
Text S2. Technical details of the spatial model  

 Here we show how the spatial model can be rescaled into nondimensional form, 

give additional technical details on the boundary conditions and how they were imposed 

numerically, and describe our methods for numerical solution of the spatial model.  

 

Rescaling. The equations to be non-dimensionalized are 
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We measure time in days, distance x in mm, and state variables are all measured in units 

of substrate (e.g., moles Carbon). The units of parameters are given in Table 2. For 

simplicity, the spatial dependence of advection and diffusion coefficients used in 

numerical solutions is not shown explicitly in equations (1).   

 It is convenient to choose substrate units so that the concentration of substrate in 

fresh mucus supplied by the host is 0 1S  , because this stabilizes the one non-zero 

boundary condition (i.e, ). A typical value of mucus layer thickness is L=1mm 

so there is no gain from rescaling the spatial variable x, and likewise for numerical 

0S(0, )S t 

studies there is no gain from rescaling time. We therefore proceed much as in the 

nonspatial model, and define rescaled state variables    
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(the scaling of B is different here than in the well-mixed model, because we cannot tacitly 

absorb A into B when both quantities are varying across space). By standard calculations, 

the resulting rescaled model is then identical in form to equation (1), except that the 

values of the parameters Bk  and Pk  are both divided by 0.S    

 

Boundary Conditions. A he rig -hand boundary, the t t ht sharp transition between mucus 

yer and the surrounding water column is represented by absorbing boundary conditions 

between mucus layer and seawater

te

variables. For the antibiotic the zero-flux condition is that 

la

(1, ) (1, ) (1, ) (1, ) 0S t B t P t A t    . In numerical experiments these gaves very similar 

results to less extreme boundary conditions (e.g., allowing some two-way diffusion 

), so we used the absorbing conditions for simplicity 

and to avoid introducing additional parameters specifying the boundary conditions.   

 The left-hand boundary conditions are constant for substrate, 0(0, ) 0S t S   to 

represent substrate supply by the host and its symbionts, and zero-flux for the other  sta
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 at x=0. In 

numerical solutions this condition was imposed by finite difference, as detailed below 

 assumptions favor microbes converging onto the coral surface to 

axim

(equation (3)).  

 Boundary conditions for the microbe populations at x=0 are more complicated. 

Our chemotaxis

m ize nutrient uptake. To avoid this behavior, which is not actually observed,  

following Ellner et al. (2007) we made the boundary at x=0 inaccessible to the microbes 



by having the diffusion and advection coefficients decrease smoothly to zero as the coral 

surface is approached:   
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and similarly for the pathogens, where 00 1x  .
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 The resulting boun

equation (2), gives 

umerical methods. Model solutions were obtained by methods very similar to Ellner et 

constants specified by the boundary 

dary conditions are 

(0, ) (0, ) 0B t P t  . Numerical experim  that the variable coefficient approach, 

results very similar to implementing a no-flux boundary conditions by 

finite difference, but is more stable against numerical blowups that can occur when all 

microbes concentrate near the coral surface.  

 

N

al. (2007, Appendix B). Spatial derivatives of state variables were calculated by 

Chebyshev interpolation [50] with grid points running from 0 to 1, and we used the 

"method of lines" to solve the model at interior grid points (i.e. all but x=0 and x=1). 

Method of lines produces a system of ordinary differential equations representing state 

variable values at the interior grid points. The odesolve package [51] in R [52] was used 

to numerically solve these differential equations.   

 Values at the boundary grid points are 

conditions, except for the value of A at x=0. For this we used a finite difference 

approximation to the no-flux boundary condition:   
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(indices 0 and 1 indicate the left-most grid point and its neighbor to the right), and solved 

equation (3) for 0A  as a function of 1A . Although more complex schemes could be used 



that achieve higher-order theoretical accuracy, we have found that finite difference is 

much more robust against grid-scale numerical artifacts in the interior that affect higher-

order methods such as spectral estimates [44]. 

 


