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EXTENDED EXPERIMENTAL PROCEDURES

Animal rearing and sample collection

Adult sea urchins were collected during a single dive from a population in the Santa Barbara 

channel, shipped overnight to Duke, and held at 12°C in artificial sea water (Coralife, Oceanic 

Systems Inc.) for <48 hr before spawning. Gametes were obtained and fertilization carried out 

following standard procedures [1]. All cultures were fertilized simultaneously and checked to 

ensure >95% fertilization by the criterion of raised fertilization envelopes. Samples were taken 

only after hatching for families in which <95% fertilization occurred to ensure that 

measurements were not confounded by the presence of maternal mRNAs in unfertilized eggs. 

Zygotes (36 families for TP3-7 and 25 for TP1,2) were split into replicate cultures in a 
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randomized design and raised in artificial seawater at 12°C. At seven time points (10, 18, 24, 

28, 38, 45, and 90 hr post-fertilization), samples were collected from each culture for gene 

expression analysis, concentrated by gentle centrifugation, the pellet transferred into 600µL of 

buffer RLT (Qiagen, Valencia, CA), homogenized, and stored at -80°C. Samples for morphology 

were collected from the final time point (90 hrs), fixed for ~30 min in a 4% PFA/artificial sea 

water solution, transferred to ice-cold MeOH, and stored at -20°C. 

Measurements of larval morphology

To quantify morphological variation, we adapted standard measures [2]. We mounted each 

larva in PBS solution, collected a z-stack of 3 µm optical sections through the entire specimen 

on a Zeiss Axioskop 2 with Axiovision v4.6, and exported the image to ImageJ v1.4 (Rasband 

1997-2009). We then recorded the 3D-locations of 8 landmarks in the skeleton of each larva 

(Figure S4) and converted these into 9 length measures using custom Python (www.python.org 

v2.1) scripts: 6 rod lengths [left and right body rods (BR), left and right post-oral rods (POR) and 

left and right anterolateral rods (ALR)], as well as 3 summary “size” measures [body width at the 

triradiate junctions (BW) and left and right total length from tip of the post-oral rod to tip of the 

body rod (PORT)]. We found no evidence for developmental asymmetries, so we averaged the 

measures from the right and left side of each larva. Because gene expression measures were 

taken at the level of cultures and not individuals, we averaged the measures from all larvae in a 

single culture. 

Analyses of larval morphology

We took two approaches to evaluating the relationship between gene expression and larval 

morphology. In the first analysis, we sought correlations between the expression of specific 

genes at specific stages (gene-times) and principle components of skeletal variation (See Table 

S5 for the full set of correlations). The first three principle components (Table S3) together 

explain 89% of the total variation, with the first Component explaining the majority of the 

variation (55.1%). These PCs show significant parent-of-origin effects based on comparisons 
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between nested models with and without the factor of interest (Table S4). Dam effects are 

particularly pronounced as one might expect given the documented relationship between 

variation in maternal egg quality and skeletal shape in echinoderms [3,4]. For each gene and 

development time point sampled, we calculated the Pearson correlation coefficient with each 

principle component of variation in the larval skeleton. At a false discovery rate of 5%, three 

such correlations were significant: SM30E at time point 4 is positively correlated with overall 

length (PC1), while FoxB at time point 4 and Hex at time point 3 correlate with the ratio of arm 

length to body length (PC3). In addition to the genes just mentioned with q-values <0.05 for a 

single time point, six genes are overrepresented among the 234 gene-time point combinations 

with nominal p-values <0.05. Although each time point is individually less strongly correlated 

with skeletal variation, these correlations extend across multiple time points, making the 

expression profile as a whole significant by permutation (p <0.05). These genes are: Msp130, 

SM30E, SM50, C-lectin, Dkk, and Su(H). In our second approach, we examined the relationship 

between the set of gene expression measures as a whole and skeletal variation using a Two 

Block Partial Least-Squares analysis (2B-PLS) [5,6].Formally, the analysis is a singular value 

decomposition of the portion of a variance-covariance matrix in which all of the rows represent 

the elements of one dataset and all of the columns represent elements from the other. The level 

of statistical significance of the overall RV-statistic is obtained by permutation as detailed in the 

source papers. Information concerning the genes that contribute the most to the correlation 

between skeletal variation and gene expression variation can be found in Tables S6-S9. The full 

set of 2B-PLS weights are available upon request.

