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TEXT S2: MATERIALS AND METHODS 

Gould suggested that Morton, influenced by racial bias, might have mismeasured 

the capacity of skulls when using seeds [1]. While Morton’s measurements of cranial 

capacity reported in 1839 were done by filling crania with seed (via a method he 

described in extreme detail [2]), he soon became dissatisfied with the repeatability of this 

method: “there is sufficient diversity to occasion considerable variation in the results of 

several successive measurements of the same head, especially when taken by different 

persons. This variation was sometimes not less than three or four cubic inches; making it 

desirable to use some other bodies in place of the pepper seeds” [3]. Morton then 

switched to using lead shot (circa 1/8” diameter) and found much greater repeatability: 

“in six successive measurements of the same skull, the results did not vary by more than 

half a cubic inch” [3]. While an assistant performed some of the seed-based 

measurements, Morton did all of the shot-based measuring of the crania himself [4]. 

 
Sample 

Morton’s 1839 Crania Americana [2] reported seed-based measurements, taken with 

the aid of an assistant, for 158 individual crania. All 158 are Native American, so it is not 

possible to test directly the possible racial bias of Morton’s seed-based measurements. 

Even so, we remeasured 51 of these 158 Native American crania (32%). Our sample size 

is limited because many of the Native American crania are no longer in the Morton 

Collection. These remeasurements provide data on the general accuracy of the seed 

measurements reported by Morton. 

While the seed-based method would seem to be more susceptible to bias [1], the 

shot-based method is unlikely to be immune from it: there is still a judgment of when the 

cranium is full, and the choice of how carefully to pack the shot into the cranium. Of the 

670 crania measured by Morton with shot, we selected 308 (46%) to remeasure (Table 

S1) based on the completeness of the specimens and the lack of soft tissue. A power test 

indicates that only 208 specimens would need to be remeasured to detect differences at 

the 0.05 alpha level, so our sample size is sufficient.  

 
Table S1. Comparison of our sample with that of Morton’s original 1849 sample by 
population group. The “% of Morton” column reports what percentage our group sample is of 
Morton’s. “Whites” refers to European and Caucasian populations, “Blacks” to African and African 
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Diaspora populations. These groups are not suggested to have any particular biological 
significance, but they roughly align with the biases Gould attributed to Morton. 
 

 # of Crania Measured  
Group Morton (1849) Our Study %  of Morton 
Whites 43 24 56% 
Blacks 201 76 38% 

N. America 174 90 52% 
S. America 162 56 35% 
Asia/Pacific 81 54 67% 

Australia 9 8 89% 
Total 670 308 46% 

 
Our “remeasurement” sample includes crania from 73 geographic and ethnic 

populations, and contains some pathological specimens (e.g., artificial cranial 

deformation, dwarfism, syphilis, sword wounds) measured by Morton. While most studies 

exclude pathological specimens, our goal was to compare our measurements with those of 

Morton, so any skull he measured was appropriate for us to include. Morton classified 

crania according to a scheme of 22 “families” grouped into five or more “races” [2]. Our 

grouping scheme is based on Morton’s classification, as a key test is whether Morton’s 

errors were non-random with respect to his racial groupings. Our categories were Native 

Americans exclusive of Peruvians; Peruvians; whites (crania Morton considered 

Caucasian, including “Pelasgics” but excluding other Egyptians); blacks (African/African 

Diaspora exclusive of Egyptians); Egyptians; Australians; “Mongolians” (Morton’s 

term/category); and “Malay” (again Morton’s term/category). This was done as 

Morton’s hypothesized bias would be positive for ancient (non-“Negro”) Egyptians, while 

negative for other Africans, and positive for Peruvians, while negative for other Native 

Americans, due to the monuments associated with Incas and Egyptians [5,6]. As a 

simpler alternative, we also divided the sample by continent of origin (though including 

African diaspora specimens with Africans and Caucasian-Americans with Europeans). 

 

Measurement Method 

We measured the cranial capacity of the skulls by using molded acrylic balls [7]. 

