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Abstract

The metabolic network of an organism can be analyzed as a constraint-based model. This

analysis can be biased, optimizing an objective such as growth rate, or unbiased, aiming to

describe the full feasible space of metabolic fluxes through pathway analysis or random flux

sampling. In particular, pathway analysis can decompose the flux space into fundamental

and formally defined metabolic pathways. Unbiased methods scale poorly with network size

due to combinatorial explosion, but a promising approach to improve scalability is to focus

on metabolic subnetworks, e.g., cells’ metabolite exchanges with each other and the envi-

ronment, rather than the full metabolic networks. Here, we applied pathway enumeration

and flux sampling to metabolite exchanges in microbial species and a microbial community,

using models ranging from central carbon metabolism to genome-scale and focusing on

pathway definitions that allow direct targeting of subnetworks such as metabolite exchanges

(elementary conversion modes, elementary flux patterns, and minimal pathways). Enumer-

ating growth-supporting metabolite exchanges, we found that metabolite exchanges from

different pathway definitions were related through a hierarchy, and we show that this hierar-

chical relationship between pathways holds for metabolic networks and subnetworks more

generally. Metabolite exchange frequencies, defined as the fraction of pathways in which

each metabolite was exchanged, were similar across pathway definitions, with a few specific

exchanges explaining large differences in pathway counts. This indicates that biological

interpretation of predicted metabolite exchanges is robust to the choice of pathway defini-

tion, and it suggests strategies for more scalable pathway analysis. Our results also signal

wider biological implications, facilitating detailed and interpretable analysis of metabolite

exchanges and other subnetworks in fields such as metabolic engineering and synthetic

biology.

Author summary

Pathway analysis of constraint-based metabolic models makes it possible to disentangle

metabolism into formally defined metabolic pathways. A promising but underexplored
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application of pathway analysis is to analyze exchanges of metabolites between cells and

their environment, which could also help overcome computational challenges and allow

scaling to larger systems. Here, we used four different pathway definitions to enumerate

combinations of metabolite exchanges that support growth in models of microbial species

and a microbial community. We found that metabolite exchanges from different pathway

definitions were related to each other through a previously unknown hierarchy, and we

show that this hierarchical relationship between pathways holds more generally. More-

over, the fraction of pathways in which each metabolite was exchanged turned out to be

remarkably consistent across pathway definitions despite large differences in pathway

counts. In summary, our work shows how pathway definitions and their metabolite

exchange predictions are related to each other, and it facilitates scalable and interpretable

pathway analysis with applications in fields such as metabolic engineering.

Introduction

Metabolic pathways are combinations of biochemical reactions that occur in a cell or organ-

ism, and the interplay between pathways forms the cell or organism’s metabolic network [1].

The growing availability of genomes and other omics data has enabled metabolic network

reconstruction in silico, giving rise to genome-scale metabolic models (GEMs) that are usually

formulated as constraint-based models (CBMs) to allow scaling [2, 3]. A CBM describes a met-

abolic network with m metabolites and n reactions as an m × n stoichiometric matrix in which

each element is the stoichiometric coefficient of a metabolite in a reaction. By making the

quasi-steady-state assumption, justified by the fact that metabolism is very fast compared to

other biological processes [4], the mass balances of the metabolites can be written as

Nr ¼ 0; ð1Þ

where N is the stoichiometric matrix, and r is the vector of fluxes (reaction rates). Solving for r

yields a flux vector that satisfies this linear system of equations, i.e., a feasible combination of

reaction rates at steady state.

There are infinitely many flux vectors that satisfy Eq 1 and thus form the null space of N.

However, some of these solutions are not realistic because of physical, chemical, or environ-

mental limitations. This can be taken into account by additional linear constraints, most com-

monly lower and upper bounds on fluxes:

rlbi � ri � rubi ; ð2Þ

where rlbi and rubi are the lower and upper flux bounds of reaction i, respectively. Geometrically,

these bounds are hyperplanes that eliminate infeasible solutions by slicing the feasible flux

space. In the simplest case, bounds are only applied to irreversible reactions to ensure flux in

one direction, i.e., rlbi ¼ 0 or rubi ¼ 0. These constraints are homogeneous, meaning that the

right-hand-side is always zero. They slice the null space to a cone that can be further sliced to a

more general polyhedron by adding non-zero bounds, i.e., rlbi � rubi 6¼ 0 or rubi � rlbi 6¼ 0, or

other inhomogeneous constraints [5].

The feasible flux space of a CBM (Fig 1) can be analyzed by biased or unbiased methods [6].

Biased methods such as flux balance analysis (FBA) focus on specific flux vectors that optimize

an assumed cellular objective [7]. For microbes, it can be reasonable to assume that the objec-

tive of a cell is to grow as fast as possible, i.e., to maximize growth rate as modeled by a biomass
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reaction, but this assumption does not hold for all conditions or cells [8]. Unbiased methods

avoid such assumptions by characterizing the entire solution space through random flux sam-

pling [9] or pathway analysis [10]. In flux sampling, Monte Carlo methods are used to draw

random solutions uniformly from the feasible flux space, and the resulting samples provide

flux probability distributions [11]. Pathway analysis generally involves enumeration of for-

mally defined metabolic pathways, e.g., elementary flux modes (EFMs) or elementary flux vec-

tors (EFVs), which are the minimal conformal generators of the flux cone and flux

polyhedron, respectively [5]. This means that EFMs and EFVs are sets of vectors that can com-

bine into all possible flux routes through a network without cancellation of fluxes. Biased

methods scale to GEMs and combinations thereof, but unbiased methods are often limited to

smaller CBMs due to combinatorial explosion: both the number of samples needed to uni-

formly cover the flux space and the number of pathways increase combinatorially with net-

work size [12].