Estimates of additive genetic variances and covariances

The proportion of the total phenotypic variation within a population that can be explained, in a 

statistical sense, by genetic background-independent contributions of genetic variation is the 

additive genetic variance of a trait, and it is the size of this variance relative to overall 

phenotypic variance that puts bounds on the efficacy by which selection can change the mean 
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value of a trait [7]. We estimated additive genetic variances and covariances between traits 

based on measures of parental effects from a NCII cross with pooled samples. Following the 

standard partition of phenotypic variation (σP) [7]: 

σ2P = σ2A+ σ2I+ σ2E  (1)

where σ2A is the additive genetic variance, σ2I is the non-additive genetic variance and σ2E is the 

environmental variance, including any interaction between genetics and environment, σ2A is 

proportional to the narrow-sense heritability (h2):

h2 = σ2A / σ2P   (2)

and thus also proportional to the expected response to selection (∆µ) across generations:

∆µ = h2S = σ2A / σ2P  S. (3)

Our mating scheme of male and female parents followed the North Carolina II (NCII) breeding 

design [7,8]. When parents are fully outbred and randomly sampled from a wild population, this 

cross-classified design can be used to efficiently estimate the population’s additive genetic 

variance, as well as other useful quantitative genetic parameters such as maternal effects and, 

in some situations, the dominance variance. The NCII design is useful when both parents can 

be mated to multiple parents of the opposite sex. This is straightforward in species with external 

fertilization, like sea urchins, because gametes from each parent can be collected and divided 

into multiple batches before fertilization, thus eliminating any effects from the order of matings.  

In an NCII cross, offspring that share the same female parent but have different male parents 

are maternal half-sibs, while offspring that share the same male, but not female parent, are 

paternal half-sibs. Thus, the variance in male (or female) effects in a linear model relating 

offspring phenotype to parent identity is an estimate of the population covariance of paternal 

(PHS) (or maternal (MHS)) half sibs (chapter 20 of ref [7]). Assuming epistatic variance is 
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negligible, half-sib covariances can be related to additive genetic variances in the following 

ways:

σ2m = cov(PHS) ≃ σ2A/4

σ2f = cov(PHS) ≃ σ2A/4 + σ2Mat (4)

where σ2m is the male variance, σ2f is the female variance and σ2Mat is the variance in maternal 

effects, coming from either maternal-genetic or maternal-environment factors. (An interesting 

question arises if epistatic variance is not negligible, as may be the case within a GRN. In a 

more full formulation σ2m = cov(PHS) ≃ σ2A/4 +  σ2AA/16 where σ2AA is the additive-by-additive 

epistatic variance. Though the epistasis variance in this formulation is a relatively minor 

contributor to the covariance among half sibs, it could influence the extent to which observed 

genetic variation can be directly acted upon by selection. In any event, σ2AA still reflects real 

genetic variation segregating in the population.) Thus, both male and female variances are 

estimates of the total additive genetic variance. They are not, however, identical to it, and, if the 

female variance is considerably higher than the male variance, the difference can be used as an 

estimate of the influence of maternal effects. Similarly, individuals that share both the same 

male and female parent are full sibs. The covariance of full sibs, minus the sum of the 

covariances of paternal and maternal half-sibs, is estimated in the linear model by the male x 

female interaction variance (σ2I), which serves as an estimate of 1/4 the dominance variance 

(σ2D): 

σ2I = cov(FS) - (cov(PHS) - cov(MHS)) ≃ σ2D/4   (5)

Unfortunately, the size of the cross rather limits the accuracy with which interaction effects can 

be estimated. Since we raised embryos from each male-by-female cross in two separate 

cultures, the derivation of male and female variances in our experiment more closely follows 

that in Comstock and Robinson, where “k members of each progeny [offspring from a particular 

5



cross] are grown in each of r plots [culture dishes]”. From the Analysis of Variance shown in 

Table 2 in this paper, the male variance (σ2m) can be calculated as the difference in expected 

mean squares of the the Male and Males x Females factors:

EMS(Males) = σ2 + kσ2p + rkσ2fm + rknσ2m

EMS(Males x Females) = σ2 + kσ2p + rkσ2fm

σ2m = (EMS(Males) - EMS(Males x Females)) / rkn (6)

where n is the number of males. The derivation of female variance (σ2f) is similar. Our analysis 

differed from the ANOVA derivation in Comstock and Robinson in that we did not divide the 

parents into multiple sets (s = 1) and that we did not measure gene expression on individual 

larvae, but on pooled larvae from the same culture. Thus, we could not estimate an individual 

variance (σ2 in Table 2 of reference [8]). Since the individual variance contributes equally to the 

EMS of Male, Female and Male x Female effects, the fact that we could not estimate this 

parameter did not affect our estimate of male or female variances (equation 4). However, by 

pooling larvae to collect RNA, we could not measure variation among individuals within a 

culture, and thus could not calculate the total phenotypic variation (σ2P) or “heritability” in gene 

expression. Importantly, however, by pooling thousands of larvae instead of measuring just a 

few individuals, we improved our estimates of additive and non-additive genetic variances, by 

reducing sampling error on culture means. 

