent each atom as a single residue and the modified the

RRCS algorithm [58] to process the manipulated PDB files, to be able to detect changes in

atom level for identical residues (python codes are provided). We applied a t-test to identify

significant changes and chose a p-value threshold of 0.01. Then we later combined atomic-

level changes observed within a protomer for each residue to build the activation network. If

atoms of a residue are involved in multiple significant changes, this is represented as multiple

edges in the network, even if the residue pair is the same.

For the analysis of interactions observed inside the dimerization interface, we used the

RRCS algorithm as is and compared residue-residue contact scores between residue pairs

upon activation. The important thing to note here is that for every dimer structure we used,

we sometimes retrieved two data points due to the symmetrical nature of the dimerization. We

again applied the same p-value threshold and identified the important changes observed.

In both of our analyses, we used same set of 7 active state (PDB IDs 7SIL[79], 7SIM[79],

7E6T[3], 7M3G[8], 7M3F[8], 7DTT[5], 7DTV[5]) and 5 inactive state structures (7SIN[9],

7E6U[3], 7M3E[8], 7M3J[8], 7DTW[5]) human CaSR structures.

Although we calculated adjusted p-values for both analyses, we chose not to use them in

this study. This decision was made because filtering based on adjusted p-values significantly

reduced the number of residues we could cover. Given the exploratory nature of our research,

we decided to proceed with regular p-values.

Machine learning

XGBoost is a scalable end-to-end tree boosting system where it adds a new tree to correct the

prediction errors made by previous trees. It uses a gradient descent algorithm to minimize the

loss when adding new models and it can be used for both regression and classification

problems.

Dataset and feature preparation

To predict the consequence of a substitution in human CaSR, we used a gradient boosting-

based machine learning algorithm, XGBoost [35]. We used the XGBoost library for R [80] to

train our model. We selected a total of 337 LoF and GoF mutations from the literature [2] to

train our model. Since we used conservation scores as features to train our model, we divided

subfamily alignments and mutations randomly as 80% training and the remaining 20% test

data before creating feature matrices to prevent information leakage. 25% of the training data

was randomly picked as the validation data five times for cross-validation. For each dataset

split we used the sklearn train test split model with stratify option to keep the LoF to GoF ratio

almost the same in the datasets [81]. We calculated the conservation score of the reference

amino acid and the substituted amino acid in human CaSR in each subfamily. The reference

and the substituted amino acids were represented by BLOSUM62-encoded matrices. Amino

acid physico-chemical feature values, including Zimmerman polarity for distribution of polar

and nonpolar residues [82], average flexibility indicating structural dynamics tendency [83],

Dayhoff for substitution frequency in evolution [84], average buried area as a protein compact-

ness indicator [85], Doolittle hydropathicity for hydrophobicity characterization [86], atomic

weight ratio for elemental composition [87], molecular weight for total mass, and bulkiness

indicating spatial size from the ProtScale database [88]; and domain information of the refer-

ence amino acid were used as other features.
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We normalized the physico-chemical feature values such as hydrophobicity, charge, and

size prior to model training. This normalization involved scaling feature values to have a mean

of zero and a standard deviation of one to ensure that all features contribute equally to the

model, preventing features with larger numerical ranges from disproportionately influencing

the model. We calculated the mean and standard deviation for each feature in the training data

and used these statistics to scale the corresponding feature values in both the training and test

datasets. For the training data, we calculated the mean and standard deviation for each feature.

For example, Zimmermann polarity values range from 51.600 for histidine to 0.30 for leucine.

We normalized them using the mean and standard deviation of the training data. Similarly,

other features such as average flexibility, Dayhoff substitution frequencies, average buried area,

Doolittle hydropathicity, atomic weight ratio, molecular weight, and bulkiness were scaled to

match the same criteria. For the test data, we applied the mean and standard deviation derived

from the training data to ensure consistency and prevent data leakage. This process ensured

that all feature values were on a comparable scale, improving the robustness and accuracy of

the model. We repeated the whole random dataset splitting and feature preparation procedure

50 times to obtain more robust results.

Model Selection and parameter tuning

We picked the model parameters for each replication by applying a 5-fold cross-validation

technique to the training set. We tuned the model parameters step-by-step using the same vali-

dation sets for each parameter to decrease the time complexity. We used the following order of

model parameters, so that the parameter that has the highest impact on model outcome was

tuned first: Eta and nrounds, gamma, maxdepth, subsample, colsample bytree, min child

weight, lambda, alpha. We selected the maxdepth as 2, the minimum maxdepth value to pre-

vent overfitting. We chose eta, gamma, colsample bytree, subsample, min child weight from

the sets 0.00001,0.00002,. . ., 0.001,0,0.1,0.2,. . .,0.5, 0.5,0.55,. . .,1, 0.5,0.55,. . .,1, 1,2,. . .,6 respec-

tively. We selected regularization parameters lambda and alpha from the set 0, 1e-4, 1e-3, 1e-2,

1e-1, 1, 10, 100. We set the nrounds parameter to 200.

Performance metrics

We used the area under the receiver operating characteristic curve (AUROC) and the area

under the precision-recall curve (AUPR) to evaluate the performance of our prediction model.

AUROC and AUPR are performance measures that are widely used to evaluate the perfor-

mance of binary classification problems. The higher the AUROC and AUPR, the better the

model distinguishes classes. To understand how our model makes predictions, we used SHAP

(SHapley Additive exPlanations) values. Shap values give an estimate of how much feature

contributed to the prediction of the model made [89]. We calculated SHAP values for our final

model trained by all samples by the using R shapviz package [90].

Predictive performance

After we evaluated the performance of our machine learning algorithm over 50 replications,

we used the whole dataset to train the model that we used to make predictions for every possi-

ble mutation in human CaSR. We selected model parameters by using the 5-fold cross-valida-

tion technique on the whole dataset. To create a new test dataset, we took subfamily

alignments of the species from the new Uniprot dataset that did not exist in the training data.

We eliminated amino acids that are observed in the CaSR alignment as neutral. In each posi-

tion, we predicted the GoF or LoF class for any substitution. We did a literature search to find
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clinical cases that cause either GoF or LoF mutations and not seen in our model. We reported

our predictions in the Table 2.

Supporting information

S1 Fig. Heatmap Comparing Classification Metrics of Different Mutation Prediction Mod-

els. The performance of three prediction models—Our Model, LoGoFunc, and AlphaMissense

—across four key metrics: Accuracy, Precision, Recall, and F1 Score are shown. The values are

color-coded, with darker shades indicating higher performance. Our Model demonstrates

superior performance in all metrics compared to the other tools, highlighting its enhanced pre-

dictive capability for classifying CASR gene mutations.

(TIF)

S2 Fig. Subfamily Specific Profile HMM Emission Weights. We considered different types

to weight emission probabilities of profile HMMs.

(PDF)

S1 Table. Comparison of accuracy and F1 score between tools.

(PDF)

S2 Table. Predictions for all possible substitutions of Calcium-Sensing Receptor.

(CSV)

S3 Table. Predictions for the 922 reported missense mutations in GnomAD by our tool,

Alphamissense and LoGoFunc.

(CSV)
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