
1 Introduction

Modelling individual events

• Differential equations model continuous processes

• Disease spreads in the real world through discrete events

• Discrete events are fundamentally stochastic

– Even in theory we don’t know when the next event will occur, nor
even what it will be

Types of stochasticity

• Demographic stochasticity is caused by the existence of individual peo-
ple and discrete events

• Environmental stochasticity refers to events that affect more than one
person at a time

– Weather

– Politics

– Economics

Demographic spread
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2 Describing a stochastic process

States and rates

• We describe our system in terms of the probability rates of events hap-
pening

– If the rate of event E is rE(t), the probability of the event occur-
ring in the time interval (t, t+ dt) is rE(t)dt

• If the system is Markovian, rE(t) depends only on the state of the
system at time t

– The Markovian assumption is convenient, but can have unwanted
consequences

States and rates (Demographic)

SIR model with birth and death
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Event transition rate
Infection S → I R0SI/N
Recovery I → R (1− ρ)I
Rebirth R→ S ρR
Rebirth I → S ρI

Analogy

• The demographic model is an exact analogue of the deterministic one

– Conceptually

– In the limit as N →∞
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Realizations and ensembles

• How do we think about the behavior of a stochastic process?

– A single example of how the process could go (e.g., from a stochas-
tic simulation) is called a realization

– The universe of possible realizations is called the ensemble.

– The probability distribution that describes what state we expect
the population to be in at time t is called the ensemble distribution

∗ Knowing how the ensemble distribution evolves is not the
same as understanding the whole ensemble

Some techniques

• Simulate one or many realizations

• Simulate the ensemble distribution

– Requires one state variable for each possible state of the system

• Solve the ensemble distribution dynamics exactly!

– Rarely possible

• Analytic approximations to the ensemble distribution

Simulating a realization

• Given a state of the system:

– List possible events, and associated rates

– Calculate the total rate rT : this gives the rate at which the next
event (whatever it is) will happen

∗ i.e., an exponential waiting time with mean 1/rT

– The probability of event E is rE/rT

– Randomly select the time and nature of the next event

– Change the system state appropriately

– Repeat forever

∗ Or until system is extinct

∗ Or until you are tired
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Demographic model
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Modelling the ensemble distribution

• We model the ensemble distribution by creating one conceptual ‘box’
for each possible state of the system, and asking what is the probability
that the system is in each box.

– This can be a lot of boxes

• The probabilities change as follows:

• ṗS =
∑
S′
pS′rS′→S − pS

∑
S′
rS→S′

Modelling the ensemble distribution

• If our system is small enough (particularly, if it has one state dimension)
we might be able to simulate the ensemble distribution

• We might seek to solve these equations analytically

– Only in special cases

• We might seek analytic approximations to increase our understanding

– Moment approximations

– Diffusion approximations
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Questions

• What kind of questions do we want to ask with a stochastic model?

– How does stochasticity affect disease dynamics?

∗ Spatial distribution

∗ Establishment

∗ Persistence

– How much variance do we expect stochasticity to cause?

– Under what circumstances can we eliminate or eradicate a disease?

3 Equilibrium and quasi-equilibrium

Equilibrium

• Define equilibrium as an ensemble distribution that does not change
with time

• What are the equilibria of our stochastic SIR system?

– Disease free equilibrium

– Others?

• There is no equilibrium corresponding to the endemic equilibrium of
the deterministic system!

– As long as any populations not extinct, proportion extinct will
increase.

Quasi-equilibrium

• Consider the ensemble distribution confined to the subset of states
where nothing is extinct

• This system can be described as a fully connected (you can get anywhere
from anywhere else, open (you can leave the set) flow.