Bayesian estimates of quantitative genetics parameters

Model specification

While the Analysis of Variance presented by Comstock and Robinson (Table 2 in reference [8]) 

is sufficient to estimate genetic variances in our experiment, ANOVA methods are not well suited 

for estimating error terms or significance in the face of missing data. We therefore converted 

their standard mixed-effect linear model into a Bayesian hierarchical mixed-effect model by 
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adding priors on the genetic and residual variances and fitting the model using a Gibbs sampler, 

implemented in the MCMCglmm package in R [9]. We took this approach for two reasons. First, 

due to filtering for quality control of the gene expression measures, certain samples with low 

quality expression measurements were removed, resulting in an unbalanced design. Likelihood-

based methods, such as REML and Gibbs samplers inherently tolerate unbalanced designs, 

while ANOVA methods require complicated adjustments [7]. Second, since our sample sizes 

were small for estimating variances, asymptotic closed form confidence-interval estimates on 

variance components such as those produced from REML or ANOVA methods, are not 

reasonable, and return confidence intervals that span zero for low variance estimates. Bayesian 

credible intervals can be much more interpretable in these situations as they do not depend on 

asymptotic assumptions and can be enforced to be positive and asymmetric. We estimated 

genetic variances with the following linear hierarchical mixed effect model:

where yijk is the phenotype of the kth culture of the cross between male i and female j, u is the 

population phenotypic mean, mi and fj are the additive effects of male i and female j, Iij is the 

non-additive effect of the particular genetic combination of male i with female j, and eijk is the 

residual deviation of the pooled sample from culture k of male i and female j. The terms mi, fj, Iij 

and eijk are all modeled as random effects, drawn from normal distributions with mean zero and 
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unknown variance. These unknown variances are given inverse-gamma priors.

Prior choice

The inverse gamma prior is a common choice for variance components in linear models as it is 

conjugate to the normal likelihood and is the default prior in MCMCglmm [9,10]. For the results 

presented in the main article, we used a quasi-empirical Bayes approach and chosen as a prior 

a diffuse inverse gamma centered at 10% of the variance in the expression of each gene. This 

prior distribution states that our prior belief is that each variance-component is non-zero, but is 

small and right-skewed with a relatively thick tail. The strength of prior is uniform across all 

genes, reflecting our lack of prior knowledge about differences in genetic variance components 

among genes. This facilitates comparisons of posterior distributions among genes as the 

strength of the prior should be identical in all cases. Our prior was selected for two reasons: it 

has a broad distribution reflecting our relative lack of prior information on the genetic influences 

on the expression of each gene, and a previous study [11] found that the mean broad-sense 

heritability of gene expression to be ~0.5, suggesting individual male and female variances 

should be in the range of 12.5% [1/4 total additive genetic variance, equation (4)]. Nonetheless, 

we examined the influence of our chosen prior on the results extensively. For genes with 

moderate levels of expression variation, the results are largely insensitive to both quantitative 

changes in size and shape of the inverse-gamma prior as well as to changes in the form of the 

prior; our results are highly correlated both with Bayesian estimates obtained using a folded 

central t-distribution [10], and to estimates obtained with REML models fit using both the R 

package lmer [12] and ASReml [13]. Results from all three methods were highly similar. 

Model fitting

We fit the above model to the normalized expression of each gene at each of the 7 time points 

individually using the MCMCglmm function in the MCMCglmm package v. 2.02 in R. After a 

burn-in period of 5,000 samples, we collected 10,000 posterior samples of all parameters and 
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variance components, thinning the chain every 10 samples. Model convergence was checked 

by assaying the autocorrelation among each variance parameter separately. Posterior 

distributions of each variance parameter were summarized as the mean and 5% and 95% 

quantiles of the posterior samples. In most analyses (those not noted otherwise), the expression 

of each gene at each time was first scaled by the mean expression of that gene at that time 

point. This was done so that the square root of the variances fit by the quantitative genetics 

models could be read in the same scale as the mean. 

Model significance

We took two approaches for assessing the statistical significance of male, female, and 

interaction contributions to gene expression variation for each gene at each time point. First, we 

used permutation tests. To assess the significance of male effects, we fit the full model using 

ASReml and compared the estimated size of the male effect to 1000 permuted datasets in 

which the male labels were randomly assigned to each culture. The statistical significance of 

female effects, but not interaction effects, were tested similarly. Second, we used the output of 

MCMCglmm. To test the importance of the male effects, we fit refit a reduced model by dropping 

the male (mi) and male x female (Iij) effects. We compared the full model (with male effects) and 

the reduced model (without male effects) using the DIC calculated by the MCMCglmm function. 