Fig 1. Comparison of pathways for an example metabolic network. (A) Network with five internal reactions (r1–r5), three boundary reactions (b1–

b3), and five metabolites (A–D and BM). Two A are needed to produce one C in r1. The external metabolites A, B, and BM are imported or exported by

their respective boundary reactions. BM represents biomass and the flux of its boundary reaction is the growth rate. (B) The elementary conversion

modes (ECMs), elementary flux patterns (EFPs), and minimal pathways (MPs) of the network. ECMs include stoichiometry, while EFPs and MPs are

given as flux patterns (− and + representing import and export, respectively). (C) The conversion cone of the network with ECMs, EFPs, and MPs

represented as rays. The ECMs generate the cone without cancellations and the EFPs and MPs correspond to the flux patterns of the ECMs. The cone is

unbounded in the direction of increasing import of A and bounded by the extreme rays, ECM1 = EFP1 and ECM3 = EFP3 (red). The last ray,

ECM2 = EFP2 = MP1 (blue), is the only one that corresponds to an MP because it is the only minimal set of metabolite exchanges required to produce

biomass. (D) Venn diagram comparing flux pattern representations of ECMs, EFPs, and MPs. The ECMs and EFPs overlap completely in this example,

but this is not true in general.

https://doi.org/10.1371/journal.pcbi.1012472.g001
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Uniform random flux sampling has become feasible for GEMs in recent years [13], but to

scale pathway analysis it is necessary to focus on a subset of pathways or a subnetwork of the

full metabolic network [14]. For example, elementary flux patterns (EFPs) have been defined

as unique sign patterns (+/−) of EFMs from a full network that pass through a subnetwork,

specifically the patterns that cannot be generated from other patterns without cancellations

[15]. Many biological questions are primarily concerned with organisms’ interactions with

each other or their environment [16], and in these cases one can ignore internal reactions

entirely to focus on the subnetwork of boundary reactions that allow metabolite exchange.

This is the motivation for elementary conversion modes (ECMs): net metabolite conversions

that, analogously to EFVs, are the minimal set of conformal generators of a conversion cone

[17, 18]. Like EFPs, ECMs can be generalized to arbitrary subnetworks. In this case, the ECMs

are equivalent to projected cone elementary modes (ProCEMs), a subset of which has been

shown to correspond to EFPs [19]. We will refer to these pathways as ECMs, also for general

subnetworks. Both EFPs and ECMs are currently limited to homogeneous constraints, but

minimal pathways (MPs), defined as minimal sets of reactions in a subnetwork that must have

non-zero flux to satisfy all constraints on the full network, allow arbitrary subnetworks and

constraints [20]. ECMs, EFPs, and MPs can be compared as flux patterns, which, when applied

to boundary reactions, represent net metabolite conversions (Fig 1).

Metabolic pathway analysis has long been used to gain new knowledge about biological net-

works, in particular in fields such as metabolic engineering and synthetic biology. The possibil-

ity of enumerating all the distinct modes in which a metabolic network can operate makes

pathway analysis very useful for exploring the capabilities of a cell as a whole. For example, one

can identify all possible routes a cell can use to convert substrates into products, which, in

turn, allows design of knock-out strategies for selection of routes that couple growth to pro-

duction with high productivity or yield [21, 22]. Enumerated pathways also directly reveal

essential reactions, which must always have non-zero flux, and blocked reactions, which can

never have non-zero flux, as well as couplings between reactions [5]. Reactions that are neither

essential nor blocked can be ranked and correlated by their relative importance for growth or

other network functionalities [20]. Enumerated pathways can also be used for dynamic model-

ing and optimization of cell factories, e.g., in hybrid cybernetic models that simulate biomass

and metabolite dynamics by distributing resources optimally among pathways [23, 24]. Path-

way definitions that allow direct targeting of metabolic subnetworks are particularly useful for

applications in synthetic biology, where small pathway modules are typically studied in the

context of global metabolism [25]. Subnetwork-based methods are also well-suited for analyz-

ing multicellular systems such as microbial communities: by focusing on metabolite

exchanges, one can study interactions between cells and design communities. However, few

studies to date have applied pathway analysis to multicellular systems, likely because of scal-

ability issues [26].

Although several unbiased methods suitable for analysis of metabolite exchanges are avail-

able, it remains unclear how they relate to each other in terms of prediction and biological

interpretation of metabolite exchanges. To address this, we enumerated ECMs, EFPs, and MPs

in metabolic models ranging in scope from cells to communities and in size from core models

to GEMs. Focusing on flux patterns that support growth, we found that the MPs were always a

subset of the EFPs, which in turn were always a subset of the ECMs. We also enumerated

EFMs for all core models and found that the ECMs were always a subset of the subnetwork

flux patterns from EFMs. Moreover, metabolite exchange frequencies, i.e., the fraction of enu-

merated pathways that included exchange of each metabolite, were mostly stable across path-

way definitions, showing that the same biological conclusions can be drawn from different

methods. Flux sampling scaled to all analyzed models and complemented pathways with flux
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probabilities, particularly by sampling individually for each enumerated pathway. Overall, our

results allow unbiased methods to be understood in conjunction with each other, which should

enable users to choose the most appropriate approach for their questions.

Results

Metabolite exchanges in microbial species

We first applied pathway enumeration to an E. coli core model (e_coli_core) [27] with 95 reac-

tions, 20 of which were boundary reactions, and an H. pylori GEM (iIT341) [28] with 554 reac-

tions, 77 of which were boundary reactions (Fig 2). For e_coli_core, we enumerated 100,274

EFMs for the full network, from which we obtained 1,004 unique flux patterns in the subnet-

work of boundary reactions. From these patterns, 738 of which were growth-supporting, we

extracted 118 EFPs, 63 of which were growth-supporting. We also enumerated 689 ECMs, cor-

responding to 346 growth-supporting patterns, and 34 MPs, all of which were growth-support-

ing patterns by definition. The computation time for enumeration was 47 s for EFMs, 8 s for

ECMs, and 2 s for MPs (S1 Fig). As demonstrated previously [19], we found that it was possible

to extract the same 118 EFPs from the ECMs as from the EFMs. EFM enumeration was infeasi-

ble for iIT341 with the computational power available to us, but we enumerated 874,236

ECMs, 125,020 of which were unique and growth-supporting, as well as 1,304 MPs. ECM and

MP enumeration took about 1h 9 min and 3 min, respectively (S1 Fig). Based on our observa-

tions from e_coli_core, we used the ECMs to extract 16,573 EFPs, 5,878 of which were growth-

supporting. Thus, we consistently found more ECMs than EFPs and more EFPs than MPs.

