
S1 TEXT

A. Detailed description of the segmentation method

An overview of the segmentation procedure is depicted in Fig 2. This section provides a more 

detailed description of some of the key steps included in the segmentation method. Please also 

note  that  source  code  and  the  latest  documentation  (including  advice  on  how  to  adjust 

parameters) can be found on the Nessys online repository:

 https://framagit.org/pickcellslab/nessys

A.1. Tree-structured ridge following procedure (Fig S1)

The purpose of this step is to identify outlines of nuclei within a given 2D image plane. 

The key idea is  that  ridges  are  built   incrementally  to form a series  of  ‘ridglets’  organised 

hierarchically  in a tree until some stop conditions are met.  One tree is built  per maximum  

detected in the previous step. Such a ‘ridglet tree’ can then be used to build a list of 2D shapes.  

The ‘best’ shape is then selected and drawn in the result image (See section A.2.)

Fig S1 depicts the procedure which generates the tree and Movie S2 shows a real example of  

this task in slow motion.

Inputs received from the previous steps include:

• The original NE signal for a specific plane

• The corresponding ridge-enhanced plane (steerable filter output)

• Image locations to use for initialisation of the trees (maxima identified in the 

previous step)

Basic procedure:

The tree building process starts by the selection of a unique location in the 2D plane (Fig S1A-1).  

Maxima are initially sorted in descending order of signal intensity. Next, pixel intensities are  

collected along the perimeter of a circle centered on the selected maximum (Fig S1A-2). 

Intensity peaks in this intensity profile are detected to generate new ridge points from which 
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ridges are traced back towards the center of the circle. This system makes it possible to “jump” 

over gaps in the ridge signal (see also Fig S1B). The radius of the ‘search circle’ is given by the  

parameter ‘search radius’ in the Nessys interface. A larger radius allows in principle a larger gap 

to be crossed.

At this point only half-ridglets are created. In a second phase, the ridges are traced outward (Fig 

S1A-3) until stop conditions are met (as explained further below). Once the outward tracing 

stops, a full ridglet is built. As mentioned earlier, ridglets are maintained in a tree structure so 

the origin can be traced back from any ridglet. Finally, the most outward points of the ridglets 

are turned into new search circle centres and the procedure is repeated until the full ridglet  

tree is constructed (Fig S1A-4).

Pixel-level ridge following:

At the pixel  level, ridges are followed using a moving kernel system (Fig S1- top right).  The 

kernel includes 4 pixel categories. 

- The center pixel C which is the current location of the tracing kernel

- The ‘rear’ pixel R which defines the direction of the tracing process (R is located behind C).

- ‘Illegal’ pixels which are neighbour pixels which cannot become the next ridglet point. This  

prevents ridglets to form turns that are too sharp.

- ‘’potential’ pixels which define the next possible ridglet points.

The location of R and C are defined during initialisation and depends whether the following 

procedure occurs during phase 1 or phase 2 of the ridglet creation. During tracing, the kernel 

moves  sequentially  to  the  brightest  of  the  3  ‘potential’  pixels.  Indeed,  ridges  are  brighter 

towards their center and dimmer on the sides. With this system and knowledge of the location 

of the rear pixel, only 3 pixels are read at each iteration, making the procedure particularly  

efficient.

Fail and success conditions:

Stop conditions for the ridge following procedure during phase 1 and phase 2 of ridglet creation 

are shown in Fig S1B.
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During phase 1, there are 4 possible outcomes:

• The  tracing  process  finishes  at  origin  (O  in  Fig  S1B).  In  this  case  the  half-ridglet  is  

constructed with its parent ridge point maintained at the initial origin point.

• The tracing process stops because the ridge intensity drops below a given threshold (I in 

Fig S1B).  In this  case,  the ridglet is discarded. Note:  the threshold is defined by the 

‘delta’ parameter where threshold = delta x starting ridge point intensity. 

• The trace moves outside the ‘probing’ circle and never reaches the origin (M in Fig S1B). 

In this case, the trace is corrected by connecting the trace to the origin at its closest 

point in the path.

• The trace reaches the parent ridglet before reaching the origin (P in Fig S1B). In this case  

the ridglet is maintained and the origin for all successful ridglets is rebased where the 

trace reaches the parent ridglet. If multiple traces of this type occur, the rebase point is 

chosen to be the closest from the parent ridglet crossing point.