Genes for which the DIC increased by more than 7 were deemed to have a significant male 

effect. Female and interaction effects were tested similarly. As the results of both methods were 

highly similar, we made use of the second method in the analyses reported in the main text. To 

test for non-maternal relationships between the expression of candidate genes and skeletal 

variation, we contrasted two models using the R package lme4. In the first model, we fit each of 

the first three principle components of skeletal variation as a function of female parent (shape ~ 

Female). In the second model, we fit shape as a function of both female parent and an 

upstream gene (shape ~ gene + Female) and contrasted the two models using a standard 

likelihood ratio test. In most cases we did not see significant support (or, often, any support) for 

models that included more than just female parent. The exceptions were as follows: for SM30E, 
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we found significant contrasts (p < 0.01) for PC1 and PC3 at time point 5 and for PC1 at time 

point 4; for FoxO, we found a significant contrast for PC1 at time point 5; and for both C-lectin 

and Msp130, we found a significant contrast for time point 5 for PC1 and PC3.

Additive genetic variances over development

The sum of male and female variances provides an estimate of one half of the additive genetic 

variance (see above). Unless otherwise noted, data were first scaled by the mean. Therefore, 

the square root of the additive genetic variance can be interpreted similarly to be a coefficient of 

variation measure. Using maternal variances as a contribution is a concern because this may 

inflate additive genetic variances, especially at early time points. However, we justify our 

decision on several grounds. First, because zygotic expression is very low at 10 hr and, to a 

lesser extent, 18 hr, relying only on paternal contributions will vastly underestimate levels of 

genetic variation; clearly some portion of the differences between pools of embryos/larvae has a 

genetic component. Second, previous studies have demonstrated that there are genetically 

based differences in maternal contributions to the eggs even between very closely related 

species. Third, to the extent possible we controlled for environmental differences between 

females by using females of roughly the same age taken from the same location. Using 2*(male 

effect + female effect) to estimate additive genetic variance (Figure S1A), we see a clearly 

heterogenous distribution over development (Kruskal-Wallis, p = 2.9x10-5, ÷2 = 61.21, df = 6) 

with early development (the first two time points) showing significantly higher levels of additive 

genetic variance than later development (var = 0.572 vs 0.132 p = 1.94 x10-7 Wilcoxon). 

Importantly, we obtain qualitatively similar results when we examine only statistically significant 

male effects (Kruskal-Wallis test p = 0.0015, var = 0.038 vs 0.026 p = 0.09 Wilcoxon) or when 

we look at mean parental contributions for genes only during the times in which they are known 

from prior research (see above) to be involved in regulatory interactions (Kruskal-Wallis test p = 

0.039, 0.18 vs 0.07 p = 0.051 Wilcoxon). 

Genetic covariances over development
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Owing to the relatively small size of our cross, we cannot effectively estimate the genetic 

contributions to covariances (especially not for individual genes). However, using our best 

estimates, we may be able to say something about the relative magnitudes of the covariance 

matrices as well as how structured they are. These analyses suggest that genetic covariances 

are structured quite differently at time point 1 than at later stages. The results should, needless 

to say, still be interpreted with caution.  

 Using a two-gene extension of the basic model, we are able to estimate the genetic 

covariances for each pair of genes at each time point and from this to construct, piece-meal, a 

standard genetic covariance matrix (G-matrix). At no stages of development are genetic 

covariances between interacting genes significantly different than for random pairs of genes, 

which likely demonstrates the limits of our power to estimate covariances. Interestingly, 

however, the mean strength of the genetic covariances between genes when they are 

interacting changes noticeably over development, with significantly greater covariances in the 

first two stages of development than in subsequent stages (cov = 0.016 vs. 0.00010, p < e-15 t-

test). Importantly, however, the differences among time points are no longer statistically 

distinguishable when the first time point is removed from consideration (with Time Point 1 p = 

3.44e-10; without Time Point 1 p = 0.06 Kruskal-Wallis Test) highlighting the extent to which 

time point 1 is structured differently than are later stages of development. Analyses of genetic 

correlation matrices give similar results with genetic correlations in the first stage being 

statistically distinct (and higher) than in subsequent stages (data not shown). 

 As a metric of constraint, we can also examine the variance of relative magnitudes of 

eigenvalues for the  G-matrix at each sampled time in development. High variances indicate that 

the G-matrix is constrained to evolve primarily in one or a few directions, while a low variance 

(all eigenvalues having similar magnitudes) is indicative of a relative lack of constraint. 