Any large openings to the endocranium (e.g., jugular foramen, orbits) were first plugged 

with cotton. The cranium was placed in a plastic retaining tray with the foramen 

magnum facing up and the splanchocranium directed away from the measurer. Six-
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millimeter diameter (0.1 cm3) solid precision molded non-compressible acrylic balls 

(Greene Plastics Corporation, Hope Valley, Rhode Island) were poured into the foramen 

magnum until the balls would no longer flow freely into the cranium. The funnel was 

then removed from the foramen magnum, and the cranium gently shaken in both hands 

to level the balls inside.  More balls were then poured into the cranium until the balls 

again stopped flowing, and the gentle shaking repeated.  This process was continued until 

they overflowed into the funnel and out of the foramen magnum.  To avoid deliberate or 

unconscious packing of the acrylic balls, the measurer would not place their fingers into 

the neurocranium to pack or push on the balls, but only shake intermittently. Once the 

cranium overflowed, the excess balls between the occipital condyles were leveled with a 

probe. 

When the cranium was full, the balls were transferred into a graduated cylinder.  

The mass of the balls was measured using a triple-beam balance, and measurements were 

taken in increments of 0.025 grams. Mass was used rather than volume to avoid the error 

associated with visually reading a meniscus of spheroid objects as well as fluctuations due 

to differences in the packing of the balls in the cylinder. Instead, a ratio that relates 

volume and mass was experimentally determined by weighing known volumes of balls.  

This ratio was then used to calculate total cranial volume from the mass of the balls, as 

follows: [mass of balls (g)]/ 0.70517 = [cranial capacity (cm3)]. This approach also lessens 

the awareness of the investigator of what specific volumes are being produced during the 

measuring operation. 

After measuring a specimen, approximately half of the volume of balls in the 

graduated cylinder were poured into the previously used container, and the other half 

into a separate container.  This was done to ensure the measurer was not biased towards 

trying to simply pack the previous volume of balls into the same cranium to be 

remeasured.  Care was used throughout this process to protect the cranium from damage 

and to make sure all the acrylic balls were properly transferred from the cranium to the 

graduated cylinder.  This entire process was repeated three times for each cranium, 

resulting in three different volume measurements, which allowed us to determine 

intraobserver measurement error.  The three volumes were then averaged together to 

find a mean volume for each cranium, and it was this number that was used as the 
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experimentally determined cranial capacity.  One observer (JEL) took the measurements 

for all crania but seven (six of which were a mix between JEL and MRM, and one of 

which was MRM only). 

Our measurement error was calculated based on our three repeated measures of 

each cranium’s capacity, in cm3, and the percentage error [8,9] is on average 0.35% with 

a range of 0.04% to 1.48% (only two outlier specimens had errors > 1%). The sample 

size for the measurement error is 290 specimens, as the individual values (though not the 

means) were lost for 18 specimens. 

Our measurements were taken in cm3, but were converted to in3 for comparison 

with Morton’s measurements. The conversion was done in this direction because in3 are 

larger units than cm3, so converting Morton’s in3 to cm3 would create more rounding 

error than the reverse. In any case, we also converted Morton’s in3 to cm3 (data not 

shown) and doing so does not alter the results presented here.  We rounded our in3 values 

to the nearest whole number, as most of Morton’s cranial capacity measurements are also 

reported in this fashion. Fortunately, the magnitude of the differences introduced by 

rounding and conversion issues is relatively small (less than 1%) and does not impact the 

results.  

 
Comparing Our Method with Morton’s 

Before examining the question of whether Morton mismeasured crania, we must 

first establish the correspondence between cranial capacities measured using our acrylic 

ball method and those produced by Morton’s methods. For Morton’s seed-based 

measurements (the “seed” sample [2]), his mean for the 51 crania we remeasured is 1318 

cm3, whereas ours is 1301 cm3, a difference of about 1% or 1 in3.  For Morton’s shot-

based measurements (the “shot” sample [4]), Morton’s mean for the 308 crania we 

remeasured is 1350 cm3, whereas ours is 1299 cm3, a difference of about 4% or 3 in3.  