Note  that  when this  step  if  performed without  a  parent  (first  iteration),  only  I  and  O are  

allowed.

During phase 2,  four outcomes are again possible:

• The trace stops because it has reached a maximum distance from its starting point (D in 

Fig S1B). In this case, the full ridglet is constructed, it is maintained in the tree and its  

last point will be used as a new origin for the next iteration. (The maximum distance is  

defined by the search radius parameter) 

• The tracing process stops because the ridge intensity drops below a given threshold (as 

in phase 1, the threshold is defined by the delta parameter).  Here the full  ridglet  is  

completed and maintained but it is set as a leaf in the tree and will not be used in the 

next iteration.

• The trace forms a loop and reaches its other half-ridglet (L in Fig S1B). In this case the 

ridglet is maintained but the trace from phase 2 is discarded. The half-ridglet from phase 

1 is set as a leaf in the ridglet tree.

• The trace reaches an ancestor ridglet (not its direct parent – C in Fig S1B). In this case 

the ridglet is constructed, maintained in the tree and set as a leaf. In addition, the point 
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reached in the ancestor ridglet is also set as an extra leaf in the tree. This is to make it  

possible to form a 2D shape using the trace connecting these 2 points in the next step 

(see section B2.)

Finally, a ridglet will also be tagged as ‘leaf’ if the maximal tree depth has been reached. This 

maximal depth is function of the “max radius” parameter. This stop condition is useful to avoid 

the propagation of the tracing procedure too far away from its origin.

A.2. 2D Shape creation and selection with a Naive Bayes Classifier

Shape creation:

The previous step, generates a ridglet tree. From this tree, it becomes possible to construct a 

list of 2D shapes using all leaf pair combinations. An example is shown in Fig S2A where each 

shape is created by connecting the two leaf ridge points together with a straight line and by 

following the ridglets up to their least common ancestor in the tree.

Shape pre-selection:

At  this  point  a  ‘minimal  validity  test’  is  performed for  each  shape  using  simple  geometric  

features.  This  makes  it  possible  to  pre-filter  the  shapes  before  computing  more  complex 

features and thus to speed up the process of shape selection.

A shape T passes the test if it conforms to the following constraints:

1.  Pmin < Pshape <Pmax 

where  Pmin is  the  perimeter  of  a  circle  with  user-defined  min  radius,   Pshape  is  the 

perimeter of the tested shape and   Pmax is the perimeter of a circle with user-defined 

max radius.

2. Pshape must be 8 times greater than the distance between the two leaf ridge points. 

3. The compactness of the shape must be > 4.

4. If  the tested shape T overlaps  with another  existing shape E,  then the area of  the 

intersection must be less than 20% of the area of T and less than 20% of the area of E. 

5. Finally if overwriting the intersecting portion of E with T leads to E becoming smaller  

than the minimal  size specified by ‘min radius’, then T fails the test. 
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Note: this check contains a few constants  that were adjusted during the development of the 

software based on preliminary results with test samples (acini images). We appreciate that this  

may be sub-optimal and may constitute a point for improvements in the future.

Shape  features for classification and ranking:

After  the  pre-selection  step  described  above,  additional  features  are  computed  for  the 

remaining shapes:

These features are described in the table below.

IQR: Inter-Quartile Range, k: curvature computed from the chain code as described in [1]. For a 

definition of Ridge, inner area, concave or convex points in the shape, please see Fig S2 B and C.

 Final decision on shape selection:

The features described above  are used for classification and ranking of the shapes.