• Linear algebra tells us that such a system will converge to a stable
relative distribution of probabilities of being in each non-extinct box
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Interpreting the quasi-equilibrium

• The quasi-equilibrium is the asymptotic distribution of system states
given that nothing has gone extinct

• The eigenvalue λq associated with the quasi-equilibrium distribution is
the rate at which the probability of non-extinction decays (exponen-
tially)

– The distribution of persistence times must be asymptotically ex-
ponential

– The expected persistence time (looking forward) approaches−1/λq

as the system continues to persist

Modelling the ensemble distribution

• We model the ensemble distribution by creating one conceptual ‘box’
for each possible state of the system, and asking what is the probability
that the system is in each box.

– This can be a lot of boxes

• The probabilities change as follows:

• ṗS =
∑
S′
pS′rS′→S − pS

∑
S′
rS→S′

Modelling the quasi-equilibrium

• We can also model the probability of being in a particular state given
that extinction has not occured

– Computationally convenient

– Can also keep track of cumulative extinction probability

• Define qS = pS/(1−pN) where N is a ‘null’ state that we cannot escape
from.

• Use quotient rule to find dynamic equations for qS.
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The fate of infectious disease

• Fizzle

– Disease fails to “establish”

– We will make this precise later

• Burn-out

– Disease goes extinct after first epidemic

• Fade-out

– Disease goes extinct after system approaches quasi-equilibrium

– Can take a long time

4 Analytic methods

Linearization

• Two of the most useful tools for understanding deterministic disease
models are linearizations:

– Disease-free equilibrium: what factors control whether the dis-
ease can invade and persist?

– Endemic equilibrium: tendency to cycle, damping or persis-
tence of cycles

• Both of these methods have analogues in demographic models
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Linear birth-death process

• We do an invasion analysis by asking how the number of infectives be-
haves in the limit where we assume that virtually the whole population
is susceptible.

• This corresponds to a demographic model with the state determined
by the number of infectious individuals I

• This system has only two events:

– Infection at rate R0I

– Recovery at rate I

Long-term behavior

• Unlike the finite systems discussed before, the probability of eventual
extinction in this system is not one!

• Why not?

– Probability of extinction given persistence goes to zero, as ex-
pected number of infectious individuals goes to ∞

Extinction probability

• Chains of infection are independent in this model

• We can use this fact to solve directly for the probability of extinction
when starting from I infections, EI

– EI = R−I
0 , when R0 > 1

– 1, otherwise

• We can define this as the ‘fizzle’ probability: the disease would have
gone extinct even without depleting any susceptibles.

8



Moment calculations

• Ask: what is the expected behavior of the mean, variance, . . . of the
ensemble?

• Define: µ =
∑
I

Ipi

• How does µ change through time?

– µ̇ =
∑
I

IṗI

– =
∑
I

(bI −mI)pI , where b(I) = R0I is the ‘birth’ rate, andm(I) =

I is the ‘death’ rate

• These equations can be solved in the linear system, or approximated
(by “moment closure”) for non-linear systems

Diffusion approximations

• We can approximate the discrete-valued demographic system with a
real-valued system that reflects the mean and variance of the demo-
graphic system

– Thus we can incorporate demographic stochasticity in a continu-
ous system

– An excellent approximation except when some values are very
small

• In a linear (or linearized) system, we can solve the equilibrium distri-
bution of the continuous equations, and thus approximate the quasi-
equilibrium distribution

– Disease persistence

– Size of demographic fluctuations
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Diffusion approximations

• We linearize about the endemic equilibrium, in exact analogy to Jaco-
bian methods for stability in deterministic models

• Diffusion (and thus demographic stochasticity) is relatively unimpor-
tant when the square of the number infected is large compared to the
demographic variance

– Number infected at equilibrium:
(R0 − 1)ρN

R

∗ ≈ ρN

– Demographic variance: ≈ N

• Diffusion index ≈ ρ2N . If ρ is small, demographic stochasticity can be
important even for very large populations.

5 Conclusions

• Treating individuals as individuals can have dramatic effects on models
of disease transmission

– Acquired immunity is an important part of this phenomenon

• Stochastic models are hard, and we usually combine techniques to un-
derstand them:

– Analytic approximation

– Simulating ensemble distributions

– Simulating realizations

• Remember: demographic stochasticity is real!
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