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Abstract

Many everyday tasks require people to solve computationally complex problems. However,

little is known about the effects of computational hardness on the neural processes associ-

ated with solving such problems. Here, we draw on computational complexity theory to

address this issue. We performed an experiment in which participants solved several

instances of the 0-1 knapsack problem, a combinatorial optimization problem, while under-

going ultra-high field (7T) functional magnetic resonance imaging (fMRI). Instances varied

in computational hardness. We characterize a network of brain regions whose activation

was correlated with computational complexity, including the anterior insula, dorsal anterior

cingulate cortex and the intra-parietal sulcus/angular gyrus. Activation and connectivity

changed dynamically as a function of complexity, in line with theoretical computational

requirements. Overall, our results suggest that computational complexity theory provides a

suitable framework to study the effects of computational hardness on the neural processes

associated with solving complex cognitive tasks.

Author summary

Humans are frequently faced with complex decisions, ranging from everyday tasks like

grocery shopping to more intricate decisions such as selecting an investment portfolio.

These decisions require higher-order problem-solving skills, which remain poorly under-

stood, particularly regarding the neural processes that support deliberation. In this study,

we introduce a framework that employs computational complexity theory to investigate

the neural activity that occurs during complex problem-solving. We suggest that the

inherent characteristics of a problem determine its computational difficulty, and that

these intrinsic features could be used to identify consistent neural patterns during com-

plex problem-solving. To test this approach, we applied it to the knapsack problem, a stan-

dard computational problem. Participants solved several versions of this problem while

their brain activity was monitored using ultra-high field MRI. By leveraging computa-

tional complexity theory, we developed generic metrics of computational difficulty and

successfully identified the corresponding neural correlates and their dynamics during

problem-solving. The results indicate that the proposed framework, grounded in compu-

tational complexity theory, offers a promising method for studying the neural processes
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involved in complex problem-solving. This approach could provide valuable insights into

a topic that has previously resisted formal investigation.

1 Introduction

Every day, people make decisions that require solving complex problems. Many of these prob-

lems are known to be computationally intractable in the sense that the number of operations

that need to be performed to find a solution grows quickly to levels that make solving these

problems correctly infeasible. Real-life examples of intractable tasks include attention gating,

task scheduling, shopping, routing, bin packing, and gameplay [1, 2]. Despite the relevance of

intractable problems in daily life, little is known about the effects of complexity of tasks on the

neural processes during problem-solving.

Intractable problems require an extended period of time to solve and involve an extensive

search space. These two characteristics defy formal investigation of neural dynamics. Firstly,

since solving such tasks requires an extended period of time, one cannot opt for modeling

based on discrete choice theories such as those underlying neuroeconomics [3]. When decid-

ing between, say, an apple and a candy, the neural activation can be modeled in terms of an

indicator variable whose level is modulated by the value inferred from choices and kept con-

stant throughout the short (couple of seconds) deliberation time [e.g., 4]. When choice con-

cerns complex alternatives, deliberation times may be an order of magnitude longer, so neural

activation can be expected to fluctuate markedly during the course of deliberation. Secondly,

because the search space is large, there are a plethora of paths that can be chosen during resolu-

tion. Since human approaches to solving a complex problem exhibit substantial heterogeneity,

both across individuals and over time [e.g., 5], modeling neural dynamics during deliberation

is bound to be challenging if it is to be based on “what people are thinking,” i.e., on individual

approaches to solving complex problems. A different strategy is called for.

Here, we propose to focus on “what people are solving,” that is, on features of the computa-

tional tasks that are being presented. This has precedent in the analysis of probabilistic tasks,

where intrinsic properties of the gamble at hand (such as mean and variance of the uncertain

reward) have proven invaluable to deciphering the neural processes leading up to choice [e.g.,

6]. Likewise, mathematical characteristics of the stimuli in perceptual tasks, such as signal

strength, elucidate neural dynamics during deliberation [e.g., 7, 8]. Drawing on computational

complexity theory, we demonstrate here that a mapping exists between intrinsic properties of

instances of a problem related to computational hardness and neural dynamics during deci-

sion-making. Importantly, these properties represent generic features of computational prob-

lems that can be studied across different tasks and, indeed, have been shown to affect human

behavior such as accuracy and time-on-task in several tasks [9, 10].

We studied the case of a canonical intractable (specifically “NP-complete”; see definition in

Materials and methods) problem, the 0–1 knapsack decision problem (KP). There, the deci-

sion-maker is asked to choose whether, given a set of items with differing value and weight,

there exists a subset whose total value is at least as high as a given threshold, while the total

weight is less than or equal to a capacity constraint. We identified two properties of instances

of KP related to an instance’s computational hardness and tested whether these properties elu-

cidated neural signatures during deliberation. The two properties are complexity and proof
hardness. Complexity captures the number of computational steps (or time) needed to solve

an instance, while proof hardness represents the computational steps needed to verify the cor-

rectness of the solution.
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In order to measure complexity, we utilized a metric of difficulty that arises from the study

of random ensembles of instances (i.e., random cases of the problem). Variation in expected

computational complexity, regardless of the algorithm used, has been attributed to specific

structural properties of instances [11–17]. The resulting “typical-case complexity” (TCC) has

been found to affect human performance and effort in several intractable (NP-complete) prob-

lem-solving tasks, including KP [9, 10]. Therefore, we hypothesized that TCC would prove

useful in characterizing the effects of computational hardness on neural processes. In analogy

with work on neural correlates related to deliberation during tractable tasks [18–21], we

expected neural correlates of TCC to overlap with the multiple-demand system. Specifically,

we hypothesized they would overlap with two networks, (1) the cingulo-opercular network

(CON), consisting of the dorsal anterior cingulate cortex (dACC) and the anterior insula (AI),

and (2) the frontoparietal network (FPN), composed of the intraparietal sulcus (IPS) and spe-

cific regions from the lateral prefrontal cortex including the inferior frontal sulcus and the

middle frontal gyrus (MFG) (e.g., [18, 21–23]). Additionally, we expected the level of complex-

ity to be associated with neural markers of efficacy [24] and performance [25, 26].

We appeal to the theory of proof complexity to measure proof hardness. In the context of

an NP-complete problem, such as the KP, there exists an asymmetry in the difficulty of prov-

ing that the solution is correct, which depends on the “satisfiability” of the instance. If an

instance is satisfiable (the correct choice is ‘yes’), it suffices to find a witness (example assign-

ment of variables) that satisfies all of the constraints; one can then quickly verify that the wit-

ness indeed satisfies all the constraints, and this verification is tractable (i.e., can be done in

polynomial time). For example, in the KP it suffices to find a subset of items that satisfies the

weight and value constraints. In contrast, to confirm that an instance is unsatisfiable (the cor-

rect choice is ‘no’) requires proving that no witness exists, which is far more difficult (not trac-

table): even if a few potential witnesses are found not to satisfy the constraints, there may exist

others that do. We thus conjectured that satisfiability would correlate with subjective reliabil-
ity, that is, the degree to which the result of a calculation can be relied on to be accurate—

much like variance modulates subjective beliefs of choice correctness in probabilistic tasks.

Therefore, we expected neural correlates of this measure in regions that have been previously

shown to encode uncertainty, specifically in CON [25–28].

In our experiment, participants were asked to solve several instances of the knapsack deci-

sion problem, while undergoing functional magnetic resonance imaging (fMRI). Instances

were drawn randomly but in a way that systematically varied their TCC and their satisfiability.

Critically, in order to more precisely localize and track neural signals during deliberation, we

employed ultra-high field (7 Tesla) fMRI.

2 Results

Twenty participants (14 female, 5 male, 1 other; age range = 18–35 years, mean age = 26.6

years) took part in this study. Each participant was asked to solve 56 instances of the knapsack

decision task while undergoing ultra-high field MRI brain scanning (Fig 1a). Instances varied

in their computational complexity (TCC) and their satisfiability (2×2 balanced factorial design;

see Materials and methods). Recall that the latter, satisfiability, captures proof hardness. Specif-

ically, it encapsulates the asymmetry in the difficulty of proving that the solution is correct. Sat-

isfiable instances are considered to have low proof hardness (verifying that a witness satisfies

the constraints can be done in polynomial time) while unsatisfiable instances have a high

proof hardness (verifying a proof of unsatisfiability might require more than polynomial

time).
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Additionally, participants performed, outside the scanner, a set of complementary tasks,

including a knapsack optimization task and a set of cognitive function tasks. In this section, we

report the behavioral results of the knapsack decision task, while the behavioral results from

the complementary tasks are reported in Sections 3 and 5 in S1 Appendix.