When our individual measurements are subtracted from Morton’s individual 

measurements, the median (and mean) difference is 51 cm3 (see Dataset S2). In general, 

then, our measurement method yields cranial capacities that are circa 50 cm3 less than, or 

are on average 96% of, those produced by Morton’s. This difference is quite consistent 

across the sample, as evidenced by our ability to predict Morton’s measurements from 

ours with an r2 of 0.96 (p < 0.0001) using a linear regression model (Figure S1). 
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Figure S1. Linear regression of our cranial capacity measurements against Morton’s 1849 
shot-based cranial capacity measurements [4], both in in3. 

 
 

 
Statistical Methods 

All statistical analyses were performed using the open source program ‘R’ 

(http://www.r-project.org), and the actual R code used is given below (Appendix I - R 

Code Used for Statistical Analyses). We used linear regression to examine differences 

between our measurements and Morton’s due to our measurement methods (Figure S1). 

A normal quantile-quantile plot was then used to help identify outlier crania (those 

Morton may have mismeasured). Such an analysis plots the standardized residual of each 

specimen in the regression according to its magnitude (Figure S2). We also examined the 

simple percentage differences between our measurements and Morton’s to identify 

possible errors on his part (Tables S2-3).  

 
Figure S2. Standardized residuals for each specimen (their distance from the regression 
line) plotted by quantiles. The farther a point is from zero on the x-axis, the farther it is from the 
middle of the distribution. Positive residuals indicate that Morton overmeasured, negative 
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residuals indicate that he undermeasured. Morton’s data are his shot-based measurements [4]. 
The farthest outliers are labelled by specimen number. 

 
 
Table S2. Crania mismeasured by Morton (and/or his assistant) with seed, using our 
measurements as the “gold standard”. All are Native American, as those are the only crania 
for which Morton reported individual seed measurements in 1839 [2]. Our capacity measurements 
(“Current”) have been adjusted to account for the average difference (about 1%) produced by the 
difference in our method versus Morton’s seed method. “Difference” is Morton’s measurement 
relative to ours. “Measure Error” is our measurement error based on three repeated 
measurements of each cranium’s capacity. 
 

  Cranial Capacity (in3)   
Specimen # Population Current Morton Difference Measure Error 

76 Peruvian 61 64 +5% 0.3% 
54 Osage 79 83 +5% 0.4% 

100 Peruvian 65 60 -8% 0.3% 
96 Peruvian 77 68 -12% 0.4% 

 
 
Table S3. Crania mismeasured by Morton with shot, using our measurements as the “gold 
standard”. Our capacity measurements (“Current”) have been adjusted to account for the 
average difference (about 4%) produced by the difference in our method versus Morton’s shot 
method [4]. “Difference” is Morton’s measurement relative to ours. Specimens with a percentage 
difference of greater than 5.5% (more than 2.5 standard deviations from the mean percentage 
difference) are clear outliers and thus are considered to have been mismeasured by Morton. 
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“Measure Error” is our measurement error based on three repeated measurements of each 
cranium’s capacity. 
 

  Cranial Capacity (in3)   
Specimen # Population Current Morton Difference Measure Error 

761 Egyptian Copt 76 85 +12% 0.5% 
754 Seminole 82 89 +9% 0.2% 
994 Native African 71 76 +7% 0.4% 
1435 Peruvian 70 66 -6% 0.3% 
949 Arickaree 80 75 -6% 0.2% 
1326 Peruvian 83 75 -10% 0.5% 

70 Chetimaches 84 75 -11% 0.5% 
 

To test whether Morton’s errors in cranial capacity measurements were randomly 

distributed by population, we used a binomial probability analysis of quantile groupings 

of the percentage differences between our measurements and Morton’s. Using our 

measurements as a baseline, our preferred quantile scheme was to divide the sample into 

three groups of crania: I, Morton overestimated (>3% greater than our measurement); II, 