 Comparing the variances in eigenvalues is complicated in our case by the fact that there 

are different numbers of genes and parents both detected and active at different stages of 

development. As a result, the G-matrices have different dimensionalities at different stages of 
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development. To circumvent this problem, we sub-sampled each G-matrix 100 times to generate 

sub-matrices with dimensionality equal to the minimum number of eigenvalues of any G-matrix 

in the analysis. We then took the average of the resulting variances. Quantitatively similar 

results are obtained if one samples instead the eigenvectors corresponding to the n largest 

eigenvalues, where n is the dimensionality of the smallest G-matrix. 

 To assess the statistical significance that the calculated variances were greater than 

expected from random matrices, we recreated the G-matrices directly from the breeding values 

and compared the variance of this matrix to 1000 G-matrices resulting from permutations of the 

breeding values. We used the 95% intervals to evaluate the claim that the variances in 

eigenvalues are statistically different from one another at different times in development. We 

used 1000 subsamples of each G-matrix to calculate these intervals. 

 At all stages, for both expressed and active genes, the complexity of the G-matrix is 

significantly greater than expected by chance (permutation test, p < 0.01). However, the 

variance in eigenvalues is not equal at all stages. When the G-matrices are restricted to only 

active genes, a clear pattern emerges with the G-matrices being more restrictive in the first 

sampled stages than in later development [(Var(eigenvalues) = 0.083, 0.080, 0.024, 0.049, 

0.023, 0.019] though only the first stage is distinct by permutation. Interestingly, the complexity 

of the G-matrices are both lower and more even across development when we consider only 

those genes not known to participate in molecular interactions at that time [Var(eigenvalues) = 

0.039, 0.045, 0.016, 0.05, 0.038, 0.034, 0.011], indicating decreased constraints on the 

evolution of gene expression patterns outside of times in which a gene product is required for 

specific molecular interactions. 

 

Pre-processing raw bead-level data from DASL

DASL differs from other, more common, microarray platforms in a number of ways that 

necessitate the use of different background correction, summarization and normalization 

methods [14]. For example, DASL uses ~30 individual beads per sample for each probe set, 
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rather that the typical 1-3 spots on more standard microarrays, and rather than using a 

mismatch probe-set, as is used in Affymetrix arrays, background normalization relies on a set of 

27 bead-types with no complement in the target genome. As with all platforms for measuring 

gene expression, quality control and normalization steps must be taken before the data can be 

used in subsequent analyses. Our principle concern was to remove artifactual biases that might 

induce correlations among measures of different genes, or among measures of the same gene 

in different genetic backgrounds, as these biases would affect our downstream genetic 

analyses. To ensure a high standard of quality in the data, we wrote a customized pipeline in R 

(R Development Core Team 2009) for processing the raw data using many of the classes and 

methods from the beadarray package of Bioconductor [15,16]. Our pipeline included the five 

steps outlined below. In addition, we performed quality control throughout to: flag and remove 

suspicious samples and probes; identify cases of potential sequence polymorphisms under 

probes based on probe intensities in gDNA samples; identify sets of probes that do not appear 

to measure the same transcript; and choose an appropriate gene for normalization. 

Step 1: Mask problem areas in each array

Array-based formats can suffer from spatial artifacts - regions of the assay surface that produce 

consistently different intensity readings due to camera or laser shadows, loading error, or 

inherent biases around the edge of the array. If not accounted for, these effects can badly skew 

resulting analyses, even in cases like the DASL assay where each gene expression level is 

interrogated by a large number of probes [17]. We used the adaptation of Harshlight to Illumina 

BeadArrays, BASH, implemented in the Bioconductor package beadarray [17] with the following 

modified parameters: bgcorr=”median” as recommended for SAM arrays, diffsig = 0.001, and no 

imputation within outlier regions. The BASH algorithm relies on the variance in expression 

measures within each bead-type as the statistic to identify spatial effects. We used log2-

transformed values to identify outlier beads, as recommended [17]. We found that log2-

transformed intensities better identify outliers at the lower end of the distribution than does 
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Ilumina’s recommended procedure (data not shown). We also chose to use an outlier cutoff of 2 

mean absolute deviations (MADs) from the bead median for each bead-type in each sample. 