2.1 Behavioral results

2.1.1 Summary statistics. On average, participants chose the ‘YES’ option in 50% of the

trials (min = 25%, max = 68%). Mean human performance, measured as the proportion of trials

Fig 1. (a) Task. The task was composed of three main stages: the items stage (3 s), the solving stage (22 s) and the response stage (2 s). Initially,

participants were presented with a set of items of different values and weights. The green circle at the center of the screen indicated the time remaining

in this stage of the trial. This first stage lasted 3 seconds. Then, both capacity constraint and target profit were shown at the center of the screen. The

objective of the task is to decide whether there exists a subset of items for which (1) the sum of weights is lower or equal to the capacity constraint and

(2) the sum of values yields at least the target profit. This stage lasted 22 seconds. Finally, participants had 2 seconds to make either a ‘YES’ or ‘NO’

response using the response button box. A fixation cross was shown during the inter-trial interval (jittered between 8 and 12 seconds). (b) Relation

between TCC and human performance in the knapsack decision task. Each dot represents an instance; human performance corresponds the

proportion of participants that solved the instance correctly. Instances are categorized according to their constrainedness region (αp) and their TCC. In

the underconstrained region (low TCC) the satisfiability probability is close to one, while in the overconstrained region (low TCC) the probability is

close to zero. The region with high TCC corresponds to a region in which the probability is close to 0.5. Additionally, instances are categorized

according to their solution (satisfiability) which is represented by their color. The box plots represent the median, the interquartile range (IQR) and the
whiskers extend to a maximum length of 1.5*IQR. (c) Pictorial representation of complexity and proof hardness as operationalized in relation to the

properties of instances (αp and satisfiability).

https://doi.org/10.1371/journal.pcbi.1012447.g001
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in which a correct response was made, was 0.78 (min = 0.48, max = 0.95, SD = 0.14). Perfor-

mance increased slightly as the task progressed; however, a negative (or null) effect cannot be

fully ruled out with the evidence provided by the current dataset (β0.5 = 0.009, HDI0.95 =

[−0.001, 0.021], main effect of trial number on performance, generalized logistic mixed model

(GLMM); Table A Model 1 in S1 Appendix).

2.1.2 Accuracy and instance properties. We first studied the effect of TCC on human

performance. This measure is based on a prominent framework in computer science that

investigates the factors affecting computational hardness in computational problems by study-

ing the difficulty of randomly generated instances of those problems. In the knapsack problem,

TCC is explicitly connected to the normalized profit (αp) that captures the constrainedness of

the problem. Explicitly, αp is defined as the target profit (e.g., $218 in Fig 1a) divided by the

sum of all item values in the instance. [9, 14]. This parameter captures the likelihood that a ran-

dom instance is satisfiable, that is, that the solution is ‘yes’. It can be used to specify regions

where typical instances are generally satisfiable (under-constrained region), where they are

unsatisfiable (over-constrained region), and where the probability of satisfiability is close to

50% (satisfiability threshold αs). As an illustration, consider the instance presented in Fig 1a. If

the target profit were set to a large value (e.g., $300), the instance would be overconstrained (it

is likely that no combination of items satisfies both constraints), whereas if it were set to a very

low value (e.g., $20), the instance would be underconstrained. The more extreme these values

are, the easier the instance is to solve. Indeed, it has been shown that the computational diffi-

culty of solving the problem is higher when αp is close to αs [9, 14]. TCC is then defined based

on the distance of αp to the satisfiability threshold αs. Specifically, instances with values of αp

near the satisfiability threshold have a high typical-case complexity (high TCC) whereas

instances further away from it—that is, in the under-constrained and over-constrained regions

—have low typical-case complexity (low TCC). In line with previous results [9], we found par-

ticipants performed better on instances with low TCC compared to those with high TCC (β0.5

= −1.10, HDI0.95 = [−1.44, −0.79], main effect of TCC on performance, GLMM; Fig 1b;

Table A Model 2 in S1 Appendix).

We then studied proof-hardness by investigating satisfiability. Proof hardness is defined as

the computational difficulty of verifying that the certificate of a solution (i.e., proof) is correct.

An important driver of proof hardness is the satisfiability of an instance. To verify that an

instance is satisfiable, it suffices to check that a candidate set of items (satisfiability certificate)

satisfies the constraints. In contrast, verifying unsatisfiability requires validating a proof of

non-existence (unsatisfiability certificate). For NP-complete problems, the former is tractable

(P-time) whilst the latter is conjectured to be intractable (follows from the conjecture that

coNP 6¼ NP; see Materials and methods).

Note that proof hardness is not directly related to the complexity of solving the knapsack

problem. Instead, proof hardness characterizes the complexity of a different problem: the one

of verifying that a solution to the problem is correct. Strictly speaking, it is mute to the com-

plexity of finding the solution. As such, we hypothesized there would be no effect of satisfiabil-

ity on performance. As expected, our findings replicate previous results that suggest that there

is no effect of satisfiability on human performance in the knapsack decision task ([9]; β0.5 =

0.02, HDI0.95 = [−0.30, 0.30], main effect of satisfiability on performance, GLMM; Table A

Model 5 in S1 Appendix). Moreover, we found no significant interaction effect between TCC

and satisfiability on performance (β0.5 = 0.26, HDI0.95 = [−0.37, 0.90], interaction effect of TCC

and satisfiability, GLMM; Fig 1b; Table A Model 6 in S1 Appendix). Besides studying and rep-

licating previously reported effects of TCC and satisfiability on human performance, we repli-

cated other key findings presented by Franco et al. [9] (see Section 3 in S1 Appendix).
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Finally, we investigated human performance in a set of related tasks. We explored the rela-

tion between performance in the knapsack tasks and core cognitive abilities, including work-

ing memory, episodic memory, strategy use, as well as mental arithmetic. For this analysis, we

utilized the joined data set from this study together with data collected by Franco et al. [9].

Our results suggest a weak relation between these cognitive abilities and performance in the

knapsack tasks. The only significant correlation (at α = 0.05) shows a link between mental

arithmetic ability and performance in the knapsack optimization task (Section 5 in S1

Appendix).

2.2 Imaging results

2.2.1 Whole-brain analysis. We conducted a whole-brain analysis of the neural correlates

of two intrinsic generic properties of problems: TCC and satisfiability. Additionally, we inves-

tigated the neural correlates of response accuracy (Section 6 in S1 Appendix). We did this by

fitting GLMs that partitioned the solving stage into four separate periods (5.5 s) with an addi-

tional response stage modeled in the analysis (2 s).

Neural correlates of TCC. We expected to find activation related to complexity in regions

in which activation had previously been shown to be correlated with cognitive demand (i.e.,

multiple-demand system). We explicitly expected to find evidence for the encoding of TCC in

the cingulo-opercular network (CON) from early on during the solving stage due to its link

with cognitive demand as well as its link with expected performance and reliability. Higher

TCC entails, on average, lower performance and lower reliability of finding the solution (Fig

1b). Note that the estimation of TCC early on in the trial is feasible because constrainedness

(and thus TCC) can be potentially estimated by performing sum and division operations, spe-

cifically, dividing the target profit by the sum of values.

We found that the neural correlates of TCC varied throughout the duration of the solving

stage (Fig 2a, Table 1). Contrary to our expectations, we did not find significant correlations of

TCC during the first period of the solving stage. Interestingly, during the second period, we

did find a set of clusters that showed higher BOLD activity on instances with low TCC. These

regions include the angular gyrus (AG) bilaterally, the superior frontal gyrus (SFG), the right

middle frontal gyrus (MFG) as well as regions in the orbitofrontal cortex (bilaterally). It is

worth noting that the negative pattern found in this period might stem from a different slope

in the increased task-related activation and not from differences in the sustained level of activ-

ity (Fig 3). This pattern would align with previous results that support that the frontoparietal

network (FPN) regions encode evidence accumulation towards a particular decision (see

Discussion).

During the third period of the solving stage, the TCC contrast still showed significant clus-

ters along the FPN, but the pattern overall changed, with respect to period S2. Critically, we

found that a different set of regions within the FPN now showed a positive correlation with

TCC. Specifically, we found positive clusters in the left SFG, left intraparietal sulcus (IPS), the

cerebellum as well as a cluster in the right dorsolateral prefrontal cortex (dlPFC) in between

the MFG and the SFG. Interestingly, the right AG kept on displaying a negative correlation

with TCC during this period.