Morton measured about right (≤ 3% different from our measurement); and III, Morton 

underestimated (>3% less than our measurement). The threshold of 3% was chosen both 

because it appeared to be a “break point” in the rank order distribution of absolute 

percent differences between our measurements and Morton’s (see Dataset S2), and also 

because differences of greater than 3% correspond to more than 2 in3. Given the 

difference in methods between our measurements and Morton’s, unit conversions, 

rounding, and a measurement error of about 0.3%, it is difficult to attribute a difference 

of 2 in3 (or less) to error on Morton’s part. These quantiles were then sorted by 

population to form a “quantile by population” table (that specifies, for example, the 

number of African specimens in quantile III as one cell). Our preferred population 

scheme is based on Morton’s categories and is as follows: Native Americans exclusive of 

Peruvians; Peruvians; whites (crania Morton considered Caucasian, including “Pelasgics” 

but excluding other Egyptians); blacks (African/African Diaspora exclusive of Egyptians); 

Egyptians; Australians; “Mongolians” (Morton’s term/category); and “Malay” (again 

Morton’s term/category). The binomial function was applied to this quantile/population 

table to identify cells with values that were either significantly larger or smaller than 

would be expected by chance. This identifies whether, for example, more white crania 
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were overestimated by Morton than would be expected if his errors were randomly 

distributed by population.  

The results of the quantile – binomial analysis depend in part on the choice of 

population and quantile groupings. We therefore explored the impact of different choices 

in each regard. Our alternate population grouping was to consider the sample by 

continent of origin, though including African diaspora specimens with Africans and 

pooling all Caucasians with Europeans. Our alternate quantile scheme was to use five 

groups of crania: I, specimens Morton overestimated by ≥5%; II, specimens slightly 

overestimated by Morton (1-4%); III, specimens measured accurately by Morton (±1%); 

IV, specimens slightly underestimated by Morton (1-4%); and V, specimens Morton 

underestimated (≥5%). Both quantile schemes were applied to the entire sample using 

both population groupings.The five quantile scheme applied to Morton’s population 

groupings  finds that Morton underestimated fewer “black” crania than expected by 

chance (data not shown).  Using our simpler “continental” population grouping scheme, 

with both three and five quantile divisions, also shows that Morton underestimated fewer 

“black” crania than expected by chance (data not shown). Furthermore, we also used a 

two quantile scheme applied to just the mismeasured crania, rather than the entire 

sample of percentage differences, but no cells approached significance. 
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Appendix I - R Code Used for Statistical Analyses 

 Note that the following “R” code (http://www.r-project.org) also includes 

additional analyses beyond those reported here. 

 
To load data file: 
 
> morton = read.table("path to location of data file on your computer/Morton Data File 
name.extension", header=T, sep = ",") 
 
Linear regression analyses (based on raw values, not corrected values): 
 
> lm(formula = morton$CCAP ~ morton$Morton.IC) 
 
Call: 
lm(formula = morton$CCAP ~ morton$Morton.IC) 
 
Coefficients: 
     (Intercept)  morton$Morton.IC   
          1.8667            0.9397  
> summary(lm(formula = morton$CCAP ~ morton$Morton.IC)) 
 
Call: 
lm(formula = morton$CCAP ~ morton$Morton.IC) 
 
Residuals: 
    Min      1Q  Median      3Q     Max  
-8.7433 -0.9659 -0.1173  0.9437  8.6539  
 
Coefficients: 
                 Estimate Std. Error t value Pr(>|t|)     
(Intercept)        1.8667     0.9114   2.048   0.0414 *   
morton$Morton.IC   0.9397     0.0110  85.423   <2e-16 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  
 
Residual standard error: 1.692 on 306 degrees of freedom 
Multiple R-squared: 0.9598, Adjusted R-squared: 0.9596  
F-statistic:  7297 on 1 and 306 DF,  p-value: < 2.2e-16  
 
Binomial probability analyses: 
 
-based on continent, with five % difference divisions: 
> MCTable=table(morton$Quantile.I, morton$Pop) 
> MCTable 
      
