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1 Supplementary materials and methods

1.1 Experimental methods

Chemotaxis toward folate was investigated using the one-well under-agarose assay. A 50mm
glass-bottomed dish is pre-treated with 10mg/ml BSA in phosphate buffer. Attractant is
mixed into 0.4% agarose and is allowed to set in the dish. A long thin well ( 20mmx2.5mm)
is cut from the agarose in the middle of the dish, and 100µl of a 2x106cells/ml suspension
is added. Imaging was performed in phase contrast using a 10x objective lens, and focused
on cells as they move under the agarose layer.

Chemotaxis assays toward cAMP and Sp-cAMPS were performed in an Insall chamber.
AX3 cells were developed on 1.5% agar until streaming became visible. These cells were
harvested in development buffer (DB) and placed into an Insall chamber. The outer well
was filled with DB containing attractant, the inner well with attractant-free DB. Media in
both wells contained 2mM caffeine to prevent cAMP release by cells.

1.2 Computational model

The model consists of a diffusible attractant and a population of cells at discrete locations,
able to degrade attractant locally. The profile of attractant concentration c(x, t) changes as
follows:

∂tc(x, t) = Dc∇2c(x, t)−
N∑
n=1

r(c(xn, t, t))δ(x,xn, t) (1)

Here the first term represents the diffusion of the attractant, with a diffusion constant
Dc. The second term sums the contributions of a population of N cells to the degradation
of attractant, with the nth cell found at the location xn, t at time t. Each cell degrades



attractant explicitly locally (enforced here by the Kronicker delta) and at a rate r, which
depends on the local concentration. r takes the form:

r(c) =
rmax c

c+ kM
, (2)

where rmax is the rate of decay when the cell is saturated with attractant, and kM is the
Michaelis-Menten constant.

Practically, diffusion of attractant in the model was simulated on a grid using a central
differences approximation of the diffusion equation. The degradation term was simulated
using the Euler method. Cells do not move on the diffusion grid, and so can take inter-
mediary positions. As such, degraded attractant was taken from surrounding grid points,
linearly interpolating the rate based on their distances from the cell. In simulations of the
Insall chamber, the boundary conditions c(0, y, t) = 0 and c(L, y, t) = cmax are applied,
approximating the effects of the large resevoirs of medium at either end of the bridge.

Cells in simulations of the one-well assay begin in uniformly-distributed random positions
in a thin (500µm) band along the left-hand side of the simulation. They move from their
positions at a constant speed in a persistent, biased random walk. In each time step of size
∆t, the nth cell chooses a direction θn, t in which it will move in the interval (t, t+ ∆t], by
taking a weighted circular average of a persistent random walk pn, t and a bias introduced
by local chemical cues bn, t(c(x, t),xn, t):

θn, t = arctan

(
(pn, y, t + kbbn, y, t(c(x, t),xn, t)

(pn, x, t + kbbn, x, t(c(x, t),xn, t)

)
. (3)

The direction of the persistent, random contribution to the cell’s movement is a random
variable chosen from a wrapped normal distribution, centred on the previous direction of
motion θn, t−∆t.

pn, t = cos(ΘWN(θn, t−∆t, σ
√

∆t))̂i+ sin(ΘWN(θn, t−∆t, σ
√

∆t))ĵ (4)

where σ controls the strength of the persistence, and can be seen as the standard deviation
in direction per unit time. For the bias bn, t(c(x, t),xn, t) we choose the difference in the
probability of occupancy for a receptor between the very front and back of the cell. Assuming
the cell is projected across some length l:

bn(c(x),xn) =
c(xn + l/2)

c(xn + l/2) + kd
− c(xn − l/2)

c(xn − l2) + kd
. (5)

The change in the position of the cell over the period (t, t+ ∆t] is then

∆xn, t = vc
(

cos(θn, t)̂i+ sin(θn, t)ĵ
)
∆t. (6)

Contact inhibition of locomotion is defined as occuring when two cells come into contact,
repolarise and move in a new direction. We simulate this by giving each cell a region of
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occupancy, and testing other cells for contact when they move. If a contact is detected, the
component of movement in the direction of the contacted cell is removed. That is, for cell
m, which has made contact with cell n, the new update in position ∆x∗m is

∆x∗m = ∆xm −
(xn − xm).∆xm
|(xn − xm)|

(7)

2 Mathematical models of the population density wave

2.1 Population density wave in a semi-unbounded domain

Let us consider a concentration distribution of attractant c(x, t), initially evenly distributed
at a concentration c0 for all x > 0 which evolves according to the diffusion equation:

∂tc(x, t) = Dc∂xxc(x, t). (8)