Finally, during the fourth, and last, period of the solving stage, a new set of clusters was

identified. Markedly, this new set of clusters includes regions from both CON, FPN as well as

significant clusters in the occipital lobe. In general, the activation in these clusters is correlated

positively with TCC. The only two clusters that correlated negatively with TCC are those

located in the ACC, as well as a cluster in the left SFG that overlaps with SFG cluster found in

the second period.
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Markedly, correlates of TCC on period S4 include the dACC and right anterior insula (AI)

from CON as well as the precentral gyrus and IPS from FPN. The right IPS activation is segre-

gated into two clusters, one medial and superior that overlaps with the precuneus and one

more lateral that overlaps with the AG. These clusters were also found when using an alterna-

tive metric of complexity (instance complexity) that is closely related to TCC (see Sections 3

and 4 in S1 Appendix).

We did not find any significant clusters during the response stage.

Neural correlates of satisfiability. We expected the asymmetry between satisfiable and

unsatisfiable instances to reflect differences in control signals associated with reliability (i.e.,

how much the result of a calculation can be relied on to be accurate). Specifically, we hypothe-

sized that satisfiable instances would be associated with higher reliability, given that once a

solution witness is found, verifying that the proposed solution is correct is a polynomial-time

operation (tractable problem). In contrast, for unsatisfiable instances, verifying a proof of non-

existence is conjectured to be intractable, and thus, computationally harder to verify.

Therefore, we expected regions that have been linked to monitoring of uncertainty to be

more active during a trial with an unsatisfiable instance compared to a satisfiable one. In par-

ticular, we conjectured higher activation of the CON, on unsatisfiable instances, during late

stages of the trial [25–28].

Fig 2. Neural correlates of TCC and satisfiability. (a) Brain activation effect estimates (β) for the high vs. low TCC contrast (βhighTCC − βlowTCC). A

positive contrast represents a higher BOLD signal for instances with high TCC compared to low TCC. Significant cluster-wise FWE-corrected

(p< 0.05) clusters (with an uncorrected threshold of p< 0.001) are presented for each of the contrasts estimated using the Boxcar analysis. Each panel

represents a different period in the solving stage. No significant clusters were found for period S1 nor for the response stage parameters. (b) Brain

activation effect estimates (β) for the unsatisfiable vs. satisfiable contrast (βunsatisfiable − βsatisfiable). A positive contrast represents a higher BOLD

signal for unsatisfiable instances. Significant cluster-wise FWE-corrected (p< 0.05) clusters (with an uncorrected threshold of p< 0.001) are presented

for each of the contrasts estimated using the Boxcar analysis. Each panel represents a different period in the solving stage. No significant clusters were

found in the response stage.

https://doi.org/10.1371/journal.pcbi.1012447.g002
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Interestingly, and contrary to our expectations, we found significant clusters from the first

period of the solving stage (Fig 2b, Table 2). Moreover, significant clusters did not extend to

the response screen, which was also in opposition to our conjecture. Most of the clusters dur-

ing the solving stage showed a lower BOLD signal for unsatisfiable instances. These clusters

extended from period S1 to period S4 of the solving stage. Notably, the posterior cingulate

showed a lower sustained activation in unsatisfiable instances throughout the solving stage

(periods S2, S3 and S4). Similarly, different clusters in the SFG had significant clusters

throughout the solving stage. Additionally, similar to the clusters found for the TCC contrast,

the AG showed bilateral activation during the second period of the solving stage. Interestingly,

a bigger AG cluster was found on the left hemisphere compared to the right, in contrast to the

right laterality predominance of AG found in the TCC contrast.

The only two clusters that showed significantly higher activity in unsatisfiable instances

were the right AI and the occipital superior cortex, both present only during period S4 of the

solving stage. The significant cluster found in the AI is in line with our hypothesis that unsatis-

fiable instances are related to higher markers of uncertainty, a signal that we expected to find

in the CON. However, in disagreement with our hypothesis, we did not find a significant

satisfiability cluster in the dACC. This may be due to insufficient statistical power of the whole

brain analysis (see Fig 3b).

Table 1. TCC clusters. Significant cluster-wise FWE-corrected (p< 0.05) clusters (using an uncorrected threshold of p< 0.001) from the High TCC—low TCC contrast.

Coordinates are in MNI space.

Stage Region* Side Cluster statistics Peak statistics

Volume(mm3) βmean SEM βpeak x y z

S2 SFG RH/LH 4763.6 -0.17 0.001 -0.32 13 34 61

Orbitofrontal cortex RH 3878.9 -0.21 0.002 -0.37 51 44 -19

AG RH 2662.4 -0.20 0.002 -0.31 51 -55 37

AG LH 897.0 -0.21 0.002 -0.29 -58 -66 36

Orbitofrontal cortex LH 749.6 -0.20 0.003 -0.31 -51 36 -19

MFG RH 495.6 -0.16 0.002 -0.20 48 17 36

S3 IPS LH 2043.9 0.16 0.002 0.35 -11 -79 52

Cerebelum RH 938.0 0.11 0.002 0.19 0 -60 -25

SFG LH 786.4 0.14 0.002 0.19 -26 -2 52

AG RH 495.6 -0.17 0.002 -0.24 56 -60 36

MFG/SFG RH 483.3 0.12 0.002 0.17 30 -1 61

S4 Occipital Pole LH 2732.0 0.20 0.001 0.32 -10 -97 -8

Fusiform gyrus LH 1888.3 0.19 0.002 0.31 -24 -79 -14

Middle occipital gyrus LH 1503.2 0.20 0.002 0.28 -29 -78 21

AI RH 1265.7 0.21 0.003 0.30 32 28 0

Precentral gyrus LH 1163.3 0.22 0.003 0.33 -43 4 24

IPS (precuneus) RH 1044.5 0.21 0.003 0.33 13 -76 60

SFG LH 1024.0 -0.15 0.003 -0.27 -16 36 58

dACC LH/RH 901.1 0.18 0.002 0.24 -2 22 40

IPS (AG) RH 696.3 0.24 0.004 0.35 32 -65 47

Occipital pole LH 667.6 0.26 0.003 0.34 -38 -95 -6

ACC LH 475.1 -0.22 0.003 -0.29 -5 57 8

*Region acronyms: SFG: superior frontal gyrus, AG: angular gyrus, MFG: middle frontal gyrus, IPS: intraparietal sulcus, AI: anterior insula, dACC: dorsal anterior

cingulate cortex.

https://doi.org/10.1371/journal.pcbi.1012447.t001
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Neural correlates of accuracy. Although participants did not receive any feedback during

the task, we expected to see error-related signals late in the trial. Although these signals would

not represent the integration of novel exogenous information (since there was no feedback),

we conjectured that participants would hold a subjective belief of the expected accuracy (or

reward) of their answer (e.g, [29]). In line with our hypothesis, we found that activity in both

FPN and CON was positively correlated with erring during the response stage (Section 6 in S1

Appendix).

2.2.2 ROI dynamics. Three ROIs were selected (see Section 4.9.3) to investigate more

closely the neural dynamics associated with computational complexity. We included in our

Fig 3. Temporal dynamics of BOLD in regions of interest. Mean effect estimate (β) for each ROI over time in trial. The effect at each time point

represents the mean βFIR over all of the voxels from each ROI: right AI, dACC, and right IPS cluster extending to the angular gyrus. In the top row of

panels, the βFIR’s characterize the coefficients of an FIR regression with four conditions: satisfiability×TCC. The βFIR parameters are aligned to the

BOLD signal, which has a lag with respect to the task time. To correct for this, the gray time-markers represent the task events by assuming a 5-second

BOLD signal lag. In the second row, the TCC contrast (βhigh − βlow) is presented. The third row displays the satisfiability contrast (βunsat − βsat). The

bottom row shows the interaction effect between TCC and satisfiability ([βhighTCC,unsat − βhighTCC,sat] − [βlowTCC,unsat − βlowTCC,sat]). Red asterisks

represent significance at the 0.05 level. Significance levels in the gray shaded regions are suggestive only; they represent the time period and contrast

from which the ROIs were selected.

https://doi.org/10.1371/journal.pcbi.1012447.g003

PLOS COMPUTATIONAL BIOLOGY The neural dynamics associated with computational complexity

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012447 September 23, 2024 9 / 27

https://doi.org/10.1371/journal.pcbi.1012447.g003
https://doi.org/10.1371/journal.pcbi.1012447


analysis the dACC due to its proposed involvement in the allocation of control [30–35] as well

as the right AI because of its involvement in encoding control signals and uncertainty in par-

ticular [25–28]. In order to compare the neural activity in these regions, which are generally

attributed to control, with relevant processing units, we selected a region associated with math-

ematical calculations, the right IPS [36–38].