Enumerated pathways included the same metabolites across pathway definitions (16 for

Fig 2. Number of reactions and pathways for microbial species. (A) Number of reactions and boundary reactions in

e_coli_core and iIT341. (B) and (C) Number of pathways for e_coli_core. (D) and (E) Number of pathways for iIT341.

From the full set of enumerated pathways, we extracted the unique patterns of metabolite exchanges. From these

patterns, we extracted the unique patterns with growth (positive flux for the biomass reaction).

https://doi.org/10.1371/journal.pcbi.1012472.g002
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e_coli_core and 45 for iIT341) in uptake and secretion combinations that were generally as

expected for growing bacteria (S2 Fig).

Comparing pathway lengths, i.e., the number of reactions participating in each unique

growth-supporting pattern, we found that the number of shortest pathways was always the

same for all pathway definitions, which led us to compare all pairs of patterns by intersecting

them with each other (Fig 3). Indeed, the shortest pathways were identical to each other across

definitions. More surprisingly, we found that the ECMs were a superset of the EFPs, which in

turn were a superset of the MPs. Specifically, the MPs were equal to the EFPs and ECMs that

were support-minimal, i.e., that only included metabolite exchanges required to support

growth. Counting the number of MPs that were a subset of each of the other pathways, we

found a decreasing trend from one to 11 MP subsets. For ECMs, this trend was consistent

between e_coli_core and iIT341 despite the latter model being nearly six times larger than the

former with four times as many boundary reactions. Also, all e_coli_core and iIT341 EFPs had

exactly one MP subset each. In contrast to this, the number of EFMs and ECMs that were

supersets of other pathways ranged from one to about 200 EFMs for e_coli_core and from one

to more than 4,300 ECMs for iIT341. Again, we found a trend: for both models, the average

number of supersets decreased from EFMs to ECMs to EFPs to MPs. All subset counts as well

as EFM and ECM superset counts correlated positively with each other and with pathway

length, while superset counts correlated negatively with pathway length for other pathway defi-

nitions (S3 and S4 Figs).

For each exchanged metabolite, we computed the frequency of uptake and secretion in all

enumerated pathways as well as differences in frequency between pathway definitions (Fig 4).

In both e_coli_core and iIT341, a core set of metabolite exchanges was included in all path-

ways, and thus essential, while most metabolites were only exchanged in one or a few path-

ways. In general, both individual and pairwise exchange frequencies were consistent across

pathway definitions (S5 and S6 Figs). However, the frequencies of some metabolite exchanges

differed by more than 10 percentage points between pathway definitions. For e_coli_core,

Fig 3. Comparison of pathways for microbial species. (A)–(D) Comparison of pathways for e_coli_core. (E)–(H) Comparison of pathways for iIT341.

(A) and (E) Distribution of pathway lengths. Bars are stacked on top of each other. The insets show the shortest pathways. (B) and (F) Venn diagrams of

pathways. Number of unique growth-supporting patterns and percent of the total number of patterns are shown. (C) and (G) Distribution of the

number of MPs that are a subset of each of the other pathway definitions. Bars are layered behind each other. (D) and (H) Distribution of the number of

EFMs or ECMs that are supersets of each of the other pathway definitions. Bars are layered behind each other.

https://doi.org/10.1371/journal.pcbi.1012472.g003
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uptake of oxygen and CO2 and secretion of succinate, CO2, 2-oxoglutarate, and glutamate

were overrepresented in ECMs relative to MPs. Uptake of CO2 was also overrepresented in

EFPs relative to MPs, while secretion of succinate was underrepresented. Comparing ECMs

and MPs for iIT341, uptake of glucose and H+ and secretion of urea, carbonic acid (H2CO3),

CO2, threonine, lysine, ethanol, acetate, and water were overrepresented in ECMs, while secre-

tion of ammonium and fumarate were underrepresented. Glucose uptake and carbonic acid

secretion were overrepresented in EFPs relative to MPs, while ammonium and fumarate secre-

tion were underrepresented.

Applying random flux sampling to boundary reactions in e_coli_core and iIT341, we

obtained probability distributions over metabolite exchange fluxes that were consistent

between two different samplers (S7–S10 Figs). These probability distributions gave an over-

view of the growth-supporting flux space, but they could not be directly decomposed to the

elementary metabolite conversions provided by pathways. Notably, for e_coli_core, none of

the 100,000 samples included CO2 uptake, which was feasible in the model and part of several

pathways. By sampling fluxes separately for each of the 34 e_coli_core MPs, we found that

CO2 uptake fluxes were indeed accessible for samplers and that sampling could complement

pathway analysis by allowing detailed analysis of individual pathways’ flux spaces (S11 Fig).

Metabolite exchanges in a microbial community

To investigate intermicrobial metabolite exchange in a phototrophic mat community during

daylight, we built a microbial community model with 132 reactions, 15 of which were bound-

ary reactions, by connecting core models of three individual microbes to each other:

Fig 4. Metabolite exchange frequencies for microbial species. (A) Metabolite exchange frequency (f), i.e. the fraction

of enumerated pathways that included exchange of each metabolite, for e_coli_core. A frequency of zero means a

metabolite is never exchanged, while a frequency of one means it is always exchanged. (B) Differences in metabolite

exchange frequencies between ECMs and MPs (fECM − fMP) and between EFPs and MPs (fEFP − fECM) for e_coli_core.