For this purpose, we built a Gaussian Bayes classifier using the 11 shape features described in  
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Compactness Compactness

Curvature Zeros

Curvature non Zero Measures how ‘intense’ is the convexity of the shape

Sum Concave

Sum Convex

Normalised Median to Mean Difference of the 
intensities on the enhanced image along the ridge 

Measures how skewed the distribution of itensities are 
along the ridge in the filter response image

Normalised Interquartile Range of the intensities 
distribution on the enhanced image along the ridge 

Measures how variable the signal of the filter response 
is amongst ridge pixels

Normalised Median to Mean Distance of the intensities 
on the input image along the ridge 

Measures how skewed the distribution of itensities are 
along the ridge in the original NE signal

Normalised Interquartile Range of the intensities 
distribution on the input image along the ridge 

Measures how variable the signal of the original NE 
signal is amongst ridge pixels

Normalised Median to Mean Distance of the intensities 
on the input image inside the polygon defined by the 
ridge

Measures how skewed the distribution of itensities are 
within the inner area of the shape in the original NE 
signal

Normalised Interquartile Range of the intensities 
distribution on the input image inside the polygon 
defined by the ridge

Measures how variable the signal of the original NE 
signal within the inner area of the shape

Measures how similar the shape is to a circle. Values 
close to one indicate an quasi-circular shape.

Proportion of ridge pixels where the local curvature is 
zero

Measures how much of the shape outline is composed 
of straight lines

Average of the absolute curvature over the non zero 
curvature pixel

Sum of curvature values over the concave points along 
the ridge

Measures the level of concavity in the contour of the 
shape

Sum of curvature values over the convex points along 
the ridge

Measures the level of convexity in the contour of the 
shape

|(Median( Ridge)−Mean(Ridge))|
Mean(Ridge)

IQR(Ridge)

Mean(Ridge)

IQR(Ridge)

Mean(Ridge)

|(Median(Ridge)−Mean(Ridge))|
Mean(Ridge)

|(Median( Inner Area)−Mean(Inner Area))|
Mean(Inner Area)

IQR(Inner Area)

Mean(Inner Area)

Area−Perimeter
Area−√ Area

Number of Ridge pointswith k=0
Total Number of Ridge points

∑ kConvex−∑ kConcave
N (Ridge with k=0)

∑ kConcave

∑ kConvex
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the previous section. We chose to use a Gaussian Bayes classifier because of its simplicity and  

because Gaussian Bayes classifiers are known to be well suited to classify large datasets with 

minimal amount of training data. (training data used in this study are available as .tsv files in 

supplementary information).

1. Training:

For  training,  the  classifier  is  initialised  with  equiprobable  priors  for  two classes  ‘valid’  and 

‘invalid’ equal to 0.5. The training dataset can be generated interactively in the graphical user  

interface of Nessys (see the online video tutorial) or by loading an existing training set (we 

provide training sets  used in this study in supplementary information).

In the interface we have set to 10 the minimum number of shapes of each class for considering 

the classifier to be valid.

In practice, we obtain satisfactory results with a training set consisting of 90 shapes on average.  

Selecting shapes in the Nessys interface is a rapid process, this corresponds roughly to 2 to 5 

min in terms of time spent in the Nessys interface

 

2. Ranking

During segmentation, the shapes that remain after the ‘minimal validity check’ are associated 

with a score. This score is defined as the posterior probability of the shape being valid (pValid) 

(using the 11 feature vector) or as the negative of pInvalid (posterior probability of the shape  

being invalid) if pInvalid > pValid.

Once the score has been computed for all shapes of a tree, the shape with the highest score is  

selected. It is drawn in the result image only if its score is positive.

A.3. Depth linkage procedure

Once all planes have been segmented, individual areas are linked together into 3D volumes (Fig  

S3). The procedure is as follows:

• We first create a directed graph (V, E) of potential connections where V are areas and E 

define potential linkage (Fig S3 A). The required conditions are: 

◦ Create an edge E to the shape in the next plane if:
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▪ the inter-centroid distance is less than threshold (Fig S3 B - top)

▪ the shape overlap is more than the minimum percentage of each area (Fig S3 B -  

bottom)

◦ Create an edge E to the shape in the subsequent planes if 

▪ the number of ‘jumped’ planes is less than a given threshold (Fig S3 C - left)

▪ the shape is not already linked to other areas in previous planes (Fig S3 C - right)

When an edge is created, ‘matching’ features are computed and assigned to the edge. 