We explored the BOLD effect estimates (βFIR) for the 2×2 balanced factorial design (satisfia-

bility×TCC) employing Finite Impulse Response (FIR) analysis at a two-second resolution (see

Section 4.9.4). We found similar patterns in AI and dACC. In both regions, the BOLD signal

rose throughout the task and quickly decreased around the time the solving stage ended (Fig

3). The activity pattern in the IPS showed a different pattern to that of CON regions. In this

Table 2. Satisfiability clusters. Significant cluster-wise FWE-corrected (p< 0.05) clusters (using an uncorrected threshold of p< 0.001) from the Unsatisfiable-Satisfiable
contrast. Coordinates are in MNI space.

Stage Region Side Cluster statistics Peak statistics

Volume(mm3) βmean SEM βpeak x y z

S1 SFG LH 1876.0 -0.14 0.002 -0.23 -3 38 42

Supramarginal gyrus RH 1740.8 -0.13 0.002 -0.25 54 -46 56

Supramarginal gyrus LH 1425.4 -0.12 0.001 -0.17 -42 -47 40

Inferior occipital cortex LH 1159.2 -0.13 0.002 -0.22 -61 -65 -12

MFG LH 905.2 -0.15 0.001 -0.20 -48 18 28

Caudate LH 880.6 -0.17 0.002 -0.24 -8 2 -1

MFG RH 868.4 -0.12 0.003 -0.23 37 30 53

Cerebellum LH 667.6 -0.12 0.002 -0.18 -38 -79 -49

Precuneus LH 516.1 -0.19 0.003 -0.26 -2 -65 44

Frontal pole RH 450.6 -0.14 0.002 -0.18 29 58 -9

Caudate RH 450.6 -0.17 0.003 -0.23 8 4 0

S2 AG LH 2523.1 -0.19 0.002 -0.29 -62 -60 29

Posterior cingulate RH 696.3 -0.20 0.003 -0.25 2 -25 40

AG RH 585.7 -0.18 0.003 -0.28 62 -57 34

Frontal pole LH 577.5 -0.23 0.004 -0.40 -38 62 -8

Posterior cingulate LH 479.2 -0.16 0.002 -0.19 -10 -41 37

S3 SFG LH 1511.4 -0.15 0.002 -0.22 -21 36 55

Anterior cingulate LH 708.6 -0.21 0.003 -0.30 -5 52 4

Supramarginal gyrus RH 696.3 -0.14 0.002 -0.20 64 -28 39

Frontal pole RH 692.2 -0.14 0.002 -0.21 13 58 31

Anterior cingulate LH 593.9 -0.15 0.002 -0.24 -6 46 12

Posterior cingulate LH 577.5 -0.17 0.002 -0.22 -2 -28 45

Posterior cingulate LH 487.4 -0.18 0.004 -0.28 -2 -44 28

S4 Posterior cingulate RH 1384.5 -0.22 0.003 -0.33 0 -18 34

SFG RH 1306.6 -0.18 0.002 -0.26 14 50 42

AI RH 901.1 0.25 0.003 0.36 32 28 0

AG LH 659.5 -0.24 0.003 -0.30 -48 -68 44

SFG LH 647.2 -0.17 0.004 -0.26 -14 52 40

Precuneus LH 581.6 -0.19 0.005 -0.27 -5 -57 31

Occipital superior cortex RH 544.8 0.17 0.005 0.27 29 -63 36

SFG / Frontal pole LH 512.0 -0.24 0.003 -0.34 -3 65 16

Orbitofrontal cortex LH 454.7 -0.23 0.003 -0.33 -46 28 -20

Supramarginal RH 438.3 -0.12 0.002 -0.18 54 -33 32

https://doi.org/10.1371/journal.pcbi.1012447.t002
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region, the BOLD signal increased quickly early on in the trial and was sustained until it

started decreasing later on in the trial. The moment at which the decrease started was modu-

lated by TCC and satisfiability (Fig 3).

We were also interested in studying the interaction effect between TCC and satisfiability.

Conceptually, we predicted an interaction effect between complexity and proof hardness. This

follows from the definition of proof hardness, which relates to the length of verifying a valid

proof (proof of existence or proof of non-existence). Consequently, proof hardness is only

directly informative for cases in which a participant has found (the correct) solution to verify.

This entails that in instances where finding a valid witness is harder (e.g., high TCC), the effect

of proof hardness should be lower on average. Specifically, we expected that instances with

high TCC would have a lower differential effect on the BOLD contrast between unsatisfiable

and satisfiable instances. This is exactly what we found on all three ROIs, although this effect

was only consistently significant in the AI and IPS (Fig 3; fourth row of panels).

When contrasting the effect of TCC in each of the ROIs, we find that there is a significant

positive effect of TCC from mid-way through the trial in the right IPS/AG (Fig 3 second row

of panels). This differs from the results obtained in the whole brain analysis. Similarly, when

estimating the effect of satisfiability (Fig 3; third row of panels), the results marginally differ

from those of the whole-brain analysis. Firstly, the ROI analysis reveals that there is an effect of

satisfiability on all three regions late in the solving-stage. Secondly, the effect of satisfiability

starts in the AI and dACC mid-way through the trial. Interestingly, the effect of TCC seems to

precede that of satisfiability in the IPS, whereas in the dACC the effect of satisfiability seems to

precede that of TCC.

Altogether, these results suggest that both satisfiability and TCC correlate with activity in all

three regions, but that their effect might have different temporal signatures. Importantly, the

sign of the effect was in line with our hypothesis: a higher signal in these regions was generally

related to higher TCC and unsatisfiability. The only exceptions happen briefly early on in the

trial.

Finally, we explored the interaction between neural markers of accuracy and the proposed

metrics of computational difficulty. We first analyzed the interaction effect between correct-

ness and TCC on neural dynamics. We found that for instances with low TCC, there was a sig-

nificant effect of correctness of the instance from early on in the trial in the IPS. Similarly,

midway through the trial, a significant accuracy neural marker appeared in the AI for instances

with low TCC (Fig 4; top panels). This effect was mainly due to a significantly lower BOLD sig-

nal associated with incorrect instances with low TCC. Similarly, when studying the interaction

effect between correctness and satisfiability, we found a consistent significant effect of accuracy

but only during satisfiable instances in the IPS, which was driven, as well, by a lower BOLD

activity on incorrect instances (Fig 4; bottom panels). Importantly, this significant contrast

showed from the moment the trial started.

Overall, our results suggest a link between neural markers of accuracy and metrics of

computational difficulty. This relation was particularly evident in the IPS and marginally in

the AI. Importantly, the differential effects of accuracy in the IPS showed from early on in the

trial, suggesting that for instances associated with low computational difficulty (i.e., low proof

hardness and low complexity), accuracy could be predicted from early on in the trial from

BOLD activity in the IPS.

2.2.3 Connectivity analysis. The results so far implicate a dynamic collection of brain

regions that correlate with different properties of the target computational problem at different

stages of deliberation. An important open question that remains is how these regions coordi-

nate with each other to orchestrate the intricate sequence of computations to solve the knap-

sack problem. In order to shed light on this coordination of computations, we studied how
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connectivity changes throughout the problem-solving task and how these fluctuations in con-

nectivity relate to computational difficulty (details in Section 7 in S1 Appendix).

We first studied the effect of TCC and satisfiability on functional connectivity. To do this,

we conducted a PPI analysis to gauge the functional synchronization between each of the ROIs

and other regions in the brain. Explicitly, we performed whole-brain PPI analyses employing

the three considered ROIs (dACC, rAG and rAI) as seed regions. For these regressions, we

Fig 4. Accuracy and complexity. Mean effect estimate (β) of each ROI against time in trial. The effect at each time point represents the mean βFIR over

all of the voxels from each ROI: right AI (a), dACC (b), and right IPS cluster extending to the angular gyrus (c). The βFIR’s characterize the coefficients

of an FIR regression with four conditions: accuracy×TCC in the top panels, and accuracy×satisfiability in the bottom panels. The βFIR parameters are

aligned to the BOLD signal, which has a lag with respect to the task time. The gray vertical lines represent the task events assuming a 5-second BOLD

signal lag. Below the mean ROI effects, the second and fourth rows of figures show the accuracy contrasts (βcorrect − βincorrect) for different levels of TCC

or satisfiability. Red stars represent significance at a 0.05 significance level.

https://doi.org/10.1371/journal.pcbi.1012447.g004
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modeled the task (items and solving stages combined) with two boxcar functions of equal

length (12.5s) (Fig G in S1 Appendix). This allowed us to study PPI task interactions separately

for an early period (PPI-1: first 12.5 seconds of the task) and a late period (PPI-2: last 12.5 sec-

onds). We found a similar and generalized pattern of connectivity for all three ROIs and both

periods when contrasting the PPI effect compared to baseline (Fig F in S1 Appendix). This

suggests that the task has a similar effect on the BOLD synchronization between the three

ROIs and several other regions.