This is more conservative than the beadarray default and Illumina recommendation of 3 MADs, 

but we find that this tends to eliminate more spurious beads. Figure S5 shows several examples 

of the spatial distribution of residual intensities in the red and green channels. Note that some, 

but not all, spatial effects are consistent between the two channels and that not all arrays have 

significant spatial effect issues. Although some aspects of masks appear to be shared by most 

wells of the same plate (batch of 96 samples), most spatial artifacts appear to be individual well-

specific. Thus we chose not to apply the same mask to all wells of a plate. We also observed 

that certain rows and columns within a plate suffered more from imaging artifacts than other 

wells. Overall, 8.7% (957,562 of 11,906,519) of beads were removed by the masks. Of the 

remaining beads, 20.7% (2,470,602 of 10,948,957) were removed based on the 2 MAD from the 

median bead-specific cutoff. The standard Illumina algorithm of identifying outliers that lie more 

than 3 MADs from the median would have removed 14.7% (1,755,714 of 10,948,957) of the 

remaining beads. Figure S6 shows the distribution of number of remaining beads per bead-type 

per sample. No probes ended up with less than 5 beads in any sample, and thus no probes 

were removed based on too few measures within a sample.

Step 2: Average two colors

The DASL assay uses two probes to target each sequence, one labeled with Cy3 (green) and 

one with Cy5 (red). In principle, as the oligo probes conjugated to each dye are identical, the red 

and green channels should show identical intensities. However, as with other array-based 

platforms (e.g., [18]), the dyes perform differently across the intensity spectrum (Figure S7). 

There is no clear precedent in the literature as to how to deal with the two channels in a DASL 

data set. Illumina recommends adding the two channels together (also see [16]), while 

(Dunning, personal communication) recommend using only the green channel. In microarrays, 

and when using Illumina’s similar GoldenGate technology for allele-specific expression, a local 

regression-based correction of the two channels is frequently applied to the data to account for 
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this intensity-dependent bias, and this was the path we followed. We compared the performance 

of the red channel alone (R), the green channel alone (G), the mean of the red and green 

channels (R + G), as well as two loess-transformed [19] averages: the mean of the red and the 

transformed green channels (R + Gc) and the mean of the green and the transformed red 

channel (G + Rc). We calculated a local regression of one channel onto the other, using the R 

function loess, with a bandwidth of 0.40 [19], then used this empirical function to transform the 

first channel so that its intensity-dependent distribution was comparable to that of the second 

channel. The R+Gc channel consistently performed as well or better than the other channels in 

terms of dynamic range, the correlation of intensities across technical replicates, and the 

correlation of intensities among different probes targeting the same transcript. Therefore, we 

used the R+Gc summary statistic as our measurement of bead intensity for all analyses.

Step 3: Correct background 

Background correction involves correcting for non-specific hybridization and for differences in 

the camera intensity among arrays. Differences in background levels among samples, if left 

uncorrected, lead to strong positive correlations between low-expressed genes. We used the 

following modified version of Illumina’s background-subtraction method to identify unreliable 

probes with low intensities and remove correlations due to variation in background noise among 

samples. The DASL assay includes 27 non-specific bead-types intended to measure the 

background intensity of an array. We used the negative control beads to determine the 

background level for each sample. Under close inspection, we observed that the 27 non-specific 

background probes did not all estimate the same “mean background” intensity: some 

consistently recorded a much higher intensity than the others. However, the relationships 

between the intensities of the various background probes in different samples were fairly linear. 

Therefore, the mean of the background probes was a poor estimate of the true background 

intensity of each sample. Instead, we calculated the slope and intercept between the 

background probes in all pairs of samples (using the function lm in R) and adjusted the 

intensities of all probes so that the background probes overlapped (Figure S8). We then re-
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calculated the distribution of negative control intensities, and chose a value greater than 90% of 

the negative control intensities to be our “zero” value. All signal values less that this value were 

set to 1, and this constant was subtracted from the remaining intensity values in each sample. 

We experimented with other model-based background correction methods specifically adapted 

for Illumina BeadArray data including an implementation of the normexp method from RMA 

[20,21,22], an extension of the normexp method to include information from the negative 

control beads (MBMB) [23], and an adaptation of the vsn method (VST) [24]. However, we 

found that these methods required more data to generate an accurate fit to a background-signal 

model than the 428 probes in our assay could provide and thus were unreliable for our data. 

Our background correction method differs from the standard background-subtraction method 

primarily by the multiplication of each sample by a scaling factor prior to background 

subtraction. This does have the effect of dramatically shifting the intensity values of some 

samples (when the range of background intensities among the 27 background probes was low). 

However, since our method of between-sample normalization also involves a simple scalar 

multiplication (described below), this effect is removed in later processing steps, and thus our 

background correction has little effect on values much above background.