(C) Metabolite exchange frequency (f) in ECMs, EFPs, and MPs for iIT341. (D) Differences in metabolite exchange

frequencies between ECMs and MPs (fECM − fMP) and between EFPs and MPs (fEFP − fECM) for iIT341.

https://doi.org/10.1371/journal.pcbi.1012472.g004
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Synechococcus spp. (syn) with 37 reactions (8 boundary), a filamentous anoxygenic phototroph

(fap) with 47 reactions (10 boundary), and a sulfate-reducing bacterium (srb) with 44 reactions

(11 boundary) [26]. We enumerated pathways for the individual models and the community

model (Fig 5). Computation times for enumeration ranged from 0.006 s to 4.5 s for the indi-

vidual models, while enumeration of the community model took 3 min 4 s for EFMs, 2 min 30

s for ECMs, and 0.4 s for MPs (S1 Fig). Pathway counts consistently decreased from fap to srb

to syn, and from EFMs to ECMs to EFPs to MPs. We also saw a consistent decrease in counts

for the community model pathways, which included both intermicrobial and environmental

metabolite exchanges. All pathways included the same metabolites in expected uptake and

secretion combinations [26] with the exception of the fap EFMs and ECMs, which included

two metabolite exchanges that were not part of any EFPs or MPs (S12 Fig).

Comparing ECMs, EFPs, and MPs, we found that pathways from the individual models

were shorter than the community model pathways, and that pathways were sub- and supersets

of each other as we saw for microbial species (Fig 6). Also in line with results from microbial

species, we found MP subset counts decreasing from one to 12, EFM superset counts ranging

from one to 135, and EFM superset counts decreasing, on average, from EFMs to ECMs to

EFPs to MPs. We found positive correlation between subset counts for all pathways and

between superset counts for EFMs and ECMs, and pathway length correlated positively with

subset counts but negatively with superset counts (S13 and S14 Figs).

In both the individual models and the community model, we found a core set of essential

metabolite exchanges as well as similar metabolite exchange frequencies across all pathways

(Fig 7, S15 and S16 Figs). For the individual models, uptake of acetate, light, and CO2 by fap

and secretion of CO2 by srb were more frequent in ECMs than in MPs. Uptake of light, glyco-

late, and acetate by fap were overrepresented in EFPs relative to MPs, while uptake of oxygen

Fig 5. Number of reactions and pathways for a microbial community. (A) Number of reactions and boundary

reactions in individual and community models. (B) Number of enumerated pathways in individual models (unique

patterns with growth). (C) Number of enumerated pathways in community model (unique patterns with growth).

https://doi.org/10.1371/journal.pcbi.1012472.g005

PLOS COMPUTATIONAL BIOLOGY A hierarchy of metabolite exchanges

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012472 September 26, 2024 8 / 21

https://doi.org/10.1371/journal.pcbi.1012472.g005
https://doi.org/10.1371/journal.pcbi.1012472


by fap was underrepresented. For the community model, uptake of acetate by fap and srb,

secretion of acetate by syn, uptake of light by fap, and uptake of H2 from the environment

were overrepresented in ECMs compared to MPs. Uptake of H2 by fap and from the environ-

ment were overrepresented in EFPs relative to MPs, while CO2 secretion by fap was underrep-

resented. As observed for environmental metabolite exchanges in microbial species, the

frequencies of intermicrobial metabolic interactions were consistent between pathway defini-

tions. All pathway definitions agreed on all of the following metabolite exchanges: acetate and

ammonia from syn to fap and to srb, CO2 from fap to srb and to syn, CO2 from srb to fap and

to syn, glycolate from syn to fap, H2 from fap to srb, H2 from srb to fap, and oxygen from syn

to fap.

Random flux sampling of the individual and community models produced probability dis-

tributions over environmental and intermicrobial metabolite exchange fluxes (S17 and S18

Figs). This showed that some metabolite exchanges were constrained to narrow flux ranges,

especially in the community model, while others were free to vary across several orders of mag-

nitude. The flux probability distributions tended to be wider in the individual models than in

the community model. For example, ammonia production and secretion fluxes were uni-

formly distributed across the feasible flux range in the individual syn model, but constrained

to a narrow range of small fluxes in the community model.

A general hierarchical relationship between pathway definitions

The hierarchical relationship between pathway definitions that we found for microbial metab-

olite exchanges generalizes to arbitrary metabolic networks and subnetworks. To show this, we

Fig 6. Comparison of pathways for a microbial community. (A) Distribution of pathway lengths for individual and

community models. Bars are stacked on top of each other. Venn diagrams of pathways are shown with number of

unique growth-supporting patterns and percent of the total number of patterns. (B) Distribution of the number of MPs

that are subsets of each of the other pathway definitions for individual and community models. Bars are layered behind

each other. (C) Distribution of the number of EFMs that are supersets of each of the other pathway definitions for

individual and community models. Bars are layered behind each other.

https://doi.org/10.1371/journal.pcbi.1012472.g006
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start from a metabolic network N with m metabolites and n reactions, here represented as the

set of n reaction indices:

N ¼ f1; 2; . . . ; ng: ð3Þ

Any metabolic network can be formulated such that all reactions are irreversible with positive

flux [29], and we assume that this is the case for N. We also define a subnetwork of the meta-

bolic network, S� N.

The stoichiometric matrix of N is N 2 Rm�n
, constrained by the m metabolite mass balances

from Eq 1 and the n flux bounds from Eq 2 with all fluxes required to be positive. Considering

only these homogeneous constraints, which are sufficient for our purposes, the feasible flux

space of N is an n-dimensional flux cone [30],

C ¼ fr 2 Rn
j Nr ¼ 0 and r � 0g; ð4Þ

where r is a flux vector. The flux space of the subnetwork S, taking all constraints on N into

account, is the projection of C onto the reactions in S [17, 19]. Any linear subspace, such as the

flux space of N or its projection onto S, is generated without cancellations by a unique minimal

set of elementary vectors [31], EFVs in the case of flux spaces [5].

EFMs and ECMs are special cases of EFVs: EFMs can be defined as the elementary vectors

of a flux cone [5], and ECMs can be defined as the elementary vectors of the projection of a

flux cone onto a subnetwork [17]. Specifically, the EFMs are the EFVs that generate C, and the

ECMs are the EFVs that generate the projection of C onto S. It has been shown that any set of

conformal generators of a flux space, i.e., vectors that generate a flux space without

Fig 7. Metabolite exchange frequencies for a microbial community. (A) Metabolite exchange frequency (f), i.e., the fraction of enumerated pathways

that included exchange of each metabolite, in pathways for individual and community models. A frequency of zero means a metabolite is never

exchanged, while a frequency of one means it is always exchanged. (B)–(C) Differences in metabolite exchange frequencies between ECMs and MPs

(fECM − fMP) and between EFPs and MPs (fEFP − fMP) for individual and community models. (D)–(G) Metabolic interactions from (D) EFMs, (E)

ECMs, (F) EFPs, and (G) MPs. Rows are producer-consumer pairs, columns are metabolites, and each cell shows a metabolite exchange frequency.

https://doi.org/10.1371/journal.pcbi.1012472.g007
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cancellations, is a superset of the elementary vectors of that space [32]. Since the EFMs gener-

ate C, the parts of the EFMs that are in S generate the projection of C onto S [19]. It follows

that the parts of EFMs that are in S are a superset of the ECMs of S.