When comparing the connectivity between instances with high and low TCC, we found

one significant cluster with differential connectivity. This cluster, located along the rAG and

the supramarginal gyrus, showed a change in connectivity to the rAI (seed region) between

high and low TCC instances during the second PPI period (Fig Ga and Table F in S1 Appen-

dix). We also explored the differences in PPI connectivity between unsatisfiable and satisfiable

instances. We observed a significant PPI effect of satisfiability between the right IPS/AG (seed)

and the left MFG, as well as with the left AG, during the second PPI period (Fig Gb and

Table F in S1 Appendix). Overall, these results suggest that instance properties have an effect

on the synchronicity between the ROIs and a small set of other clusters. However, this effect is

only significant during the later part of the solving stage. PPI analysis, however, only explores

temporal connectivity. A closer inspection of the time courses in Fig 3 suggests that there may

be inter-temporal relationships in activation. We turn to a study of those next.

Critical for this study, we expected the underlying neural processes of problem-solving to

be internally driven. Specifically, we expected the connectivity patterns to be linked to neural

processes whose timing could vary stochastically across trials and participants (e.g., the burst

of neural activity does not have to coincide with an experimental intervention such as the ini-

tial display of items). In order to explore this inter-temporal connectivity (i.e., effective connec-
tivity), we performed a Granger Causality (GC) analysis on the BOLD signal in these three

ROIs.

We found that, throughout the task there was bi-directional effective connectivity between

dACC, AI and IPS (see Fig H in S1 Appendix). Additionally, during the solving stage, we

found that there was a significant change in GC from dACC to rAG. However, we did not find

any significant changes in the effective connectivity between high and low TCC instances nor

between unsatisfiable and satisfiable instances. Notice, however, that Granger causality only

measures intertemporal correlation but not intensity. For instance, even if communication

flow from, say, dACC to, say, IPS increases as a function of TCC, this will not translate into

increased correlation as long as activation attributed to dACC itself increases as a function of

TCC (as in Period S4 of the solving stage; see Table 1). Taken together, these results suggest

that the effects of TCC and satisfiability on neural activity propagate through the ROIs via

baseline effective connectivity (present during the solving stage) and not through a direct effect

on the effective connectivity.

3 Discussion

The study of the neural underpinnings of problem-solving has, to date, been centered on trac-

table problems. This line of research has led to the characterization of networks and processes

that support problem-solving. A critical shortcoming of existing studies is the absence of a

generic theoretical framework to study the neural underpinnings of problem-solving that can

be extended to intractable problems. Here, we present a framework, grounded in computa-

tional complexity theory, to study the neural underpinnings of problem-solving that over-

comes previous limitations. Importantly, this theoretical framework can be applied across

tasks and without knowledge of the cognitive strategies employed.
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We empirically test this framework using the knapsack decision task and ultra-high field

fMRI. Our findings shed light on the neural processes supporting problem-solving. Firstly, our

findings not only extend but solidify the research on the neural correlates of cognitive demand

by exploring the processes associated with one specific dimension of cognitive demand:

computational complexity. Importantly, this is done in a task-independent way in the sense

that these metrics can be applied to a whole class of problems (i.e., NP-complete). Secondly,

rather than studying cognitive demand starting from “what people are thinking,’’ we rely on

the theory of computational complexity to identify intrinsic properties of a problem to delin-

eate cognitive requirements. These intrinsic properties allowed us to discover relevant neural

markers and their dynamics, similar to how risk and variance have been shown to affect deci-

sions in probabilistic tasks [6]. Finally, the results presented provide evidence in support of the

theoretical framework put forward here, which can contribute to the study of cognitive con-

trol, especially in those tasks that involve intractable problems. Critically, cognitive control

involves the dynamic allocation of cognitive resources that stem from an interaction between

the cognitive requirements of a task and the resources available. The framework presented

here provides a theoretical foundation for the characterization of cognitive requirements that

can be applied to intractable problems, which are generally understudied in the field of cogni-

tive control.

Extensive research has studied the neural correlates of cognitive demand. This program has

characterized the multiple-demand system, a network of regions that respond robustly to cog-

nitive demand regardless of the task at hand [18–21]. This has been done using several tasks

including perceptual target detection and memory retrieval, among many others. Notably,

most of the tasks employed to date have been based on tractable problems. Moreover, many of

the tasks modulate the cognitive demand of the task by tuning the amount of processing

needed on one specific dimension of cognitive processing. For instance, in perceptual tasks,

the signal-to-noise ratio is modulated [e.g., 8, 7, 39, 40]; in memory retrieval tasks, the amount

of information to be stored/retrieved is adjusted [e.g., 18, 41]. The lack of a generic (problem-

independent) definition of cognitive demand hinders the generalization of this approach to

new problems. Here, we propose a way forward, grounded in the assumption that hardness is,

at least partially, an intrinsic characteristic of the problem at hand, which can be studied across

tasks employing an overarching theoretical framework.

Following this approach, we operationalized cognitive demand via TCC and found that the

neural correlates of TCC overlapped with those associated with the multiple-demand system.

In particular, the positively correlated clusters (higher activation in high TCC instances) in the

FPN and CON resembled those of the multiple-demand system. Notably, we found clusters in

the AI, the dACC, the precentral gyrus and the IPS, which have been associated with the multi-

ple-demand system [18]. Importantly, our results display a dynamic process in which the neu-

ral correlates of TCC vary throughout the different stages of the task. This suggests that the

multiple-demand system can be construed as a heterogeneous set of regions that play a

dynamic and varying role at different stages in problem-solving.

It is worth highlighting that we are not arguing for the proposed framework to replace

other methodological approaches in the study of cognitive demand. Instead, we assert that

both approaches complement each other. Critically, complex tasks involve the interplay of sev-

eral computational processing units such as working memory, logical operations, processing

of numerical magnitudes among many others. Our approach, as it stands, is not able to differ-

entiate among these sub-processes. A proper understanding of problem-solving requires both

the study of these sub-processes independently, like in more classical approaches [e.g., 41], as

well as in tandem in order to understand how they interact to support computationally hard

problem-solving, as done in this study.
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A related effect of these properties on neural processes is through the encoding of relevant

task markers that could be employed during problem-solving [3, 42]. These neural markers

include markers of performance such as expected error [25, 26], variance in this expectation

(uncertainty) [25–27], as well as markers that encode the evidence towards a particular

response [7, 43] or even the merit of alternative strategies [29, 44]. Critically, we made three

conjectures with regards to these neural markers. First, we hypothesized to see markers of per-

formance, related to TCC, from early on in the trial. Second, we conjectured we would see

markers of reliability (i.e., how much can the result of a calculation be relied on to be accurate),

related to satisfiability, in regions shown to encode uncertainty. Third, we expected to find

neural correlates of accuracy late in the trial, which would be associated to expected

performance.

With regards to our first hypothesis, we argue that TCC is a feasible metric that can be

related to markers of performance and efficacy of effort from early on in the trial. Firstly, TCC

has been shown to be correlated with human performance [9]. Secondly, TCC can be poten-

tially estimated from early on in the solving stage without the need to know the solution to the

problem. Indeed, TCC could be estimated by performing a straightforward summation fol-

lowed by a division (add all item values and divide the result by the target profit). As such, we

expected to see neural correlates of TCC from early on in the trial. Specifically, we expected to

see markers of TCC from early on in the solving stage in the CON [26, 27, 30]. Contrary to our

expectations, we only found significant clusters in the CON starting from the third period of

the solving stage. These might reflect markers of expected performance, but other explanations

cannot be excluded. For instance, this effect might reflect differences in time-on-task between

TCC conditions [45]; indeed, previous work has shown that TCC affects time-on-task in other

computational problems [10]. This explanation, however, would still allow these activation

patterns to represent differences in neural markers such as reliability and expected perfor-

mance. This follows from the fact that time-on-task is an endogenous variable of the system.

That is, the agent decides when to stop reasoning about the problem, and as such, this decision

would likely follow from a subjective belief on how well they can expect to perform given the

current candidate solution. Therefore, differences in time-on-task between high and low TCC

instances may be related to differences in subjective beliefs of both expected performance and

reliability. Future work is needed to explore how and when people decide to stop deliberating,

as well as the role of computational difficulty in this process.