So  they  can  be used for  edge ranking  during  the graph colouring  step  (see further 

below). These features include:

▪ the inter-centroid distance

▪ the jaccard index

▪ the sum of percentage of overlap of the two shapes

▪ the barycentre of the intersection of the two shapes

• Once the graph is initialised, we look for regions of ambiguity within the graph (vertices 

with  more than 1 incoming or outgoing edge,  (Fig S3D)). These ‘ambiguous cases are 

resolved according to the following rules:

◦ if multiple connections are found both above and below the area, then a correction 

is performed which leads to the splitting of the area (Fig S3D). To decide how the 

area is split, the JI is computed between the area and the union of adjacent shapes 

in the above plane or in the plane below the area. The comparison of JI  defines 

which of the above or below shapes will be copied in place of the current area (Fig 

S3D). NB:  to  account  for  this  correction in  subsequent  steps,  the newly created 

edges are assigned the ‘winning’ JI.

◦ If multiple connections are found above the area only, the JI is computed between 

the area and the union of adjacent shapes in the above planes. If this new JI is higher 

than the JI found in the connection below, then the area is split (replaced by a copy 

of the shapes found in the above plane). Otherwise, no correction is applied.

◦ If multiple connections are found below the area only, then the procedure described 

in the previous point is applied, only in the opposite orientation.

• After ambiguities have been resolved, areas are assigned a ‘volume colour’ using a graph 

colouring procedure (Fig S3E). This step is described below:
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◦ Edges are sorted in descending value of the JI. (Most similar areas are colored first).

◦ Then, for each edge, we check the colour of the source and target area:

▪ Case 1: None have a colour: we initialise a new volume by creating a new unique 

colour and assigning this colour to both areas.

▪ Case 2: Only 1 has a colour: we test if the volume resulting from adding the non 

coloured area would be within user-defined bounds. If it is, the non-coloured 

area is  assigned the same colour as the known volume. Otherwise, The non-

coloured area is given a new unique colour and a new volume is initialised.

◦ Finally,  small volumes (smaller than user-defined bounds) that remain in the graph 

at the end of the procedure are merged to larger adjacent volumes if the resulting 

volume remains inferior than the average volume found in the graph +/- 3 sigmas. 

• At the end of the procedure, optional post-processing steps are available to refine the 

resulting segmentation (Fig S3F):

◦ Intensity-based split: This procedure attempts to identify merged nuclei based on 

the profile of the signal intensity along the z axis (Fig S3F - left). When two nuclei are 

merged together in the z axis, intensity is expected to peak close to the centre of the 

volume. The volume is split  if  the two resulting volumes are within user-defined 

bounds.

◦ Displacement-based split:  This step attempts to find merged nuclei  based on the 

rate  of  displacement  of  the  centroids  of  the  areas  forming  the  volume  when 

iterating along the z axis (Fig S3F – middle). When two nuclei are merged, the rate of  

displacement is expected to peak where the volume needs to be split. Again, the 

volume is split if the two resulting volumes are within user-defined bounds.

◦ Volume  smoothing:  This  step  uses  3D  morphological  filters  (closing  operation 

followed by an opening operation) in order to fill holes and to smooth the resulting 

3D shape (Fig S3F – right). Finally, tips are added at the bottom and top of the shape 

using a dilation in the z axis with an offset to place the tip along the main axis of the  

shape.

NB: This procedure is subject to change as we may further improve the method over time. We 

have  setup  an  issue  tracker  (https://framagit.org/pickcellslab/nessys/issues)   in  our  GitLab 
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repository which will enable anyone to look at scheduled plans to improve Nessys and also to  

propose changes and fixes. 

B. Complementary details for the performance assessment procedure

B.1. Error counting

The  steps  outlined  below  describe  the  procedure  implemented  in  the  segmentation 

comparator module to identify segmentation errors and accurate detections:

1. For each shape in the GT image, we associate the shape in the tested segmentation image 

which possesses the biggest overlap. A reference of each matching pair is kept in memory as 

we iterate over GT shapes(forward match).

2. The same is done in the opposite direction: for each shape in the tested image, we identify 

the best matching shape in the GT image. The reference for each matching pair is kept in 

memory (backward match)

3. Shapes are then classified as follows:

a. Miss: the GT shape shares less than 5% of overlap with its forward match (95% of the  

shape is background in the test image)

b. Spurious: the tested shape shares less than 5% of overlap with its backward match (95% 

of the shape is background in the GT image)

c. Merge: There is more than one forward match for the given GT shape in the tested image

d. Split: There is more than one backward match for a given tested shape in the GT image.

e. Accurate:  There is  exactly one backward match and one forward match for  a  pair  of 

GT/tested shape.