Next, we define a flux pattern as the vector obtained by taking the sign of each element in a

flux vector. When all fluxes are required to be positive, this is equivalent to the set of fluxes

that are non-zero in the flux vector, i.e., the support of the flux vector. We denote the set of

unique flux patterns in S obtained from EFMs, ECMs, EFPs, or MPs as PEFM, PECM, PEFP, or

PMP, respectively. As already shown, the ECMs of S are a subset of the parts of the EFMs that

are in S, implying that PECM� PEFM. EFPs and MPs are not defined as flux vectors in N or S,

only as flux patterns in S. The EFPs of S are the flux patterns of EFMs from N that correspond

to reactions in S, but only those patterns that cannot be built from other patterns without can-

cellations. The MPs are sets of reactions in S that all need to have non-zero flux to satisfy all

constraints on N, i.e., the support-minimal flux patterns.

The ECM flux patterns of S must include all flux patterns that cannot be built from others

without cancellation, i.e., the EFPs of S. The reason for this is that they correspond to feasible

flux vectors in the subnetwork flux space that the ECMs are required to generate by definition

[17, 19]. The flux patterns of ECMs can include patterns that cannot be built from others with-

out cancellation and therefore are not EFPs. However, it is also possible that none of the ECM

flux patterns of S can be built from others without cancellation (see example in Fig 1), and in

this case the ECM flux patterns are equal to the EFPs. It follows that PEFP� PECM in general.

Finally, all pathway definitions must include the support-minimal flux patterns of S, i.e., the

MPs of S. These patterns also correspond to EFMs, ECMs, and EFPs, because neither the pat-

terns nor their corresponding flux vectors can be built from other EFMs, ECMs, or EFPs with-

out cancellation. If all EFPs are support-minimal, the EFPs are equal to the MPs, but EFPs are

not required to be support-minimal in general. Thus, PMP� PEFP. In summary, we have

shown that

PMP � PEFP � PECM � PEFM; ð5Þ

i.e., that the flux patterns of pathway definitions are related through a hierarchy for arbitrary

metabolic networks and subnetworks. If the EFMs, ECMs, EFPs, and MPs in S are all support-

minimal, PMP = PEFP = PECM = PEFM (see example in Fig 5).

The hierarchical relationship between pathways in Eq 5 also holds for subsets of pathways

that include specific target reactions, e.g., growth as represented by a biomass reaction. The

EFMs that include the target reactions will generate the subspace of C where the fluxes of the

target reactions are non-zero, and this subspace can be projected onto S just as C can [17, 19].

This projection of the subspace must then be generated by the subset of ECMs that include the

target reactions, and the EFPs that include the target reactions must be a subset of these ECMs

since the full set of EFPs is a subset of the full set of ECMs. The MPs that include growth must

also correspond to the support-minimal growth-supporting flux patterns of EFMs, ECMs, and

EFPs.

Discussion

We have shown that pathway definitions are related through the hierarchical relationship in

Eq 5, both for metabolic networks and subnetworks in general and specifically for growth-sup-

porting metabolite exchanges in models of microbial species and communities. To achieve

this, we relied on the definitions of EFMs and ECMs as elementary vectors of the flux cone

and its projection onto a subnetwork, respectively, as well as an existing proof that any set of

conformal generators of a flux space are a superset of its elementary vectors [32]. Comparing
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enumerated pathways as flux patterns, we always found that the EFMs were a superset of the

ECMs, which were a superset of the EFPs, which were a superset of the MPs. Distributions of

pathway counts, pathway lengths, and degree of overlap between pathways consistently

reflected this hierarchy, which holds as long as pathways are enumerated under exactly the

same conditions, i.e., with equivalent networks, subnetworks, and constraints.

Knowing about the pathway hierarchy makes it easier to interpret enumerated pathways in

terms of biology. Notably, all pathway definitions except MPs allow reactions that are not

strictly necessary for network functionality to be included in pathways, meaning, for example,

that metabolite uptakes or secretions that are not needed for growth can be found in ECMs,

EFPs, and EFMs. These exchanges correspond to flux distributions that are non-minimal but

feasible, which is in line with observed bacterial secretion of valuable compounds, e.g., in over-

flow metabolism [33]. Non-minimal pathways may capture the fact that cells likely need to bal-

ance multiple objectives, none of which are perfectly optimized, while maintaining flexibility

to respond to perturbations [34]. In general, the pathway hierarchy can help decompose meta-

bolic activities and rank reactions by their contribution to network functionalities.

Pathways found by different methods generally included the same metabolites in similar

combinations of uptake and secretion despite large differences in the total number of pathways

enumerated. This is illustrated by the distributions of subsets and supersets, which display an

increasing degree of overlap with other pathways the more pathways are enumerated. On aver-

age, the number of MP subsets increased while the number of EFM or ECM supersets

decreased with the number of enumerated pathways. We interpret a pathway’s subset counts

as the number of other pathways that are needed to summarize it, and its superset counts as

the number of other pathways it summarizes. Superset counts were orders of magnitude larger

and grew faster with model size than subset counts, which were very well-preserved between

models differing in size and structure. The number of EFMs and ECMs grew rapidly with

model size, but the many additional pathways tended to summarize few EFPs and MPs. Con-

versely, EFPs and MPs tended to summarize many of the additional EFMs and ECMs. EFPs

always had exactly one MP subset and vice versa, indicating that EFPs and MPs are closely

related to each other. Specifically, the EFPs consist of the support-minimal pathways that are

shared by all pathway definitions, i.e., the MPs, plus a minimal number of additional pathways

with non-minimal supports that are needed to construct all EFMs and ECMs.