       1  2  3  4  5  6 
  I    1  5  2  1  0  0 
  II  11 34 31 17 18  1 
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  III  5 20 23 11 16  3 
  IV   7 15 31 24 20  4 
  V    0  2  3  3  0  0 
> Ecnt <- outer(rowSums(MCTable), colSums(MCTable), "*") / sum(MCTable) 
> Eprop <- Ecnt/sum(MCTable) 
> Oprop <- MCTable / sum(MCTable) 
> Cm <- ceiling(Oprop-Eprop) 
> BP <- pbinom(MCTable-Cm, sum(MCTable), Eprop) 
> BP <- Cm-BP 
> BP 
      
                1           2           3           4           5           6 
  I    0.50445560  0.07405398 -0.51028377 -0.51272499 -0.20556811 -0.79147658 
  II   0.26008927  0.12279507 -0.41932235 -0.26189151 -0.40790441 -0.21170941 
  III -0.43154172  0.46257048  0.51299148 -0.23891955  0.29599099  0.33037586 
  IV  -0.46963305 -0.01908103  0.41443944  0.11096284  0.32000147  0.26873945 
  V   -0.53579250  0.58777669  0.41426211  0.17951273 -0.24517065 -0.81231886 
 
-based on continent, with three % difference divisions: 
 
> MCTable=table(morton$Quantile.II, morton$Pop) 
> MCTable 
      
       1  2  3  4  5  6 
  I   12 39 33 18 18  1 
  II   5 20 23 11 16  3 
  III  7 17 34 27 20  4 
> Ecnt <- outer(rowSums(MCTable), colSums(MCTable), "*") / sum(MCTable) 
> Eprop <- Ecnt/sum(MCTable) 
> Oprop <- MCTable / sum(MCTable) 
> Cm <- ceiling(Oprop-Eprop) 
> BP <- pbinom(MCTable-Cm, sum(MCTable), Eprop) 
> BP <- Cm-BP 
> BP 
      
                1           2           3           4           5           6 
  I    0.23783398  0.05207250 -0.37781083 -0.22307531 -0.27757188 -0.17731527 
  II  -0.43154172  0.46257048  0.51299148 -0.23891955  0.29599099  0.33037586 
  III -0.38372644 -0.02358664  0.37035876  0.06523157  0.44974689  0.31482855 
 
-based on revised 'racial' groupings, with three % difference divisions: 
 
> MCTable=table(morton$Quantile.II, morton$DD.Pop) 
> MCTable 
      
       1  2  3  4  5  6  7  8 
  I   21 30  6 35 16  2 10  1 
  II  15 16  2 23 11  4  4  3 
  III 19 11  5 34 27  1  8  4 
> Ecnt <- outer(rowSums(MCTable), colSums(MCTable), "*") / sum(MCTable) 
> Eprop <- Ecnt/sum(MCTable) 
> Oprop <- MCTable / sum(MCTable) 
> Cm <- ceiling(Oprop-Eprop) 
> BP <- pbinom(MCTable-Cm, sum(MCTable), Eprop) 
> BP <- Cm-BP 
> BP 
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                1           2           3           4           5           6           7           8 
  I   -0.50329567  0.06399594  0.40298596 -0.46360482 -0.14301133 -0.48064361  0.36497058 -
0.17731527 
  II   0.42179690  0.37283878 -0.35959488 -0.52945920 -0.28288505  0.10380686 -0.34430439  
0.33037586 
  III -0.51701506 -0.01676672  0.48773502  0.42149869  0.04579653 -0.29075312  0.51818910  
0.31482855 
 
-based on revised 'racial' groupings, with five % difference divisions: 
 