In addition to the reported clusters that correlated positively with computational complex-

ity, we found a set of clusters that correlated negatively with TCC. These clusters are concen-

trated in the second period of the solving stage, but are also found in the third and fourth

periods of the solving stage. These results might be explained by the encoding of evidence

accumulation signals [7, 43]. Arguably, evidence toward a solution can be accumulated faster

in low TCC compared to high TCC instances. This follows directly from the theoretical predic-

tion that the time needed to reach the solution is, on average, higher for instances with high

TCC than low TCC. The difference in rate accumulation would imply that regions that encode

evidence accumulation would show a higher activation on low TCC instances early in the trial,

in accordance with the pattern found in the second period of the solving stage.

Turning now to our second conjecture regarding the neural markers of reliability, we

explored the correlates of satisfiability during problem-solving. We expected to see activation

related to satisfiability in regions previously associated with uncertainty encoding, specifically

in the CON. In line with our hypothesis, we found a significant positive relation between unsa-

tisfiability and activity in the CON that started halfway through the solving stage. In line with

our conjecture, we found that the neural markers of satisfiability overlap with regions that

encode probabilistic uncertainty. This suggests that reliability and uncertainty might constitute
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analogous constructs that are encoded similarly across tasks and that could serve a generic role

in decision-making. While our findings provide a potential explanation for the observed neu-

ral activity, further work would be needed to categorically connect these constructs across

tasks. The CON is associated with a multitude of cognitive processes, and the activity we

observed could be linked to any number of these. Therefore, our interpretation, while sup-

ported by our data, should not be seen as definitive. Further research is necessary to connect

these constructs across various tasks definitively and to explore other potential explanations

for the observed neural activity.

Contrary to our expectations, we found several regions that displayed an increase in activity

during satisfiable instances from early on in the solving stage. This result is perplexing because

knowing the satisfiability of the problem equates to having solved the problem, which would

not be expected early on in the trial. A possible explanation for this is that the clusters found

encode evidence accumulation [7, 43] and that accumulating evidence towards the solution in

satisfiable instances occurs at a different rate than in unsatisfiable instances. However, this is

not directly supported by theory. The computational difficulty of finding a solution is deter-

mined by TCC, and the selection of instances in this study ensured that TCC remained bal-

anced between satisfiable and unsatisfiable instances. This entails that, on average, the

expected level of complexity (and evidence accumulation rate) would be the same for both sat-

isfiable and unsatisfiable instances. Alternatively, these activation patterns might reflect the use

of different strategies. For example, if an individual predicts that a given instance could poten-

tially be satisfiable, they could search for a subset of items that meets the defined constraints.

However, if the perception is that the given instance might be unsatisfiable, then the individual

may start a search for proof of infeasibility, like verifying (in an extreme case) whether fitting

even a single item into the knapsack is impossible due to all the item weights surpassing the

allowed weight capacity. However, this account would still require participants to implement

different strategies, based on satisfiability, as early as during the first few seconds of the solving

stage. Overall, future research should attempt to disentangle the effect of proof hardness from

that of satisfiability and complexity. This could be done, for instance, through experiments

aimed at testing more nuanced metrics of proof hardness beyond worst-case complexity

classes.

Moving on now to consider our conjecture related to the neural markers associated with

erring, we explored the effect of accuracy on neural activation throughout the task. It has been

proposed that FPN and CON regions encode task signals related to error detection and error

expectation [25, 27, 31]. We hypothesized that participants would represent a subjective belief

on the expected accuracy (or reward) of their answer (e.g, [29]). In line with our conjecture,

we found that activity in both the FPN and CON was positively correlated with erring during

the response stage, even in the absence of feedback, as was the case in our design (Section 6 in

S1 Appendix).

A puzzling finding in this regard is the fact that neural correlates of accuracy are identified

early on in the trial in the ROIs, especially in instances with low computational difficulty (i.e.,

low proof hardness and low complexity). One possible explanation for this is attentional

engagement on the task. If a participant does not actively engage in the task, they are more

likely to settle on an incorrect solution. In turn, the likelihood of reaching an incorrect answer

due to inattention is higher among instances with low computational difficulty. Together,

these patterns would partially explain the marked difference in BOLD activity between correct

and incorrect trials in the IPS. However, other alternative explanations are possible. Further

work is needed to fully identify the dynamics of effort and attention allocation in computation-

ally complex tasks.
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Overall, we found evidence that suggests the existence of neural markers related to compu-

tational complexity, proof hardness and performance. Taken together, the framework put for-

ward here provides a way to study neural markers associated to subjective beliefs during

problem-solving. It is worth noting, however, that while we modulated complexity and proof

hardness, many other complexity-related features might be relevant, including, for example,

the size of the problem at hand [e.g., 46–51]. Further work in this area is needed to understand

the interaction between different sources of computational difficulty in human problem-

solving.

Finally, to explore the dynamics related to control during complex problem-solving, we

analyzed the functional interaction during problem-solving of three ROIs, two of which have

been associated with cognitive control (i.e., CON) and one region which has been associated

with processes that were deemed highly relevant for the task at hand (i.e., IPS). We studied

synchronization of signals (employing PPI analysis) and explored their effective connectivity

(using GC analysis).

Our results support the view that there is a generalized change in signal synchronization

during the solving stage compared to baseline. Moreover, when exploring the link between

instance properties and synchronicity between regions, we found several clusters whose con-

nectivity was modulated by either satisfiability or TCC. These effects were only present late in

the trial. Specifically, we found that TCC modulated the synchronicity between the rAI and the

rIPS. Additionally, satisfiability modulated the functional connectivity between the right IPS

and two clusters in the left hemisphere, one in the AG and one in the MFG. Overall, these

results suggest a differential recruitment of regions during the task, partially modulated by task

properties late in the trial. Interestingly, the significant clusters identified in this analysis have

been implicated in the performance of mathematical calculations [38, 52], suggesting that they

could support moment-to-moment implementation of strategies. Further work would be

needed in order to assess whether the relation, found here, between instance properties and

functional synchronization is associated to the implementation of different strategies.

Additionally, we found that the effective connectivity pattern was impervious to the level of

TCC and satisfiability. This suggests that the impact of computational complexity on control

would operate by inducing varying levels of activity within specific regions of interest, rather

than through the modulation of the effective connectivity between these regions. In other

words, our findings reveal that while the effective connectivity, which signifies the correlation

in activation among subregions, remains stable, there is a distinct alteration in the flow of

information. This alteration arises from changes in activation within the nodes (i.e., regions)

while the underlying connectivity between them remains unaltered.

∗∗∗

Humans are constantly solving problems that vary in complexity, ranging from perceptual

tasks, such as motion detection and face recognition, to reasoning tasks, such as choosing an

investment portfolio. Understanding how the complexity of these problems affects the neural

processes involved in problem-solving is of crucial importance for the understanding of

human decision-making. Here, we present a framework that allows for the study of the

computational difficulty of human problem-solving. We applied this framework and identified

a dynamic set of regions in which activation was modulated by different properties related to

computational complexity. Overall, our findings provide support to the premise that computa-

tional complexity theory, as applied here, provides a useful characterization of cognitive

demand and reliability for the study of problem-solving in neuroscience.
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4 Materials and methods

4.1 Ethics statement

The experimental protocol was approved by the University of Melbourne Human Research

Ethics Committee (Ethics ID 1749616.3). Written informed consent was obtained from all par-

ticipants prior to the commencement of the experimental sessions. Experiments were per-

formed in accordance with all relevant guidelines and regulations.

4.2 Participants

Twenty right-handed volunteers from Melbourne University and the surrounding community

took part in the study (14 female, 5 male, 1 other; age range = 18–35 years, mean age = 26.6

years). Inclusion was based on age (minimum = 18 years, maximum = 40 years) and on right-

handedness. Each participant performed the knapsack decision task in the scanner and performed

outside the scanner the knapsack optimization task and a set of basic cognitive function tasks.

4.3 Knapsack decision task

In this task, participants were asked to solve a number of instances of the (0–1) knapsack deci-

sion problem (Fig 1a). In each trial, they were shown a set of items with different values and

weights, as well as a capacity constraint and a target profit. Participants had to decide whether

there exists a subset of those items for which (1) the sum of weights is lower or equal to the

capacity constraint and (2) the sum of values yields at least the target profit.

Each trial had four stages. In the first stage (items stage; 3 seconds), only the items were pre-

sented. Item values, in dollars, were displayed using dollar bills and weights, in grams, were

shown inside a black weight symbol. The larger the value of an item, the larger the dollar bill

was in size. Similarly, the larger the weight of an item, the larger its weight symbol was in size.