Further similarities between pathway definitions can be noted in the individual and pair-

wise frequencies of metabolite exchanges, which were highly conserved within each model.

This shows that different pathway enumeration methods can provide similar predictions of

network capabilities and thus allow consistent biological interpretation. In line with this, large

differences in pathway counts between methods were explained by small sets of overrepre-

sented metabolites. For example, most of the 123,717 ECMs from iIT341 that were not MPs

were accounted for by 11 metabolite uptakes and secretions that were not strictly required for

growth. Notably, glucose uptake was about 60 percentage points more frequent in ECMs than

in MPs, reflecting the fact that H. pylori can synthesize pyruvate from other sources than glu-

cose such as alanine [35]. As MPs are the only pathways required to be support-minimal, they

omit metabolites that are not essential for each pathway, explaining why glucose was not fre-

quently featured in MPs compared to ECMs and EFPs. Conversely, secretion of ammonium

was more frequent in MPs than in ECMs and EFPs because pathway length is minimized by

breaking down as many nitrogenous waste products as possible to ammonium instead of

secreting compounds such as urea, threonine, or lysine.

Our results from microbial species also held for microbial communities, which have

become a recent focus in constraint-based modeling [36]. In these models, one is often espe-

cially interested in analyzing interactions between species and therefore focus on extracellular
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activities, providing a natural application for metabolite exchange enumeration. However,

microbial community models also differ from models of microbial species in terms of both

size and strucure: they consist of multiple single-species models that are combined into the

same model and connected through their exchange reactions. This means that the single-spe-

cies exchange reactions become internal exchange reactions in the microbial community

model, which also includes its own external exchange reactions that allow metabolite exchange

with the environment. Despite this, we found that distributions of pathway counts, pathway

lengths, and degree of overlap between pathways for internal and external exchanges in the

community model were very similar to those we saw for external exchanges in the single-spe-

cies models. We also found the same hierarchy of pathways from EFMs to ECMs to EFPs to

MPs. Thus, we found that all pathway definitions included in this study could be applied to a

subnetwork that contained both external and internal exchange reactions.

Random flux sampling provides flux probability distributions for metabolite exchanges that

can complement enumerated pathways, which we also saw in this study. However, some enu-

merated pathways did not have a corresponding flux vector obtained by flux sampling. One

example of this was uptake of CO2 by E. coli, which can indeed fixate CO2 using only native

enzymes [37]. One possible explanation is that some subspaces corresponding to specific flux

patterns are diminishingly small in comparison to the rest of the solution space, making them

hard to access for samplers and requiring a very high number of samples to be detected. As a

way to avoid this problem and an example of complementary pathway enumeration and flux

sampling, we applied flux sampling separately to each pathway to obtain individual flux proba-

bility distributions. These distributions can be weighted by relative pathway usage and com-

bined into a global flux probability distribution, although the true weights will generally be

unknown.

Due to increasing pathway counts, enumeration should become progressively harder from

MPs to EFPs to ECMs to EFMs. However, as we saw from the computation times recorded in

this study, the computational efficiency and scalability of enumeration algorithms and their

implementations differ greatly between pathway definitions. EFM and ECM enumeration is

based on efficient implementations of the double description method [29] or lexicographic

reverse search [38], but still scales poorly because the number of flux vectors grows combinato-

rially with network size. EFP counts were generally much smaller than EFM and ECM counts

and appeared to grow more slowly with network size, but the current implementation of EFP

enumeration is based on a mixed-integer linear program (MILP) that includes two binary vari-

ables for each reaction in the subnetwork [15]. This MILP scales poorly with subnetwork size

and we therefore chose to extract EFPs from enumerated EFMs and ECMs. MP enumeration

also involves binary variables, but these are separated from the continuous flux variables into a

binary integer program (BIP) that is alternated with multiple linear programs (LPs), which is

is more efficient than a MILP [39]. Combined with the minimal number of MPs, this helps

make MP enumeration relatively scalable. Ultimately, the choice of pathway definition and

enumeration method should be guided by biological questions and the size of the system of

interest. For example, if one is interested in detailed analysis of all feasible metabolite exchange

fluxes in a small network, one should enumerate EFMs or ECMs. If the patterns of these fluxes

are sufficient, EFPs should allow scaling to larger subnetworks. Support-minimal pathways

suffice for many key applications [5], and in these cases MPs would be a natural choice.

In summary, our results provide perspectives on how different pathway definitions can be

interpreted in relation to each other. Specifically, pathway definitions are related to each other

through a hierarchy of flux patterns that generalizes to arbitrary metabolic networks and sub-

networks. This helps explain the consistency of our metabolite exchange predictions across

models and pathway definitions as well as the relative scalability of pathway enumeration. It
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could both aid researchers in choosing methods that best suit their aims and facilitate further

development of pathway definitions and enumeration methods. For example, ECMs can be

generalized by using the concept of flux cone projection onto a subnetwork instead of defining

the conversion cone as a separate solution space. More generally, our findings highlight the

potential for further development of a unified framework for pathway analysis, in which all

pathways are defined in terms of elementary flux vectors and their patterns in full and pro-

jected flux spaces [5, 19]. This could help make unbiased analysis more accessible and scalable,

e.g., by combining elements of enumeration methods for different pathway definitions with

each other as well as with flux sampling. We hope that this will eventually allow for detailed

analysis of metabolic networks across scales, from organisms to communities or even ecosys-

tems [40].

Methods

Metabolic models

We obtained and analyzed an Escherichia coli core model (e_coli_core) [7], a Helicobacter
pylori GEM (iIT341) [28], and core models of a filamentous anoxygenic phototroph (fap), a

sulfate-reducing bacterium (srb), and Synechococcus spp. (syn), both individually and interact-

ing with each other in a microbial community model [26]. The models e_coli_core and iIT341

were downloaded from the ecmtool repository (https://github.com/SystemsBioinformatics/

ecmtool). We set the bounds of iIT341 to reflect the minII medium [28] and kept the minimal

glucose medium for e_coli_core. Using COBRApy [41], we built individual models of fap, srb,

and syn by adding the reactions listed for the compartmentalized daylight scenario in the sup-

plementary information of Taffs et al. [26] to the models. We added exchange reactions for all

metabolites listed as external and manually identified sink and demand reactions as defined by

Thiele et al. [42]. The community model was made by merging the individual models into a

new model and connecting them through exchanged metabolites in a shared compartment.