This attractant is degraded rapidly by a population of cells, which act as a perfect sink.
These cells begin in a well at x = 0. As the well is long and the cells evenly distributed, we
can treat this as a one dimensional problem. Let the population of cells move over time to a
position s(t), which is reached by simple chemotaxis, advancing proportionally to the local
gradient:

∂ts(t) =
k

c0

∂xc(s(t), t). (9)

Eqn. (8) is satisfied by the function

c(x, t) = A

(
erf

x√
4Dct

− erf α

)
(10)

∂tc(x, t) = − Ax√
4πDct3

exp
−x2

4Dct
(11)

∂xc(x, t) =
A√
πDct

exp
−x2

4Dct
(12)

∂xxc(x, t) = − Ax√
4πD3

c t
3

exp
−x2

4Dct
(13)

where erf x denotes the error function of x. As c(x, 0) = c0, x > 0

A = c0/(1− erf α)

= c0/ erfcα, (14)

where erfcx is the complementary error function of x. Substituting this into Eqn (10) gives
us

c(x, t) =
c0

erfcα

(
erf

x√
4Dct

− erf α

)
(15)
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As the wave at s(t) is a perfect sink, we know that c(s(t), t) = 0. Thus,

erf
s(t)√
4Dct

= erf α (16)

s(t) = α
√

4Dct (17)

∂ts(t) = α

√
Dc

t
(18)

We can use Eqns (17, 18) to estimate the value of α for our system from the behaviour of
the wave. Fitting the mean x position of forward-moving cells over time, we estimate that
α = 1.23. We can use Eqns. (9) and (12) to show that:

√
παeα

2

erfcα =
k

Dc

, (19)

and so can use our estimate of α to calculate a value for k.
Though the wave moves over time, attractant only reaches the wave over minuscule length

scales by diffusion. We can calculate the flux of attractant across the wave using Fick’s first
law:

J(s(t), t) = −Dc∂xc(s(t), t) (20)

= − c0

erfcα

√
Dc

πt
e−α

2

(21)

The minus sign here only serves to tell us that the flux comes from a higher x position,
and so we can ignore it. How many cells must the wave contain in order to degrade all the
attractant it encounters? If each cell can degrade attractant at a maximum rate r, and the
the number of cells required is N we can equate rN to the flux at the position of the wave,

rN =
c0

erfcα

√
Dc

πt
e−α

2

. (22)

2.2 Decay of attractant profile in a bounded domain

Here we consider the profile of a chemoattractant, c(x, t), stretching from a well containing
cells at x = 0 to the end of the domain at x = L. We will assume that cells move very slowly
relative to other processes, such that we need not update their position. The profile of the
chemoattractant again changes according to Eqn (8), the diffusion equation.

We use variable separation in order to arrive at the Fourier series solution for this equa-
tion. We assume that the cell population is able to degrade all attractant that reaches it
by diffusion very rapidly. This gives us the boundary condition c(0, t) = 0, restricting us

to only the Fourier sine series. We also impose a zero-flux boundary condition ∂c(L,t)
∂x

= 0,
restricting us to half-integer terms. Each remaining term in the series decays exponentially
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in time. The solution is:

c(x, t) =
∞∑
n=0

An sin
(n+ 1/2)πx

L
exp

(n+ 1/2)2π2Dct

L2
.

=
∞∑
n=0

An sinαnx eα
2
nDct, (23)

where αn = (n+ 1/2)π/L.
To determine the values of our An, we impose the initial condition of a square wave of

amplitude c0. This gives us a uniform profile, save for at x = 0.

c(x, 0) =
∞∑
n=0

An sinαnx

=
4c0

π

∞∑
n=0

1

2n+ 1
sinαnx, (24)

(25)

therefore

An =
4c0

(2n+ 1)π
, (26)

which we can substitute into Eq. 2 to give:

c(x, t) =
∞∑
n=0

4c0

(2n+ 1)π
sinαnx e−α

2
nDct. (27)

The total flux of chemoattractant onto the cells is again given by Fick’s first law

J(x, t) = −Dc
∂c(x, t)

∂x

= −2Dcc0

L

∞∑
n=0

cosαnx e−α
2
nDct (28)

J(0, t) = −2Dcc0

L

∞∑
n=0

e−α
2
nDct. (29)

Or, equivalently, this can be written using the Jacobi theta function

J(0, t) =
Dcc0

L
θ2(0, e−π

2Dct/L2

). (30)

As with the unbounded case, we can then relate the flux and the required population N with

rN =
2Dcc0

L

∞∑
n=0

e−α
2
nDct, (31)

showing us again that the minimum number of cells needed in order to degrade all attractant
decays over time.
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Figure S1: Model predictions and comparisons to data. (L) Predicted decay in the wave
population overlayed on a heat map of the population’s directed migration over time. (M)
Real and model position of the wave. Here the real position for each frame is taken to
be the position of cells moving away from the well, weighted by the speed of this directed
movement. The model value for α s fitted to these data. (R) Attractant profile predicted
by the simple model after 5h. The gradient shows us why we can expect to see a density
increase in the wave, even without saturation- guidance cues are best at the back of the
wave, where all attractant is degraded. Ahead of this point, guidance cues are poorer due
to the lower gradient, and so the wave will catch up with any cells that get ahead.