> MCTable=table(morton$Quantile.I, morton$DD.Pop) 
> MCTable 
      
       1  2  3  4  5  6  7  8 
  I    2  2  2  2  1  0  0  0 
  II  19 28  4 33 15  2 10  1 
  III 15 16  2 23 11  4  4  3 
  IV  19  9  5 31 24  1  8  4 
  V    0  2  0  3  3  0  0  0 
> Ecnt <- outer(rowSums(MCTable), colSums(MCTable), "*") / sum(MCTable) 
> Eprop <- Ecnt/sum(MCTable) 
> Oprop <- MCTable / sum(MCTable) 
> Cm <- ceiling(Oprop-Eprop) 
> BP <- pbinom(MCTable-Cm, sum(MCTable), Eprop) 
> BP <- Cm-BP 
> BP 
      
                 1            2            3            4            5            6            7            8 
  I    0.477884982  0.496559269  0.056137989 -0.495750697 -0.531608908 -0.814962316 -
0.525434908 -0.791476579 
  II  -0.467259576  0.066442125 -0.488539638 -0.512882674 -0.167584108 -0.531632461  
0.281725117 -0.211709412 
  III  0.421796896  0.372838781 -0.359594878 -0.529459203 -0.282885047  0.103806864 -
0.344304391  0.330375859 
  IV   0.441171779 -0.008861967  0.422752325  0.464493886  0.082554336 -0.330783785  
0.433553618  0.268739449 
  V   -0.238855928  0.436023402 -0.713304013  0.427971122  0.166799537 -0.833708158 -
0.564418484 -0.812318859 
 
-seventeen outliers, based on revised 'racial' groupings, with five % difference divisions: 
 -here we created a new file with only the 17 outliers, but this can easily be done from with 
R as well 
 
> seventeen = read.table("path to location of data file on your computer/Seventeen Outliers File 
name.extension", header=T, sep = ",") 
> MCTable=table(seventeen$Quantile.I, seventeen$DD.Pop) 
> MCTable 
    
    1 2 3 4 5 
  I 2 2 2 2 1 
  V 0 2 0 3 3 
> Ecnt <- outer(rowSums(MCTable), colSums(MCTable), "*") / sum(MCTable) 
> Eprop <- Ecnt/sum(MCTable) 
> Oprop <- MCTable / sum(MCTable) 
> Cm <- ceiling(Oprop-Eprop) 
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> BP <- pbinom(MCTable-Cm, sum(MCTable), Eprop) 
> BP <- Cm-BP 
> BP 
    
             1          2          3          4          5 
  I  0.2864554 -0.6430617  0.2864554 -0.4930811 -0.3561895 
  V -0.3797534  0.5760651 -0.3797534  0.4246968  0.2892696 
 
 -the same table results for 3 % difference divisions. 
 
Power Analysis: 
 
> pwr.r.test(n=308, r=0.9805031, sig.level=0.05, alternative="two.sided") 
 
     approximate correlation power calculation (arctangh transformation)  
 
              n = 308 
              r = 0.9805031 
      sig.level = 0.05 
          power = 1 
    alternative = two.sided 
 
> d= (mean(mortoncorr$CCAP)-mean(mortoncorr$MORTONCCA, 
na.rm=T))/sd(mortoncorr$MORTONCCA, na.rm=T) 
> d 
[1] -0.3518261 
> pwr.t.test(d=d, power= .999, sig.level=0.05, type="one.sample", alternative="two.sided") 
 
     One-sample t test power calculation  
 
              n = 207.9799 
              d = 0.3518261 
      sig.level = 0.05 
          power = 0.999 
    alternative = two.sided 
 
Stripchart code: 
 
> plot(morton$JL.CCAP.CORRECTED, rep(1,length(morton$JL.CCAP.CORRECTED)), ylab="", 
xlab="", pch=0, ann=FALSE, axes=FALSE, ylim=c(0,4)) 
> box() 
> ccapaxis=round(morton$CCAP) 
> ccapaxis=round(morton$JL.CCAP.CORRECTED) 
> axis(ccapaxis,side=1) 
> points(morton$Morton.IC, rep(3, length(morton$JL.CCAP.CORRECTED))) 
> segments(morton$JL.CCAP.CORRECTED,1,morton$Morton.IC,3) 
> my.names <- c("Remeasure","Morton") 
> axis(2, at=c(1,3), labels=my.names) 
 
 