NB: Shapes are excluded from the analysis if the matching shape in the GT image is in contact  

with any of the 6  image borders. 

For  each  GT/Tested  image  pair  given  as  input  to  the  program,  an  image  with  the  same 
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dimensionality of the input image is generated. This output image represents a map of the 

shape classes defined above. GT and detected nuclei are drawn as an outline and given a label 

which indicates their class as follows: ACCURATE = 1, EXCLUDED = 2, MISS = 3, SPURIOUS = 4, 

SPLIT = 5, MERGED = 6. Applying a look up table to this image such as the ‘16-colours’ Lut in 

imageJ allows to visualise the accuracy of the segmentation method (Fig S4 C, see also Fig 3)

B.2. Precision and recall

Precision  and  recall  were  computed  in  LibreOffice  calc.  based  on  the  output  of  the 

segmentation comparator.

Precision is defined as 
TP

TP+FP
and Recall as 

TP
TP+FN

TP (true positives) is defined as TP = Ntest−FP

where  Ntest is  the total  number of  shapes in the test  image minus the number of  shapes 

excluded from the analysis and FP (false positives) FP=Nspur+Nsplit×(Nfrag−1)

where Nspur is the number of spurious shapes, Nsplit is the number of split event and Nfrag is 

the average number of fragments per split shape.

FN (false negatives) is defined as FN=Nmiss+Nmerge×(Nms−1)

where Nmiss is the number of miss event,  Nmerge, the number of undersegmentation event 

and Nms the average number of shapes per merge event.

B.3. Morphometric analysis

We performed the computation of morphometric features in a software built in our lab called  

PickCells (Blin et al., in preparation, source code is available at https://framagit.org/pickcellslab) 

and exported features to R [2] in order to build the plots shown in Fig 4C and Fig S5. Features 

were computed as follows:

▪ Anisotropy:
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To measure the anisotropy for a given 3D shape, we computed the covariance matrix from the  

list of voxel coordinates of the shape and performed its eigen-decomposition. Our code uses 

the Math3 Apache library (http://commons.apache.org/proper/commons-math/). Anisotropy 

was defined as: A=1−
λ2+λ3

2λ1
where lambda 1, 2 and 3 are the 1st, 2nd and 3rd eigenvalues 

of the decomposition respectively. The ‘anisotropy difference’ shown in Fig 4C is the anisotropy 

value of the tested shape minus the anisotropy value of the matching GT shape.

▪ Eigen vector angles

We computed 3D eigen vectors from the eigen-decomposition of the covariance matrix of the 

list of 3D coordinates. The eigen vector angle shown in Fig 4C is the angle between the first 

eigen vector of the tested shape and the first eigenvector of the GT shape expressed between 0 

and 90°.

▪ Jaccard Index

The Jaccard Index (JI) between a tested shape and its matching GT shape was computed by 

expressing  volumes  (total  volume  and  volume of  the  shapes  intersection)  as  a  number  of  
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voxels.  JI  was  defined  as  JI=
IGT

V G+V T−IGT
 where  IGT is  the  volume  of  the  intersection 

between the GT and the tested shape, VG is the volume of the GT shape and VT is the volume of 

the tested shape.

▪ Intensity distance

To simulate a heterogeneous expression of 3 transcription factors, we used the 32bit manually 

segmented output and applied the following procedure in ImageJ:

- Apply Lut 'Random_RGCor'

- Convert to RGB

- Gaussian blur (std = 1/3 of cell radius)

- Unsharp Mask (sigma = 6 and strength = 0.6)

- Add Gaussian noise with a standard deviation equals to 10.

We then converted the image to RGB to obtain 3 channels. To compute the intensity distance,  

we then measured the average intensity for each channel to obtain a 3D ‘colour coordinate’ for  

each shape. The ‘intensity distance’ shown in Fig 4C is the euclidian distance between the 3D 

colour coordinates of the tested shape and its best matching GT shape. 
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▪ Inter-centroid distance: 

The inter-centroid distance corresponds to the euclidian distance between the centroid of the 

GT shape and the best matching tested shape.

