Introduction to Likelihood

Meaningful Modeling of Epidemiologic Data, 2011 AIMS, Muizenberg, South Africa

Steve Bellan

MPH Epidemiology

PhD Candidate

Department of Environmental Science, Policy & Management

University of California at Berkeley

In a population of 1,000,000 people with a true prevalence of 30%, the probability distribution of number of positive individuals if 100 are sampled:

barplot(dbinom(x = 0:100, size = 100, prob = .3), names.arg = 0:size)

In a population of 1,000,000 people with a true prevalence of 30%, the probability distribution of number of positive individuals if 100 are sampled:

We sample 100 people once and 28 are positive:

> rbinom(n = 1, size = 100, prob = .3)

[1] 28

Cumulative Probability & P Values

We sample 100 people once and 28 are positive.

number HIV+

number HIV+

If true prevalence were 25%, then p(28 or more extreme) is $pbinom(22, 100, 0.25, lower.tail = T) + pbinom(28-1, 100, 0.25, lower.tail = F) \\ p = 0.564$

0.12

0.08

90.0

0.04

0.02

0.00

0.12

0.08

90.0

0.04

0.02

0.00

If true prevalence were 35%, then p(28 or more extreme) is pbinom(28, 100, 0.35, lower.tail = T) + pbinom(42–1, 100, 0.35, lower.tail = F) p = 0.172

hypothetical prevalence: 30 %

hypothetical prevalence: 20 %

hypothetical prevalence: 35 %

hypothetical prevalence: 25 %

hypothetical prevalence: 40 %

Which hypotheses do we reject?

IF GIVEN THE HYPOTHESIS

p value < cutoff

THEN REJECT HYPOTHESIS

Cutoff usually chosen as $\alpha = 0.05$

Which hypotheses do we reject?

hypothetical prevalence: 30 %

hypothetical prevalence: 20 %

hypothetical prevalence: 35 %

hypothetical prevalence: 25 %

Which hypotheses do we NOT reject: CONFIDENCE INTERVAL

Let's take another approach

We sample 100 people once and 28 are positive:

```
> rbinom(n = 1, size = 100, prob = .3)
[1] 28
```


number HIV+

Which prevalence gives the greatest probability of observing exactly 28/100?

number HIV+

Which of these prevalence values is most likely given our data?

Defining Likelihood

- L(parameter | data) = p(data | parameter)
- Not a probability distribution.

function of x
$$\downarrow \qquad \qquad \downarrow \\ PDF: f(x \mid p) = \binom{n}{x} p^x (1-p)^{n-x}$$

Probabilities

 taken from many
 different
 distributions.

LIKELIHOOD:
$$L(p \mid x) = \binom{n}{x} p^x (1-p)^{n-x}$$
function of p

Deriving the Maximum Likelihood Estimate

maximize
$$L(p) = \binom{n}{x} p^{x} (1-p)^{n-x}$$

maximize
$$\log(L(p) = \log \left[\binom{n}{x} p^x (1-p)^{n-x} \right]$$

minimize
$$l(p) = -\log\left[\binom{n}{x}p^x(1-p)^{n-x}\right]$$

Deriving the Maximum Likelihood Estimate

$$l(p) = -\log(L(p)) = -\log\left[\binom{n}{x}p^x(1-p)^{n-x}\right]$$

$$l(p) = -\log\binom{n}{x} - \log(p^x) - \log((1-p)^{n-x})$$

$$l(p) = -\log\binom{n}{x} - x\log(p) - (n-x)\log(1-p)$$

Deriving the Maximum Likelihood Estimate

$$l(p) = -\log\binom{n}{x} - x\log(p) - (n-x)\log(1-p)$$

$$\frac{dl(p)}{dp} = -\frac{x}{p} - \frac{-(n-x)}{1-p}$$

$$0 = -x + \hat{p}n$$

$$0 = -\frac{x}{\hat{p}} + \frac{n-x}{1-\hat{p}}$$

$$0 = \frac{-x(1-\hat{p}) + \hat{p}(n-x)}{\hat{p}(1-\hat{p})}$$

$$0 = -x + \hat{p}x + \hat{p}n - \hat{p}x$$

$$\hat{p} = \frac{x}{n}$$

The proportion of positives!

we usually minimize the -log(likelihood)

If the null hypothesis were true then
$$-2\log(\frac{L(\text{null hypothesis})}{L(\text{alternative hypothesis})} \sim \chi_{df=1}^{2}$$

$$2l_{alternative} - 2l_{null} \sim \chi_{df=1}^2$$

So if our $\alpha = .05$, then we reject any null hypothesis for which

$$2l_{MLE} - 2l_{null} > \chi_{df=1, \alpha=0.05}^2 = 3.84$$

$$2l_{MLE} - 2l_{null} > 3.84$$

$$l_{MLE} - l_{null} > 1.92$$

When $I_{MLF} - I_{null} > 1.92$, we reject that null hypothesis.

Comparing Confidence Intervals

Advantages of Likelihood

- Practical method for
 estimating parameters
 estimating variance of our estimates
- Easily adaptable to different probability distributions & dynamic models