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Shared ancestry inference

The ancestry shared between two haploid genomes can be described by the cumulative

coalescent function (CCF), which is a monotonically increasing “coalescent profile” that

expresses the fraction of a given (target) genome that has coalesced with another (comparator)

genome up to a given point back in time. We use a dynamic programming technique for

maximum likelihood decoding of the CCF, which operates on the distribution of allele sharing

observed between two haplotype sequences, given the (estimated) ages of alleles. The method

assumes independence of variants and ignores error in age estimates. We implemented this

method in C++ and made the source code available online.* The rationale of the method is

illustrated in the figure on Page 2; the following section describes the algorithm in detail.

1 Cumulative coalescent function (CCF)

Let M be the number of mutations carried by a given target genome for which the age,

denoted by φ, has been estimated. These are sorted from most recent to oldest age to obtain a

sequence of time points, indexed by i = 0, 1, 2, . . . ,M − 1, such that

φ0 ≤ φ1 ≤ φ2 ≤ . . . ≤ φM−1.

Corresponding to the above, we generate a sequence of observations,

ω0, ω1, ω2, . . . , ωM−1

* https://github.com/pkalbers/ccf
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where each observation in the age-sorted sequence is encoded as

ω =

 1 if shared

0 if unshared
(1)

to indicate the two possible observation states; shared if both the target and the comparator

genomes carry the mutation, or unshared if only the target genome carries the mutation. The

shared state indicates that the two genomes coalesce more recently than (or at) the time of

the mutation event, while the unshared state indicates coalescence further back in time. Note

that we only consider mutations carried by the target genome, because the times of unshared

mutations carried by only the comparator are independent from the timings of coalescent

events along the target genome.

Schematic of shared ancestry inference using dynamic programming. The figure shows a schematic
representation of two genomic sequences (top); labels a, b, . . . , h identify the derived alleles (orange) carried by
a given target genome, for which allele age information are available. The genealogical relationship between
the target and a given comparator genome is characterized by a sequence of trees. The mutation event that
gave rise to an allele is indicated (yellow) on each tree at some point in the past. We define two observation
states; shared (both the target and comparator carry the derived allele) and unshared (only the target carries
the derived allele). Unshared alleles where only the comparator carries the derived allele are ignored. Given
knowledge about the age of alleles, we sort the trees by the time of mutation (from youngest to oldest) to
obtain the age-sorted observation sequence of shared and unshared states (middle). The time of coalescence
between the two genomes is indicated by the shared or unshared state (bottom); we expect shared alleles
to coalesce more recently than the time of mutation, and unshared alleles to coalesce further back in time,
assuming that mutations and the trees on which they occurred are independent. Knowledge about the times of
the mutations carried by a given target genome allows us to determine the relative order of events of lineages
coalescing with the target genome. We thereby seek to infer the fraction the target genome shares with the
comparator genome from the sequence of coalescent events as a function of time; referred to as the cumulative
coalescent function (CCF), which we infer using a dynamic programming method. In the figure, the inferred
CCF is indicated by the shaded area (blue).
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The fraction of the ancestry a given target genome shares with another genome is

discretized at the level of a single nucleotide. This being impractical for analytical purposes,

we use a discrete choice approach as an approximation technique. We define {δj}j=0...S as

the parameter space of possible states for the CCF, where 0 < δj ≤ 1. For S states, we obtain

δj =
j

S
, for j = 1, 2, . . . , S (2)

and set δ0 = ε, where ε is reasonably small; 0 < ε� 1/S.

Our goal is to infer the most likely sequence of fractional states that explain the age-

sorted sequence of observed sharing states, such that we can subsequently assign an ancestry

proportion (fraction) to the time of each mutation and, hence, infer the CCF as a function of

the time by which the two genomes share a certain fraction of their genomes due to common

ancestry.

The observation sequence is treated as a series of M independent Bernoulli trials,

where the probability of observing the shared state is P (ω = 1) = p, and P (ω = 0) = 1− p
for the unshared state, such that the probability mass function (PMF) is given by

f(ω | p) = ωp+ (1− ω)(1− p). The likelihood function for p as a parameter in a series

of n observations is L(p | ω1, . . . , ωn) =
∏n
i=1 f(ωi | p). Importantly, we assume that p is

proportional to the fraction of the ancestry shared between the two genomes; that is,

the probability of observing the shared state is proportional to the CCF. This implicitly

involves maximizing the likelihood L(p0, p1, p2, . . . , pM−1 | ω0, ω1, ω2, . . . , ωM−1) for all

possible combinations of the continuous probability parameters, which has no closed solution.

We therefore define every {pi}i=0...M−1 to take values in the fractional state space {δj}j=0...S

and use dynamic programming to decode the most likely sequence of fractional states.