▪ Relative volume difference

The relative volume difference was defined as V dif=
V T−V G

V G

▪ Neighbours difference 

To identify  neighbours  for  each individual  shape  in  an  image,  we first  created  a  Delaunay 

triangulation using the centroids of the shapes as input. We then removed edges in the graph  

by applying a cutoff of 5µm to the shortest border to border distance between adjacent shapes.

We validated the method visually by representing the data in a 3D scene in PickCells (Blin et al.  

In preparation) as shown in the image below where neighborhood is indicated as yellow arrows

The number of neighbours for a given shape was given by the degree at the corresponding 

vertex in the resulting graph. The neighbours difference reported in Fig 4C and Fig S5 was equal  

to the number of neighbour of the tested shape minus the number of neighbour of the GT 

shape.
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C. Details of the procedure to vary image quality

C.1. Noise

To generate a series of images with increasing level of noise, we used a cropped region in the 

bottom left corner of the E8.75 zone 1 benchmark image. Cropping was necessary to isolate 

nuclei  with sensibly  similar  levels  of  intensities  and obtain  a  signal  to  noise ratio relatively 

homogeneous across the image. This region contained 238 nuclei (excluding border nuclei) and 

the signal for the dimmest cells was roughly equal to 1000 AFU (12-bits image).

To generate noise in the image, we used the ‘Add specified noise’ command in ImageJ and 

chose Gaussian noise with varying standard deviations ranging from 50 to 500. This number is 

reported in figure S6 B. Parameters for segmentation were the same as shown in table S2 for  

E8.75, except for the ‘adjusted parameter’ data point (Fig S6 C and D). In this later case, the  

denoising step was applied (3D Gaussian filter with radius 0.5 x 0.5 x 1) and the classifier was 

updated (10 new invalid shapes and  19 valid shapes - Noise_Classifier in sup material) 

C.2. Z-step size

To prepare images with varying z-step sizes, we used the E8.75 zone 1 image and resampled the 

image and the corresponding manual segmentation in ImageJ: 

We  used  the  ‘scale’  command  with  ‘bilinear’  interpolation  for  the  color  image  and  no 

interpolation for  the segmentation.  In both cases,  we ensured that  the box ‘average when 

downsizing’ was unticked.

For re-segmentation of these images, we used the parameters indicated in Table S2 for E8.75 

except for the changes indicated below. Note that the min and max volume in the 3D linkage  

step needed to be adjusted to account for the loss of volume (in pixels) with increasing z-step 

size.
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C.3. Bit Depth

We modified the bit depth of  the E7.5 zone 1 and E8.75 zone 1 images using ImageJ.  The 

parameters for  segmentation were maintained the same as  for  the 12bits  original  versions 

except for the maxima threshold which needed to be lowered in the 8 bits case. (0.4 instead of  

1.4 for E7.5 and 0.05 instead of 0.35 for E8.75). 

D. Segmentation of Dapi, DIC and membrane labelled samples

We used the complete image set BBBC039v1, Caicedo et al. 2018, for 2D Dapi signal and the 

first 10 images of BBBC030v1, Koos et al. 2016, for DIC signal available from the Broad Bioimage 

Benchmark Collection (BBBC) [3]. For 3D nuclei content and membrane signals we used the 

image distributed as part of the RACE application [4]. All images were used with explicit consent 

from the authors.

For BBBC030v1 we generated GT segmentations using the editor   supplied with Nessys  (as 

opposed to outlines which are provided with the dataset. We manually segmented the first 10 

images and Nessys performance was assessed on these 10 images only). We also generated GT 

for the RACE image.

For segmentation with Nessys, we used the parameters listed in the table below
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Parameter 0.5 0.71 1 1.275 1.7 2.55 5.1
min volume 2000 1500 unchanged 500 400 300 150
max volume 7000 4000 unchanged 2200 2000 1600 1100
delete flat structures unchanged unchanged unchanged unchanged unchanged unchanged no
finalise unchanged unchanged unchanged unchanged unchanged unchanged no
split type unchanged unchanged unchanged unchanged unchanged None None

Step Size ( mµ )
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In all those situations Nessys generated results with reasonably high accuracy (Fig S9)

E. Additional analysis of Nessys outputs

E.1. Tcf15 expression analysis

The  Tcf15  expression  analysis  shown  in  Fig  5  was  performed  in  PickCells.  The  Nessys  

segmentation module was used to perform the segmentation of the full E8.75 image of the 

DISCEPTS dataset.  For Fig 5C and D, embryonic regions were manually annotated using the 

Nessys 3D painter module. A rule was created in PickCells to assign nuclei to a given embryonic  

region if their shape overlapped with the annotated region by at least 95%. Fig 5A and B 3D 

representations were created using the 3D scene module in PickCells. 