Specifically, the exchange reactions of the individual models were connected to the shared

metabolites and new exchange reactions between the shared compartment and the environ-

ment were created, allowing the intermicrobial and environmental exchanges described in Fig

1A of Taffs et al. [26]. A pseudo-metabolite consisting of equal shares of biomass from each of

the individual microbes was constructed and used as the substrate in a community biomass

reaction, thus requiring balanced growth of all three microbes.

EFM enumeration

We used the Python interface of efmtool [29] to enumerate EFMs for e_coli_core, fap, srb, syn,

and the microbial community model. Irreversible reactions defined with negative flux, i.e.,

from right to left, were reversed before enumeration. We extracted unique exchange patterns

from EFMs by removing internal reactions, taking the sign of the reduced EFM matrix, and

removing duplicate patterns. For the community model, we included both environmental and

intermicrobial exchanges. EFM enumerations were performed on a Lenovo ThinkPad laptop

with an Intel Core i7-8665U (1.90GHz) processor and 32 GB RAM.

ECM enumeration

We used the Python package ecmtool to enumerate ECMs [18]. To reproduce the results of

[18], we ran ECM enumerations for e_coli_core and iIT341 using the command-line interface

of ecmtool and scripts based on their supplementary information. These ECM enumerations

were performed on the Orion cluster at the Norwegian University of Life Sciences (NMBU),
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using one core for e_coli_core and four cores for iIT341. We enumerated ECMs for fap, srb,

syn, and the microbial community model using the Python interface of ecmtool with default

settings. For the community model, we included both environmental and intermicrobial

exchanges by using the “tag” method of ecmtool. We converted ECMs to unique exchange pat-

terns by taking the sign of the ECM matrix and removing duplicate patterns. These ECM enu-

merations were performed on a Lenovo ThinkPad laptop with an Intel Core i7-8665U

(1.90GHz) processor and 32 GB RAM.

EFP enumeration

We enumerated EFPs from the unique exchange patterns of EFMs or ECMs. Specifically, we

identified EFPs as the patterns that could not be constructed from other patterns without can-

cellations. For each pattern, we took the union of all other patterns of which it was a superset

and checked whether this union was equal to the pattern itself.

MP enumeration

We used the Python package mptool [20] to enumerate MPs. Specifically, we used the iterative

graph method and default settings. We added a minimal growth rate requirement by setting

the lower bound of the biomass reaction to a small positive value (10−4 h−1). All reversible

boundary reactions were split into two irreversible reactions to distinguish production from

consumption of metabolites. The subset of irreversible boundary reactions was then chosen as

the subnetwork for MP enumeration. For the microbial community model, we also included

intermicrobial metabolite exchanges in the subnetwork. All MP enumerations were performed

on a Lenovo ThinkPad laptop with an Intel Core i7-8665U (1.90GHz) processor and 32 GB

RAM.

Comparing pathways

EFMs and ECMs were enumerated as vectors, in which each element is a stoichiometric coeffi-

cient or flux, while EFPs and MPs were enumerated as unique patterns that only include the

signs of these elements. MPs must also satisfy a functional requirement, in our case a minimal

growth rate. To make all pathways comparable, we therefore extracted unique exchange pat-

terns from EFMs and ECMs and further extracted growth-supporting patterns for EFMs,

ECMs, and EFPs. We converted the patterns to sets, distinguishing between import and export,

and intersected all pairs of pathways to count subsets and supersets (see example in Fig 1).

Metabolite exchange frequencies

We computed metabolite exchange frequencies separately for EFMs, ECMs, EFPs, and MPs by

counting the number of pathways in which each metabolite was exchanged and dividing by

the total number of pathways. Pairwise metabolite exchange frequencies were computed in the

same way, i.e., by counting the number of pathways in which each pair of metabolites was

exchanged together and dividing by the total number of pathways. For the microbial commu-

nity model, we also computed the frequency of metabolic interactions, i.e., intermicrobial

metabolite exchanges. We counted the number of pathways in which each metabolite was pro-

duced by each microbe and consumed by each other microbe and divided by the total number

of pathways, separately for EFMs, ECMs, EFPs, and MPs.
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Random flux sampling

Uniform random flux sampling of e_coli_core and iIT341 was performed using the probabilis-

tic thermodynamic analysis (PTA) flux sampler (without considering thermodynamics) from

the Python package pta [43]. For each model, we set the lower bound of the biomass reaction

to 0.1 h−1 and sampled 100,000 flux vectors from the resulting solution space. We ensured

the space was sufficiently sampled by checking the convergence of the sampler with the

“check_convergence” method of pta. These samplings were performed on a Lenovo ThinkPad

laptop with an Intel Core i7-1165G7 (2.80GHz) prosessor and 16 GB RAM. We also applied

the OptGP sampler [44] from COBRApy [41], to the same models with very similar results.

Subsequently, we obtained 1,000 samples for each enumerated MP from e_coli_core and

100,000 samples each for fap, srb, syn, and the microbial community model using OptGP.

These samplings were performed on a Lenovo ThinkPad laptop with an Intel Core i7-8665U

(1.90GHz) processor and 32 GB RAM. We used flux variability analysis (FVA) to ensure that

samples were within the feasible flux ranges [45].

Supporting information

S1 Fig. Computation times for pathway enumeration. Computation time for enumerating

all EFMs, ECMs, or MPs for all models analyzed in this study. Models used to analyze micro-

bial species and models used to analyze a microbial community are separated by a dashed line.

EFPs were extracted from EFMs or ECMs and therefore not enumerated separately. All enu-

merations except ECM enumeration for iIT341 were performed on the same laptop computer

(see Methods for details).