Step 4: Normalize samples

We identified three potential control genes (CyclintT, RBM8A, and Cog1) on the basis of the 

constancy in expression level across multiple developmental stages in a previous microarray 

study [25]. After obtaining our DASL results, we checked the viability of each of these three 

potential control genes following the method of Vandesompele and colleagues [26]. Their 

method ranks the validity of a gene as a potential control gene with respect to the standard 

deviation in expression ratio to all other genes in the study. On the basis of this criterion, Cog1 

failed as a control gene, and CyclinT appeared marginal. We therefore conducted qPCR studies 

(described below) using absolute embryo number for normalization. On the bases of these 

results (data not shown) we eliminated CyclinT as a control gene and normalized instead to four 
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probes that measured the expression of RBM8A, which behaved very well in our control qPCR 

analyses. On the basis of comparisons between our data and those of other studies (below), we 

feel very confident about RBM8A as a normalizer. Quantitative RT-PCR (qPCR) measurements 

were conducted on an ABI PRISM 7000 (Applied Biosystems). Each reaction consisted of: 15 µl 

2X ABGene Absolute qPCR SYBR® Green Mix, 0.75 µl for each primer (10 µM), 1 µl of cDNA 

template, and PCR quality water to reach a total volume of 30 µl. The PCR program used for 

all reactions was: 95˚C for 5 min, 40 cycles of 95˚C for 15 sec and 54˚C for 30 sec, followed by 

a melt curve from 60 to 95˚C. Ct values were determined using the CalQPlex setting. For each 

primer pair, a standard curve was set up over a twelve point, factor-of-two dilution series to 

determine the efficiency and working Ct range. We ran each sample for each gene in triplicate 

wells. Control samples were run in technical duplicates. Only measurements with standard 

deviations less than 0.4 Ct across replicates were used. To convert the raw Ct expression into 

normalized relative expression, we utilized a modified delta-delta Ct method [26].

Step 5a: Remove probes and designate gene clusters

We hand-curated the set of 3-6 probes for each gene by assessing the dynamic range and 

developmental time course for each over the 8 stages measured, specifically examining the 

strength and linearity of the correlation between each pair of probes. Five genes were removed 

for which no two probes were correlated over time, and all probes with expression levels that 

seldom rose above background. For 9 other genes, the set of probes consistently detected 

above background could be divided into 2-3 groups that were poorly correlated with each other. 

In most cases, these groups distinguished different exons and thus likely measured alternatively 

spliced transcripts, although errors in gene annotation cannot be ruled out. In total, 144/384 

probes were removed for these reasons. Sets of highly correlated probes for a single gene were 

designated as “gene clusters”. Several genes had multiple clusters. Based on the observation 

that these different clusters corresponded to probes marking different exons, we hypothesize 

that these clusters represent different splice variations. This hypothesis is supported by the 

observation that the clusters for otx correspond to documented splice forms [27]. For analyses 
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of correlations and covariances between genes, only the first clusters (those containing the 

most highly correlated probes) were used. Secondary clusters were used only to evaluate 

changes in parental effects over development. Our nomenclature reflects cluster assignments 

(e.g. otx_2 represents the second cluster of otx, not to be confused with otx_time2 which would 

represent otx_1 at time point 2). To the extent possible, we demanded that all beads within a 

single cluster showed a correlation of at least 0.8 over the course of development. 

Step 5b: Remove probes due to polymorphisms

Because sea urchins populations contain high levels of genetic diversity [28], we expected 

some probes to fail in some individuals due to polymorphisms in their region of hybridization. 

We detected hybridization problems by measuring the “expression” of each probe in a gDNA 

sample collected from each of the 36 replicated cultures. For each probe in each sample, we 

calculated the MAD from the overall probe median. 30 Probes with especially large variances (> 

2 * MAD of all other probe’s MADs) were considered too noisy to evaluate and were removed 

(Figure S9). Hybridization problems due to polymorphisms should affect samples with the same 

genetic background similarly. In some cases, we did observe significant correlations between 

gDNA “expression” and RNA expression, which are likely to be caused by common hybridization 

differences among samples with different genomic sequences. Thus, for each probe, we 

collected the MAD values for all pairs of replicates of each of the cultures. Probes in any culture 

in which both replicate gDNA measurements were more than 2 MADs from the probe median in 

the same direction (both below the median, or both above) were removed (Figure S9). On 

average, ~2 probes (max = 13) were removed from each sample. This strategy removed nearly 

all correlations between the “expression” level of gDNA and gene expression levels.

Step 5c: Remove batch effects

The DASL assay on BeadStation is run in 96-well plates. Each plate is processed separately, 

and may use a different lot of reagents. Thus, consistent differences between measured 

expression values of comparable samples in different batches are likely to be technical in origin. 

