Table S6. Substitutions between amino acids with different physical properties that were located in the transmembrane region. Retinal binding pocket sites are shaded grey. Sites that have been previously demonstrated to tune opsin spectral sensitivity and that vary among chids are marked at the bottom of the table. In addition, two sites that correspond with measured differences in cichlid sensitivity are highlighted. Numbers correspond to bovine rhodopsin. Abbreviations for the amino acid physical properties are as follows nonpolar hydrophobic

				WS1				SWS2B	SWS2A	RH2B		RH2Ab		RH2Aa				LW								Rh1			
	37	114	160	166	204	217	248	269	39	124	107	151	218	151	40	123	155	164	203	217	261	262	42	158	163	166	213	298	299
Aulonocara hueseri	Y	S	T	G	T	S	K	A	A	S	A	T	V		S/A	T/A	A	A	Y	A	Y	C	A	A	A	S		A	A
Aulonocara baenschi	F	G	A	G	I	S	K	A	A	s	S	T	T/I	A	S	T	A	A	Y	A	F/	c	A	A	A	s	T	A	A
Cynotilapia afra	F	S	T	G	T	S	K	A	A	s	S	A	v	A	S/A	T	A	A	Y	A	F	c	A	A	A	S	T	A	A
Labeotropheus fuelleborni	F	s	T	G	T	S	K	A	A		s	A	1		A	A	A	A	Y	A	Y	c	A	A	A	s	T	A	A
Labidochromis chisumulae	F/Y	s	T	G	T	s	K	A	${ }^{\top}$	s	P	A	।	A	A	A	A	A	Y	A	Y	c	A	A	A	s	T	A	A
Melanochromis auratus	Y	s	T	G	T	F	K	A	A	s	S	A	T	A	A	A	A	S	Y	A	Y	c	A	A	A	S	T	A	A
Melanochromis vermivorus	F	s	T	G	T	S	K	A	A	s	s	A	v	A	A	A	A	S	Y	A	Y	c	A	A	A	A	T	S	S
Metriaclima zebra	F	S^{1}	T	G	T	S	K	A	T	s	S	A	1	A	A	A	A	A	Y	A	Y	c	A	A	A	S	T	A	A
Pseudotropheus acei	F	A^{2}	A	A	I	s	K	A	T	s	s	A	V/I	A	A	A	A	s	Y	A	Y	c	A	A	A	A	T	s	s
Copadichromis borleyi	Y	S	T	G	T	S	K	A	A		S	T	1		A	A	A	A	Y	A	Y	C	A	A	A	A	1	S	S
Dimidiochromis compressiceps	F	s	T	G	T	s	K	T	A		s	A	।		A	A	A	A	Y	A	Y	c^{3}	A	A	A	A	।	s	s
Lethrinops parvidens	F	S/T	T/A	G	T/I	s	K	A	A		P	A	1	A	S	A	A	S	Y	A	Y	c	A	A	A	A	1	s	s
Mylochromis lateristriga	F	s	T	G	T	s	K	A	A	A	S	T	I	A	A	A	A	A	Y	A	Y	c	A	A	A	A	T	s	s
Stigmatochromis modestus	F	s	T	G	T	s	E	A	A		A	T	T		s	T	A	A	Y	A	Y	c	A	A	A	A	T	A	A
Tramitichromis intermedius	F	s	T	G	T	s	K	T	A	s	P	A	I	A	A	A	A	A	Y	A	Y	C^{3}	A	A	A	S	T	A	A
Tyrannochromis maculatus	F	S	T	G	T	S	K	A	A	A	S	T	1	A	A	A	A	A	Y	A	Y	c	A	A	A	A	1	A	A
Lipochromis melanopterus	F	A	A	G	1	S	K	T	A	S	P	A	I	A	A	A	A	A	Y	A	Y	C	A	A/G	A	S	?	A	A
Neochromis greenwoodi	F	A	A	G	।	s	K		A	s	P	A	।	A	A	A	A	S	Y	A	Y	1	c	G	G	s	L	A	A
Neochromis omnicaeruleus	F	A	A	s	1	S	K	T	A	s	P	A	I	A	A	A	A	A	Y	A	Y	c	c	G	G	s	L	A	A
Paralabidochromis chilotes	F	A	A	G	1	S	K	T	A	s	P	A	I	A	A	A	A	A	F	T	Y	I	c	G	G	S	L	A	A
Paralabidochromis cyaneus	F	A	A	G	।	s	K	A	A	s	P	A	1	A	A	A	G	S	Y	A	Y	c	A	A	A	s	L	A	A
Pundamilia azurea	F	A	A	s	1	s	K	T	A	s	P	A	1	A	A	A	A	A	Y	T	Y	I^{4}	c	G	G	s	L	A	A
Pundamilia luanso	F	A	A	s	I	s	K	T	A	s	P	A	1	A	A	A	A	A	F	T	Y	I^{4}	c	G	G	s	L	A	A
Pundamilia nyererei	F	A	A	G	1	s	k	T	A	s	P	A	1	A	A	A	A	A	Y	A	Y	C^{3}	c	G	G	s	L	A	A
Pundamilia nyererei									A		P	A	I		A	A	A	A	F	T	Y	I^{4}	c	G	G	s	L	A	A
Pundamilia nyererei									A		P	A	I		A	A	A	A	Y	A	Y	c							
Pundamilia pundamilia	F	A	A	G	1	s	K	T	A	s	P	A	1	A	A	A	A	A	F	T	Y	I^{4}	C	G	G	S	L	A	A
Pundamilia redhead	F	A	A	G	1	S	K	T	A	s	P	A	1	A	A	A	A	A	Y	A	Y	C^{3}	A	A	A	S	L	A	A
	F-NPH	S-PU	T-PU	GS-PU	T-PU	S-PU	K-PB	A-NPH	A-NPH	S-PU	S-PU	A-NPH	V,I-NPH	T-PU	S-PU	T-PU	A-NPH	A-NPH	Y-PU	A-NPH	Y-PU	I-NPH	A-NPH	A-NPH	A-NPH	S-PU	T-PU	A-NPH	A-NPH
	Y-PU	A-NPH	A-NPH	A-NPH	1-NPH	F-NPH	E-PA	T-PU	T-PU	A-NPH	AP-NPH	T-PU	T-PU	A-NPH	A-NPH	A-NPH	G-PU	S-PU	F-NPH	T-PU	F-NPH	C-PU	C-PU	G-PU	G-PU	A-NPH	I,L-NPH	S-PU	S-PU
	TM 1	TM3				M5	TM 6	TM6	TM1	тм3	тм3	TM4	TM5	TM4	TMI	тм3		M4		M5	TM		TM1		TM4		TM5		M7

M. zebra SWS1 has a $\lambda m a x$ of 368 nm (Carleton et al. 2000. Vision Res 40: 879-890).
. acei SWS1 has a $\lambda \max 378 \mathrm{~nm}$ (Parry et al. 2005. Curr Biol 15: 1-6)
These taxa have LWS $\lambda \max$ values that range from 567-569 nm (Carleton et al. 2005. Mol Ecol 14: 4341-4353; Parry et al. 2005. Curr Biol 15: 1-6),
These taxa have LWS $\lambda_{\text {max }}$ values that range from 562-565 nm (Carleton et al. 2005. Mol Ecol 14: 4341-4353; Parry et al. 2005. Curr Biol 15: 1-6).
Shi et al. 2001. Proc Natl Acad Sci USA 98: 11731-11736.
Cowing et al. 2002. Biochemistry 41: 6019-6025.
Asenjo et al 1994. Neuron 12. 1131-1138.