(TIFF)

S2 Fig. Clustered heatmaps of pathways for microbial species. Clustered heatmaps of (A)

EFMs for e_coli_core, (B) ECMs for e_coli_core, (C) EFPs for e_coli_core, (D) MPs for

e_coli_core, (E) ECMs for iIT341, (F) EFPs for iIT341, and (G) MPs for iIT341. Rows are

metabolites, columns are pathways, and each cell indicates metabolite uptake (blue) or secre-

tion (red) in a pathway. Rows and columns are clustered by Ward’s minimum variance

method. Unique growth-supporting flux patterns are shown.

(TIFF)

S3 Fig. Pairwise relationships between pathway lengths and counts for e_coli_core. Pair-

wise relationships between (A) pathway length and number of EFM, ECM, EFP, and MP sub-

sets and (B) pathway length and number of EFM, ECM, and EFP supersets for e_coli_core.

(TIFF)

S4 Fig. Pairwise relationships between pathway lengths and counts for iIT341. Pairwise

relationships between (A) pathway length and number of ECM, EFP, and MP subsets and (B)

pathway length and number of ECM and EFP supersets for iIT341.

(TIFF)

S5 Fig. Metabolite exchange frequencies for microbial species. Metabolite exchange fre-

quencies (fraction of pathways including secretion or uptake of each metabolite) for (A)

e_coli_core and (B) iIT341.

(TIFF)

S6 Fig. Pairwise metabolite exchange frequencies for microbial species. Pairwise metabolite

exchange frequencies (fraction of pathways including secretion or uptake of each metabolite

pair) for (A) EFMs for e_coli_core, (B) ECMs for e_coli_core, (C) EFPs for e_coli_core, (D)

MPs for e_coli_core, (E) ECMs for iIT341, (F) EFPs for iIT341, and (G) MPs for iIT341. Rows
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and columns are metabolites and each cell indicates the pairwise exchange frequency of two

metabolites.

(TIFF)

S7 Fig. Flux probability distributions from PTA for metabolite exchanges in e_coli_core.

Flux probability distributions for metabolite exchanges in e_coli_core from 100,000 random

flux vectors sampled with PTA. Dashed lines indicate feasible flux ranges from FVA.

(TIFF)

S8 Fig. Flux probability distributions from OptGP for metabolite exchanges in e_coli_core.

Flux probability distributions for metabolite exchanges in e_coli_core from 100,000 random

flux vectors sampled with OptGP. Dashed lines indicate feasible flux ranges from FVA.

(TIFF)

S9 Fig. Flux probability distributions from PTA for metabolite exchanges in iIT341. Flux

probability distributions for metabolite exchanges in iIT341 from 100,000 random flux vectors

sampled with PTA. Dashed lines indicate feasible flux ranges from FVA.

(TIFF)

S10 Fig. Flux probability distributions from OptGP for metabolite exchanges in iIT341.

Flux probability distributions for metabolite exchanges in iIT341 from 100,000 random flux

vectors sampled with OptGP. Dashed lines indicate feasible flux ranges from FVA.

(TIFF)

S11 Fig. Flux probability distributions from OptGP for metabolite exchanges in each MP

from e_coli_core. Flux probability distributions for metabolite exchanges in e_coli_core from

1,000 random flux vectors sampled with OptGP for each MP. Rows are MPs and columns are

metabolites. Dashed lines indicate feasible flux ranges from FVA.

(TIFF)

S12 Fig. Clustered heatmaps of pathways for a microbial community. Clustered heatmaps

of (A) EFMs for fap, (B) ECMs for fap, (C) EFPs for fap, (D) MPs for fap, (E) EFMs for srb, (F)

ECMs for srb, (G) EFPs for srb, (H) MPs for srb, (I) EFMs for syn, (J) ECMs for syn, (K) EFPs

for syn, and (L) MPs for syn. Rows are metabolites, columns are pathways, and each cell indi-

cates metabolite uptake (blue) or secretion (red) in a pathway. Rows and columns are clustered

by Ward’s minimum variance method and rows are colored to indicate individual microbes

and the community (yellow). Unique growth-supporting flux patterns are shown.

(TIFF)

S13 Fig. Pairwise relationships between pathway lengths and counts for individual models.

Pairwise relationships between (A) pathway length and number of EFM, ECM, EFP, and MP

subsets and (B) pathway length and number of EFM, ECM, and EFP supersets for fap, srb, and

syn individually.

(TIFF)

S14 Fig. Pairwise relationships between pathway lengths and counts for community

model. Pairwise relationships between (A) pathway length and number of EFM, ECM, EFP,

and MP subsets and (B) pathway length and number of EFM, ECM, EFP, and MP supersets

for the microbial community model.

(TIFF)

S15 Fig. Metabolite exchange frequencies for a microbial community. Metabolite exchange

frequencies (fraction of pathways including secretion or uptake of each metabolite) for (A) fap,
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(B) srb, (C) syn, and (D) the microbial community model.

(TIFF)

S16 Fig. Pairwise metabolite exchange frequencies for a microbial community. Pairwise

metabolite exchange frequencies (fraction of pathways including secretion or uptake of each

metabolite pair) for (A) EFMs for fap, (B) ECMs for fap, (C) EFPs for fap, (D) MPs for fap, (E)

EFMs for srb, (F) ECMs for srb, (G) EFPs for srb, (H) MPs for srb, and (I)–(L) EFMs, ECMs,

EFPs, and MPs for the microbial community model. Rows and columns are metabolites and

each cell indicates the pairwise exchange frequency of two metabolites.

(TIFF)

S17 Fig. Flux probability distributions from OptGP for metabolite exchanges in individual

models. Flux probability distributions for metabolite exchanges in fap, srb, and syn individu-

ally from 100,000 random flux vectors sampled with OptGP. Dashed lines indicate feasible flux

ranges from FVA.

(TIFF)

S18 Fig. Flux probability distributions from OptGP for metabolite exchanges in commu-

nity model. Flux probability distributions for metabolite exchanges in the microbial commu-

nity model from 100,000 random flux vectors sampled with OptGP. Dashed lines indicate

feasible flux ranges from FVA.

(TIFF)
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