E.2. Cell tracking and Neighbour exchange analysis

The tracking results presented in Fig 7 were obtained with the tracking module of PickCells  

(https://framagit.org/pickcellslab/pickcells-essentials/tree/develop/pickcells-tracking)  using 

manually edited Nessys segmentation as input.

E.2.1. Neighbour exchange rate definition
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Step Parameter BBBC030v1 BBBC039v1 3D Nuclei 3D Memb.

Denoising
Method None

Steerable Filter
staining type enveloppe nuclear content nuclear content nuclear content
scale 5 0.5 0.5 1
quality High High Highest Normal

Maxima threshold 0.02 4 1 0.5

Tracing

search radius 5 4 3 5
delta 0.5 0.3 0.05 0.01
min radius 0.2 10 4 4
max radius 19 2500 12 12

Shape ranking classifier 40 BBBC039v1_Classifier 3D_Dapi_Classifier 3D_Memb_Classifier

3D Linkage

min volume NA NA 400 1000
max volume NA NA 1500 3000
search radius NA NA 15 15
min overlap NA NA 0.5 0.5
allowed slice jumps NA NA 2 2

Post-processing
delete flat structures NA NA yes yes
finalise NA NA yes yes
split type NA NA None None

Gaussian
(radius : 2 x 2)

Gaussian
(radius : 1 x 1 x 1)

Gaussian
(radius : 1 x 1 x 1)

410

415

420

425

https://framagit.org/pickcellslab/pickcells-essentials/tree/develop/pickcells-tracking


First, the neighbour graph was computed as described in (section B3 ‘Neighbour Difference’) for 

each time point. Then, we compared each nucleus to itself in the previous time point to obtain 

the number of unique neighbours that have been lost (N loss = set difference of neighbours at t 

and neighbours at t+1) and the number of unique neighbours that have been gained (Ngain = set 

difference of neighbours at t+1 and neighbours at t) during one time frame:

We then defined the neighbour exchange rate (NER) for a given branch as follows:

NER=

∑
t=tstart

t end

Nlosst+∑ Ngain t

t end−t start

where tstart and tend are the time frame of the first and last node of the branch respectively.

E.2.2. Nuclei and Branches classification

Sox1 classification: We defined a branch as Sox1+ if the mean of average Sox1 intensity of 

nuclei composing the branch was above a given threshold. This threshold was set subjectively 

based on both the shape of the distribution of nuclei mean intensities and based on visual  

inspection of the movie  (Movie S3 – PickCells allows us to click on individual nuclei or branches 

to obtain the features values of the selected object).

Dividing nuclei: Nuclei were defined as ‘dividing’ based on their position in the lineage tree, i.e  

a  nucleus  with two outgoing  links  and its  depth  one neighbouring  nuclei  in  the tree were 

defined as  ‘dividing’ (Fig 7G).

Apoptotic nuclei: apoptotic nuclei were defined as the leaf nodes in a tree which did not reach 

the end of the movie.

Dividing branch: A branch for which the last node corresponds to a dividing nucleus.
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Apoptotic branch: A branch for which the last node corresponds to an apoptotic nucleus.

Surviving Branch: A branch for which the last node was neither a dividing nor an apoptotic 

nucleus.

Above/ below plane classification: We defined a lineage as dividing above the epithelial plane 

if the average Z coordinates of dividing nuclei was above 6.5 µm which corresponded to the 3rd 

quartile  plus  1.5  times  the inter-quartile  range  of  the  distribution of  Z  coordinates  of  non 

dividing nuclei (Fig 7G). Branches were then defined as above or below based on the category  

of the tree they belonged to. Lineages with no divisions were excluded.
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