The steps of the algorithm and inference of the CCF are formulated below. Note that the

C++ implementation of the algorithm performs certain operations on log-scale which, for

simplicity, we have omitted here.

Initialization. Let A,B denote two matrices of size M × (S + 1). These are initialized at

the first site in the sequence, for states in j = 0, 1, 2, . . . , S,

A0,j = ω0δj + (1− ω0)(1− δj) (3)

B0,j = 0. (4)

In context of the recursion below, computing Ai,j becomes equivalent to obtaining the

maximum likelihood over the discretized parameter space {δj}j=0...S conditional on the

sequence of observations. Matrix B stores a pointer to the parameter that maximizes the

likelihood at each position in the sequence.

3



Recursion. Moving along the sequence of observations, for i = 0, 1, 2, . . . ,M − 1, we

compute for each state in j = 0, 1, 2, . . . , S,

Ai,j =
(
ωiδj + (1− ωi)(1− δj)

)
× max
k=0...j

[
Ai−1,k

]
(5)

Bi,j = argmax
k=0...j

[
Ai−1,k

]
. (6)

The recurrence relation in Ai,j is to update the likelihood incrementally, where Bi,j stores

the state that makes Ai,j most likely. Note that k may not exceed the current index j, which

is to ensure that transitions to the current state from a higher state have zero probability.

Termination. We define Z as a zero-indexed array of length M to store the index of states

in the subsequent traceback step. Likewise, we define P as a zero-indexed array of length M ,

in which the inferred path sequence will be stored. At the last position in both arrays, we set

Z(M − 1) = S (7)

P(M − 1) = δS = 1 (8)

which reflects the underlying assumption that the ancestry of the two genomes can be traced

back, eventually, to a single origin in the past.

Traceback. We seek to find the optimal path through the parameter space {δj}j=0...S that

maximizes the likelihood given the observation sequence. Tracing back from the terminal

position, for i = M − 1, M − 2, . . . , 1, we compute

Z(i− 1) = Bi,Z(i) (9)

P(i− 1) = δZ(i−1). (10)

We then obtain the CCF by mapping the inferred state path at Pi to the corresponding

variant age φi, which gives the inferred fraction of the genome shared at each time point in

{φi}i=0...M−1.

Finally, we define the CCF as a function of time, denoted by Λt for t ∈ (0,∞), where

Λ0 = 0 and Λ∞ = 1. In practice, we approximate Λt using linear interpolation over a fixed

grid of time points; for example, to jointly assess the CCFs from multiple individuals at the

same time points in downstream analyses. For this, we write

Λt =
Pk−1 (φk − t) + Pk (t− φk−1)

φk − φk−1
, for k = argmin

i=1...M

[
|φi − t|

]
(11)

where t is taken from a fixed grid of L time points in {ti}i=1...L, which may or may not overlap

with the estimated allele ages in {φi}i=0...M−1.
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2 Coalescent intensity function (CIF)

For a given time interval (or “epoch”), we infer the intensity of coalescence between a target

and comparator genome from the rate of change (gradient) of the CCF. Specifically, we

compute the coalescent intensity function (CIF) as

λ(ti, tj) = log
[
1− Λ(ti)

]
− log

[
1− Λ(tj)

]
(12)

where ti < tj , which denote the lower and upper time points that delimit a given epoch,

respectively. The logarithmic difference approximates the percent change as a smooth

function over time, which is appropriate given the continuous-time coalescent process. Note

that the above is only defined for Λt < 1.

The CCF approximates the cumulative distribution of the time until the comparator

genome has fully coalesced with the target genome, where the fraction shared between the

two genomes is defined proportionally to time T as a random variable. Equivalently,

Λt ≡ F (T ≤ t) ≈ 1− e−
∫ t
0 λ(u) du (13)

which follows from the assumption that coalescent events are mutually independent and the

time to coalescence is approximately exponentially distributed with (instantaneous) rate λ(t).

Note that t is scaled in units of constant size N0 (or, more commonly, denoted by Ne). The

expression given in Equation (12) is therefore equivalent to the intensity parameter of a

Poisson process; namely

λ(ti, tj) ≡
∫ tj

ti

λ(u) du = λ̄× (tj − ti) (14)

where λ̄ is the average (constant) rate of coalescence during the epoch considered.

3 Effective population size (Ne) equivalent

Generally, changes in population size induce changes in the rate of coalescence, such that

the inverse of the coalescent rate is equal to the relative population size at time t. Thus,

the time-variable population size is given by the relation Nt = N0/λt, where N0 is the size

constant by which time is scaled. Note that we have λt = 1 if population size is constant over

time (equal to N0).