2.3 Comparison of analytical and experimental results

In these analytical models, the parameter α controls the movement of the wave, such that
when α = 0, the wave is stationary at x = 0. When α → 0 and L is large there is
(unsurprisingly) good agreement between the two models. Indeed, for α = 0, L = 30mm
and Dc = 12, 000µm2/s, the required number of cells predicted by each model only differs
by 0.25% over a simulation time of 5 days (though at this stage both models are, of course,
unrealistic). As the contribution of α to the population of the wave happens entirely through
the constant 1

erfcα
e−α

2
, over moderate time-scales the effect of migration is simply to increase

the required population by a constant factor.
Fig. S1 shows the population, wave position and attractant profile predicted by the

semi-unbounded model. Wave position is calculated by the average position of cells moving
away from the well, weighted by their outward velocity. The model represents the population
and position reasonably well, though the position of the wave does not match well at short
times. We attribute this to limits on the speed and persistence of real cells not present in this
idealised analytical model. The predicted gradient also demonstrates why the population
density wave forms; cells ahead of the wave position experience a shallower gradient and by
extension worse guidance cues. This means that they progess more slowly than the back of
the wave does, and fall back into it.
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3 The chemotactic fraction of a domain

A system has a point source of chemoattractant at x = 0 that maintains its concentration
at c0. It also has a sink at x = L, such that the steady state solution for the system is

c(x) = c0(1− x/L). (32)

The general solution here is the sum of two solutions. One is the steady state solution,
Eq. (11), the other is a Fourier series. For the latter, we apply the boundary conditions
c(0, t) = c(L, t) = 0, restricting us to the integer harmonics of a Fourier sine series. We then
find the corresponding Fourier components by equating it with the initial condition of the
steady state solution minus a sawtooth wave of wavelength 2L,

c(x, 0) = c0(1− x/L)−
∞∑
n=1

2c0

nπ
sin

nπx

L
. (33)

The general solution we obtain is

c(x, t) = c0

(
(1− x/L)− 2

∞∑
n=1

1

nπ
sin

nπx

L
e−n

2π2Dct/L2)
. (34)

The expected receptor occupancy κ(x, t) for a receptor at position x and t is

κ(x, t) = c(x, t)/(c(x, t) + kd)

=
c(x, t)/kd

(c(x, t)/kd + 1)
(35)

and so the relative occupancy difference between the extreme ends of a cell of length l,
centred at position x > l/2 is:

∆κ(x, t) =
2
(
κ(x+ l/2, t)− κ(x− l/2, t)

)
κ(x+ l/2, t) + κ(x− l/2, t)

. (36)

This is of course a generous simplification, as most receptors will not be at these extrema.
We can use Eqs. 12 and 14 to calculate ∆κ(x, t) for any x and t. Zigmond gives the threshold
value for chemotaxis as a relative difference in occupancy of 1%. We use this threshold to
determine the fraction of the domain which can provide chemotactic guidance, the fraction
of x ∈ (0, L) for which ∆κ(x, t) ≥ 0.01. As c(x, t) and kd only appear in the ratio c(x, t)/kd
it is clear that what determines guidance is the source concentration relative to receptor
affinity, not either of these quntities alone. Similarly, as Dc and t only appear in the product
Dct, faster diffusion and longer waiting times are equivalent for transporting guidance cues
from a point source. As such, we use these expressions as our axes for Fig. 8. Our numerical
calculations assume that l = 10µm.
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Symbol Description Value
Df The diffusion constant of folate 12, 000µm2/min

DcAMP The diffusion constant of cAMP 18, 000µm2/min
Ds The diffusion constant of degrader 4200µm2/min
Dr The diffusion constant of repellent 1200µm2/min
N Line density of simulated cells 1/µm

rmax The maximum rate of attractant degradation 1.85× 10−6nM/min
kM The Michaelis Menten constant of degradation 700nM
kb The chemotactic bias 0.5
l The length of a cell 10µm
kd The receptor-attractant dissocication constant 20nM
σ The circular standard deviation in direction 0.570rad/min
vc The speed of individual cells 20µm/min

krec Rate of receptor replenishment (normalised) 0.002/min
rrec Rate of bound receptor degradation 0.02/min or 0.2/min

Table 1: Parameter table for chemotaxis simulations
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