At the center of the screen, a green circle indicated the time remaining in this stage. In the sec-

ond stage (solving stage; 22 seconds), target profit and capacity constraint were added to the

screen inside the green timer circle. In the third stage (response stage; 2 seconds), participants

saw a ‘YES’ and a ‘NO’ button on the screen, in addition to the timer circle, and made a

response using the keyboard (Fig 1a). Finally, a jittered inter-trial rest period of 8, 10 or 12 sec-

onds was shown before the start of the next trial.

Participants completed 56 trials (7 blocks of 8 trials), each showing a different instance of

the knapsack decision problem. The order of instances was randomized across participants.

The side of the ‘YES’ and ‘NO’ buttons was also randomized.

4.4 Complexity, proof hardness and instance sampling

We modulate the complexity of solving an instance using typical-case complexity (TCC). In

the knapsack problem, TCC is explicitly connected to a set of parameters �a ¼ ðac; apÞ that cap-

ture the constrainedness of the problem [9, 14]. For a knapsack instance with N items with

weights wi, values vi, capacity constraint c and target profit p, the constrainedness parameters

are defined as:

ap ¼
p

PN
i¼1

vi
ð1Þ

ac ¼
c

PN
i¼1

wi
ð2Þ
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These parameters determine the likelihood that a random instance is satisfiable, that is, that

the solution is ‘yes’. Specifically, they characterize where typical instances are generally satisfi-

able (under-constrained region), where they are unsatisfiable (over-constrained region) and

where the probability of satisfiability is close to 50% (satisfiability threshold αs). It has previ-

ously been shown that the computational difficulty of solving the problem is higher when �a is

close to αs [9, 14].

Fixing αc allows us to modulate the complexity by varying the levels of αp. TCC is explicitly

defined based on the distance of αp to the satisfiability threshold αs. Instances with values of αp

near the satisfiability threshold have a high typical-case complexity (high TCC) whereas

instances further away from it—that is, in the under-constrained and over-constrained regions

—have low typical-case complexity (low TCC). It is worth noting that the generalizability of

TCC relies on the covert assumption that the function of TCC in relation to �a is not influenced

by the sampling method (which seems like a reasonable assumption under the condition that

sampling itself is not dependent on �a).

We modulate proof hardness using insights from canonical computational complexity clas-

ses. For NP-complete problems (like the knapsack decision problem), this theory predicts that

it is easier to prove that a solution is correct if the instance is satisfiable than if it is unsatisfi-

able. For example, in the case of the knapsack, for a satisfiable instance (the correct choice is

‘yes’), it suffices to find a subset of items that satisfies the weight capacity and value constraints.

Subsequently, verification that this subset of items satisfies the constraints can be done in poly-

nomial time. In contrast, to confirm that an instance is unsatisfiable (the correct choice is ‘no’)

requires proving that no subset of items exists that satisfies the constraints. It is conjectured

and broadly accepted that verifying such a proof is not in P (the polynomial time complexity

class). Theoretically, the asymmetry reflects the conjectured null intersection between com-

plexity classes NP-complete and co-NP-Complete (Fig 5).

Instances were sampled following a 2×2 balanced factorial design (Fig 6) for the factors

TCC (high and low) and satisfiability (satisfiable and unsatisfiable). Specifically, instances

were sub-sampled from those employed in a previous behavioral study [9]. Instances in that

study were selected such that αc was fixed (αc 2 [0.40, 0.45]) and the instance constrainedness

varied according to αp. 18 satisfiable instances were selected from the under-constrained

region (αp 2 [0.35, 0.4]; low TCC) and 18 unsatisfiable instances from the over-constrained

region (αp 2 [0.85, 0.9]; low TCC). Note that, by definition, sampling from the undercon-

strained region is unlikely to generate unsatisfiable instances, and analogously, sampling

from the overconstrained region is unlikely to generate satisfiable instances. We leveraged

this fact to obtain a balanced design in which half of the instances were satisfiable and half

unsatisfiable. Additionally, 18 satisfiable instances and 18 unsatisfiable instances were sam-

pled near the satisfiability threshold (αp 2 [0.6, 0.65]; high TCC). Half of the instances with

high TCC were forced to have high/low computational requirements (top/bottom 50%),

according to an algorithm-specific ex-post complexity measure of a widely-used algorithm

(Gecode [53]). All instances in the experiment had N = 6 items and wi, vi, c and p were

integers.

In the current study, we randomly selected 56 of the 72 instances sampled in Franco et al.

[9]. Sub-sampling without replacement was done ensuring that the same number of

instances were selected across TCC and satisfiability conditions. Moreover, instances with

high TCC were balanced to require high/low computational requirements according to the

same algorithm-specific complexity measure employed in their study (i.e., Gecode

propagations).
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Fig 5. Complexity classes. The knapsack decision problem belongs to the class NP-Complete (NPC) because it satisfies the dual-qualifying criteria of

NP and NP-hard. It is NP, given that it fulfills the NP defining condition: a YES-certificate of a satisfiable instance can be verified in polynomial time

(P). It is NP-hard since it is at least as hard as any other problem in NP. It is conjectured that P6¼NP, which entails that the NPC problems are not

solvable in polynomial time (i.e., they are harder and require more computational resources—time—to solve than problems in P). Within the class of

NPC problems, there are instances that are harder than others. A key discriminator factoring instances by the respective computational resources

needed for their resolution is their typical-case complexity (TCC). The class noted as co-NP-Complete (co-NPC) comprehends problems such as the

co-knapsack. The aim of this problem is to determine if the existence of a subset of items that satisfy the constraints is infeasible. Every satisfiable

knapsack instance has a counterpart unsatisfiable co-knapsack instance. It is conjectured that co-NPC is not in NP, thereby implying that verifying a

proof of non-existence for an unsatisfiable knapsack instance is not in P; it is harder.

https://doi.org/10.1371/journal.pcbi.1012447.g005

Fig 6. Instances sampled. Instances were sampled using a 2x2 factorial design, ensuring that each participant answered an equal number of instances

for each of the four possible categories of TCC and proof hardness. Each category presents a distinct profile of proof hardness (the computational

difficulty of validating a solution) and complexity (the computational difficulty of solving the instance).

https://doi.org/10.1371/journal.pcbi.1012447.g006
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4.5 Complementary tasks

Participants were presented with a set of complementary tasks outside of the scanner. They

were asked to solve a number of instances of the (0–1) knapsack optimization problem. Similar

to the knapsack decision task, participants were shown a set of items with different weights

and values as well as a capacity constraint. However, unlike the decision variant, no target

profit was presented. Participants had to find the subset of items that maximized total value

subject to the capacity constraint (see Section 3 in S1 Appendix).

We also tested five cognitive capacities that we considered relevant for the knapsack tasks,

namely, working memory, episodic memory, strategy use, processing and psychomotor speed,

as well as mental arithmetic. To do so, we administered a set of tasks from the Cambridge

Neuropsychological Test Automated Battery (CANTAB; see Section 5 in S1 Appendix). Specif-

ically, we asked participants to perform the Reaction Time (RTI), Paired Associates Learning

(PAL), Spatial Working Memory (SWM) and Spatial Span (SSP). In addition, participants

were presented with a set of mental arithmetic problems (Section 5 in S1 Appendix).

4.6 Procedure

Participants were asked to fill in an MRI screening form before attending the experiment.

Once at the experiment, participants were presented with a plain language statement and a

consent form. After reading these and providing written informed consent, participants were

instructed in the tasks and completed a practice session of the knapsack decision task. Partici-

pants then underwent an MRI safety check.

Before being scanned, participants solved the CANTAB RTI task outside of the scanner.

This was followed by the scan session in which they performed the knapsack decision task.

Afterwards, outside of the scanner, they completed the CANTAB RTI task again, followed by

the knapsack optimization task. Subsequently, they completed the remaining CANTAB tasks

in the following order: PAL, SWM and SSP. Finally, they performed the mental arithmetic task

and completed a set of demographic and debriefing questionnaires. Altogether, the experi-

mental session lasted around three hours.

Participants received a show-up fee of A$10, as well as monetary compensation based on

performance. They earned A$1.2 for each correct answer in the knapsack decision task and for

each correct answer in the knapsack optimization task.

4.7 Behavioral statistical analyses

The R programming language was used to analyze the behavioral data. All of the linear

mixed models (LMM), generalized logistic mixed models (GLMM) and censored linear

mixed models (CLMM) included random effects on the intercept for participants (unless

otherwise stated). Different models were selected according to the data structure. GLMM

were used for models with binary dependent variables, LMM were used for continuous

dependent variables and CLMM were used for censored continuous dependent variables

(e.g., time-on-task).