Here, we use the CIF inferred for a given target genome to estimate the size of the ancestral

population from which it derived in the past. Because the ancestry of a single genome is

a distribution over many genealogical relationships, tracing back to different populations

and at different points in time, we consider the pairwise coalescent history inferred between

the target genome and a larger sample of comparator genomes, to obtain an estimate of

the ancestral population size from the strongest signal of shared ancestry within a given
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time interval. Analogous to notation of the effective population size in population genetics

modeling, we refer to this estimate as the Ne equivalent (denoted by Nẽ below).

For a given epoch that is delimited by time points ti, tj , we compute

Nẽ(ti, tj) = N0 × (tj − ti)× max
k=1...n

[
λk(ti, tj)

]−1
(15)

where k identifies the CIF in a sample of n comparators available for a given target. Note that

we use the maximum CIF to obtain a non-parametric estimate of the population size, but

which is restricted by the empirically determined parameter space {λk}k=1...n of the sample.

Hence, in practice, CIFs are inferred against comparators from a large sample of individuals

with both similar and diverse ancestral backgrounds, as Nẽ tends to be overestimated if the

intensity of coalescence with available comparators is low. Likewise, the length of an epoch

is chosen to allow sufficiently many comparators to coalesce with a given target.

4 Aggregation of CCFs across chromosomes

The dynamic programing algorithm presented in Section 1 enables us to rapidly compute

the CCF between every pair of haploid chromosomal sequences in large sample data sets.

To generate a summary of the ancestry shared between diploid individuals (or groups of

individuals), we combine information across the different chromosomes as follows. Consider

a sample of N diploid individuals whose genome is constituted of K chromosomes (for

example, K = 22 if considering autosomes in humans). We infer the CCF separately for each

chromosome k, between each of the 2N target sequences in turn against 2N − 1 comparator

sequences. CCFs are approximated at a fixed grid of L time points to subsequently match

chromosomes 1, 2, . . . ,K at every time point in {ti}i=1...L. Profiles are aggregated, first,

among diploid individuals and per chromosome k, by computing the average fraction Λt at

each time point t, and then across chromosomes by computing the (weighted) mean, where

weights might be assigned to different chromosomes, for example, conditional on the number

of dated variants available per chromosome. This process is illustrated in the figure on Page 7,

but also explained in more detail below.

There are four CCFs inferred between the two haploid sequences of a diploid target

individual I and the two haploid sequences of comparator individual J , for I 6= J ; namely

Λkt (I0, J0), Λkt (I0, J1), Λkt (I1, J0), Λkt (I1, J1)

where k refers to the chromosome currently considered, and the subscripts 0, 1 indicate the

haploid sequence per diploid individual. We also obtain two CCFs between the haploid

sequences of the same individual (I = J); namely

Λkt (I0, I1), Λkt (I1, I0).
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Aggregation of coalescent profiles per diploid individual. Panel A shows the schematic representation
of the data available after inference of the CCF between each pair of haplotypes in a large sample of N
diploid individuals. Each chromosome 1, 2, . . . ,K can be represented as a three-dimensinoal matrix of
size 2N × 2N × L, where L is the number of time points to which CCFs have been approximated. Panel B
illustrates the aggregation of CCF data per diploid individual. Every time “slice” in {ti}1...L is represented as
a 2N × 2N matrix containing the inferred fraction (Λi) each of the 2N target haplotypes shares with each of
the 2N − 1 comparator haplotypes. We compute the average fraction among the four data points per pair
of diploid individuals. Panel C shows the resulting, averaged matrices for each chromosome k, which are
further aggregated into a single three-dimensional matrix of size N ×N × L. This is done by computing the
weighted mean across chromosomes, where weights (

∑
Wk = 1) are assigned, for example, to up or down

weight chromosomes with higher or lower numbers of dated variants, respectively.

The aggregated CCF between the target and the comparator individual is denoted by Λ∗t (I, J),

which we compute as

Λ∗t (I, J) =
K∑
k=1

(
1

4

1∑
a=0

1∑
b=0

Λkt (Ia, Jb)

)
×Wk (16)

where Wk refers to the weight applied to each chromosome, for example, calculated as

Wk = vk/u, where vk is the number of variants dated on chromosome k, and u is the sum of

variants dated across all chromosomes considered. Similarly, to aggregate the CCFs within

the same individual, we compute

Λ∗t (I) =
K∑
k=1

1

2

(
Λkt (I0, I1) + Λkt (I1, I0)

)
×Wk . (17)

The above can be extended to aggregate the CCFs obtained for the haploid sequences of

species with higher ploidy, or across groups of individuals to summarize the ancestry shared

between defined demographic units.
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