We assigned the samples in each 96-well plate to optimize the detection of batch effects: the 
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two replicate cultures at each developmental stage were split into two different batches, and run 

together with all other samples collected from the same developmental stage. Thus, to account 

for batch effects, we collected all samples from each stage, and for each individual probe 

calculated the mean measured expression of that probe in each batch. We then added (or 

subtracted) a value to each sample on each plate to make all the batch-means equal.

Step 5d: Summarize individual probe values

We averaged the remaining probe measures into a single value for each gene. For the 9 genes 

in which we assigned probes to separate clusters, we averaged each group of probes 

separately, and treated the two clusters as different genes in downstream analyses (see above). 

When we removed a particular probe from a sample due to irregularities in the gDNA 

measurements, we did not average the remaining probes, but treated the gene as missing data. 

Different probes targeting the same transcript often reported different average intensities, even 

when the intensities were highly correlated. Thus averaging different subsets of probes would 

lead to biased transcript expression estimates. Here, as elsewhere, we were particularly 

concerned not to induce artifactual biases that might be correlated with particular families, as 

these biases would affect our downstream genetic analyses. As hybridization problems due to 

sequence polymorphisms under particular probes would likely affect all cultures from the same 

parents, we chose to remove the whole transcript from analysis whenever any of its probes 

were in question. For most analyses, the expression values for individual genes were first 

scaled by the mean expression of that gene at that stage. This was primarily done so that the 

square roots of the variance estimates resulting from our quantitative genetics models (see 

below) could be read in the same scale as the mean expression. 

Expression validation 

Following pre-processing steps, we compared the resulting gene expression values to qPCR 

data from our own lab in addition to gene expression measurements obtained by other labs 

using a variety of platforms. For a random subset of the samples at stages 2 and 6, we 
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measured the expression levels of four genes (clusters B-catenin_1, Otx_1, SM50_1, and 

Endo16_1). We compared the ratio of the expression of each of these genes to mean of the 

others from our qPCR data and our un-normalized DASL data (Figure S10). The correlation 

between datasets has a Spearman Rho of 0.62 (p = 9.88x10-10), comparable to those reported 

elsewhere for comparisons between platforms [29,30]. As a second check, we compared our 

normalized expression values to normalized whole-genome NimbelGen array data [25]. As is 

standard for microarray data, the Wei et al. data have been quantile normalized so that 

comparisons between their data and ours tests both our ability to detect changes in gene 

expression and our normalization scheme. For three time points in which the data were 

comparable (eggs, time 2 and time 6) we compared the expression of all of our genes that were 

measured on the array (Figure S11). The overall correlation is quite high (Spearman’s Rho = .

759, p < 2.2x10-16). Our plot of the comparison between the two datasets as well as histograms 

of the distribution of expression values on the two platforms (Figure S12) reveal an important 

merit of the DASL platform: sensitivities across the range of expression values found for early 

developmental genes are better measured on the DASL platform than by traditional microarrays. 

Our data provide a comprehensive view of how the expression of individual genes changes over 

development. For 15 of these genes, a similar time series was also obtained using qPCR and a 

different normalizing gene [31]. The two datasets show substantial qualitative agreement for 12 

of the 15 genes (Figures S11 and S12) (note that the datasets come from embryos raised at 

different temperatures: ours at 12°C and those of Howard-Ashby et al. at 15°C). In addition, we 

compared our results to another dataset generated using the Nanostring platform [32], where  

42 genes overlapped with our dataset. In seven cases the probes used for nanostring 

measurements targeted UTRs, which can be highly genetically polymorphic in S. purpuratus, or 

targeted an ambiguous gene annotation (for example, our probe for the Lim1 targets the 

annotation labeled “Lim1” where as the Nanostring probe targets the paralogous annotation 

labeled “Lmx1”). The overall correlation between the datasets is reasonable (Spearman Rho = 
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0.71; p-value < 2.2x10-16), but highly variable among genes. For some genes, the correlation 

between the datasets is quite high. For example, for the genes Hex and Nk.1 the Spearman 

Rho = 0.9933. For other genes, however, the correlations are lower, and in one case (HesC) 

slightly negative. This discrepancy stems from a number of sources. For example, HesC shows 

little variability in either dataset. In most cases, however, discrepancies appear to be the result 

of a phenomenon that we noticed among our own probes for the same gene, namely that 

different probes targeting the same transcript can show different results. This highlights the 

importance of using multiple probes for interrogating gene expression levels. Finally, we note  a 

high consistency among technical replicates on the DASL platform. Among three pairs of 

technical replicates, no correlation was less than 95%. 
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