All of the models were fitted using a Bayesian framework implemented using the probabi-

listic programming language Stan via the R package ‘brms’ [54]. Default priors were used. All

population-level effects of interest had uninformative priors; i.e., an improper flat prior over

the reals. Intercepts had a student-t prior with 3 degrees of freedom and a scale parameter that

depended on the standard deviation of the dependent variable after applying the link function.

The t-student distribution was centered around the mean of the dependent variable. Sigma val-

ues, in the case of Gaussian-link models, had a half student-t prior (restricted to positive val-

ues) with 3 degrees of freedom and a scale parameter that depended on the standard deviation
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of the dependent variable after applying the link function. Standard deviations of the partici-

pant-level intercept had a half student-t prior that was scaled in the same way as the sigma

priors.

Each of the models presented was estimated using four Markov chains. The number of iter-

ations per chain was, by default, set to 2000. This parameter was adjusted to 4000 for some

models to ensure convergence, which was verified using the convergence diagnostic R̂. All

models presented reach an R̂ � 1.

Statistical tests were performed based on the 95% credible interval estimated using the high-

est density interval (HDI) of the posterior distributions calculated via the R package ‘parame-

ters’ [55]. For each statistical test we report both the median (β0.5) of the posterior distribution

and its corresponding credible interval (HDI0.95).

No participant nor trial was excluded from the data analysis of the knapsack decision task.

4.8 MRI data acquisition

We collected the fMRI images using a 7 Tesla Siemens MAGNETOM scanner located at the

Melbourne Brain Centre (Parkville, Victoria) with a 32-channel radio frequency coil.

The BOLD signal was measured using a multiband echo-planar imaging sequence

(TR = 800 ms, TE = 22.2 ms, FA = 45˚). We acquired 84 interleaved slices (thickness = 1.6

mm, gap = 0 mm, FOV = 208 mm, matrix = 130x130, multi-band factor = 6, voxel

size = 1.6 × 1.6×1.6mm3) per volume. 380 volumes were acquired on each run while recording

cardiac and respiratory traces.

After five functional runs (one resting state run followed by four task runs), a high resolu-

tion (0.7 mm isotropic) anatomical image was acquired using an MP2RAGE pulse sequence

(TR = 5000 ms, TE = 3.07 ms, TI1 = 700ms, FA1 = 4˚, TI2 = 2700ms, FA1 = 5˚,

matrix = 330×330, voxel size = 0.73×0.73×0.73mm3, FOV = 240 mm, 224 slices, slice thick-

ness = 0.73). Afterwards, another three functional runs were performed, followed by a diffu-

sion weighted imaging (DWI) multiband sequence (TR = 7000 ms, TE = 72.4 ms, FA = 90˚,

FoV = 210 mm, matrix = 170x170, slice thickness = 1.24, voxel size = 1.24m3, 128 slices, multi-

band factor = 2).

4.9 Imaging statistical analyses

4.9.1 Preprocessing. Initial preprocessing of the data was performed using AFNI [56] and

the Advanced Normalization Tools (ANTs) software. For each subject, pulse and cardiac noise

was regressed out from the functional scans. These were then slice-time corrected and the vol-

umes were motion-corrected by registering them to the first volume of the first functional run.

The mean image of the first run was co-registered to the anatomical scan (down-sampled) and

this transformation was applied to all of the functional volumes. Afterwards, each participant’s

anatomical scan was used for calculation of transformation parameters to normalize the func-

tional images into the Montreal Neurological Institute (MNI) space (see Section 1 in S1

Appendix for more details).

4.9.2 Whole-brain analysis (boxcar). Whole-brain analyses were performed by fitting

generalized linear models (GLM) using AFNI [56]. Before the regressions were implemented,

we spatially smoothed the functional volumes with a 4.8mm FWHM Gaussian kernel. Addi-

tionally, volumes with motion or signal outliers were censored from each of the regressions.

We performed GLM regressions to explore three contrasts of interest. Specifically, we tested

the neural correlates of TCC (high TCC vs. low TCC), satisfiability (unsatisfiable vs. satisfiable)

and accuracy (correct vs. incorrect). In each of the regressions, the solving phase (22s) was
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modeled using four boxcar functions of equal duration (5.5s):

y ¼ b0 þ
X4

i¼1

½b
L0

i L0 � boxSi þ b
L1

i L1 � boxSi� þ b
L0

5
L0 � boxresp þ b

L1

5
L1 � boxrespþ

b6boxitems þ bLLeft þ bRRight

ð3Þ

where L0 and L1 correspond to the different levels of interest (e.g., high TCC and low TCC

respectively) and boxSi, boxresp and boxitems correspond to the boxcar functions of the solving,

response and items stages, respectively. Left and Right correspond to the button pressed by the

participant.

Group level analyses were performed using mixed effects multilevel modeling [57]. All

whole-brain analysis results are reported with a clusterwise threshold of p< 0.05 corrected for

multiple comparisons across the whole brain, using an uncorrected voxelwise threshold of

p< 0.001.

4.9.3 ROI specification. We were particularly interested in how control and subjective

beliefs of cognitive demand and reliability were involved in complex problem-solving. To

study these dynamic processes we selected three regions of interest (ROIs) that have been

implicated in the processes of interest. Firstly, we included in our analysis the CON (dACC

and AI) due to its proposed involvement in the allocation of control [30–35] and uncertainty

encoding [25–27], which we conjectured would be highly related to encoding of reliability.

Secondly, we included a region that has been involved in moment-to-moment processing

operations during problem-solving. We expected the knapsack task to engage processing units

associated with number processing and mathematical calculations. Therefore, we selected a

region that has been widely connected to ‘processing’ in mathematical problem-solving, the

right IPS [36–38].

The three ROIs were selected from the clusters found when contrasting high and low TCC

in the last boxcar during the solving stage (period S4). We chose the contrast for the fourth

boxcar for a few reasons. We expected that during this last period of the solving stage we

would be able to see a marked differentiation in the cognitive demand between instances with

high and low TCC. We expected instances with low TCC to require less computational time

and thus, we hypothesized that, on average, participants would still be making calculations

during the period S4 for high TCC instance, but not for low TCC instances. This was further

indicated by a parallel pilot study that found that participants spent on average 17.9s solving

an instance with low TCC and 21.2s on those with high TCC (period S3 ends at 19.5s of solving

stage). Importantly, we believed that these differences in cognitive demand would be reflected

as well in a differentiation in the control activity in the system. Critically, we expected the

monitoring of control variables such as expected performance would differ between types of

instances. For instance, we expected the subjective markers of performance would converge to

actual performance levels in the late stages of the solving stage ([9]; Fig 1), which would imply

higher subjective beliefs of expected performance for low TCC. Additionally, we expected that

this contrast would allow us to control for task-set signals [23]. We conjectured that the task-

set signals would be maintained during the whole solution stage, so the proposed contrast

would not capture task-set signals encoding goals nor the underlying structure of the task.

Among the significant clusters found around the right IPS, we chose the IPS (AG) cluster

(peak: x = 32, y = -65, z = 47) because of its overlap with the regions that were found to be asso-

ciated with mathematical calculations in a meta-analysis [38].

4.9.4 ROI temporal dynamics. We explored the dynamics in these ROIs by fitting gener-

alized linear models (GLM) using AFNI [56]. Analogous to the whole brain GLM analysis (i.e.,

boxcar analysis), we spatially smoothed the signal and censored outliers from the regression.
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In this case, in contrast to the whole brain analysis GLMs, we modeled the trial time using a

Finite Impulse Response (FIR) approach, in which each trial was modeled using 17 simple

basis functions (tents).

This approach allowed us to take advantage of the short TRs (0.8s) used for the functional

acquisition sequence, which were possible due to the ultra-high-field MRI used in the experi-

ment. Modeling the BOLD signal using FIR allowed us to obtain 17 beta estimates βFIR for

each voxel for each of the conditions considered. Note that these estimates model the hemody-

namic response directly and, therefore, they do not factor in the lag of the BOLD signal. In

order to link each βFIR to a time in the task, we assumed a lag of 5 seconds in the hemodynamic

response.

We obtained a 2×2 βFIR-estimates for the factors TCC (high and low) and satisfiability (sat-

isfiable and unsatisfiable). We explored the dynamics of each ROI by estimating the average

βFIR over all of the voxels from each ROI for each condition. The ROI signal aggregation was

performed using python 3.7 and the nilearn library.
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