
Supporting methods

Working memory capacity and inhibitory control
measures
To ensure that there were no differences in executive functioning [8, 33] between
the experimental groups, we measured working memory capacity and inhibitory
control during a second experimental session of approximately 40 minutes for
which participants returned to the laboratory a few days after the sentence
production experiment. Participants completed automated, shortened versions
of the operation span and symmetry span tasks [12, 27] and a Flanker task
[10]. The order of tasks was balanced across participants. We operationalized
participants’ working memory capacity as the partial-credit load scores [6], i.e.,
the total number of correctly recalled elements across all items. Inhibitory
control was operationalized as the congruency effect [20] for each participant,
i.e., the difference between the mean reaction time on incongruent trials and
the mean reaction time on congruent trials. During the Flanker task, fifty
congruent, incongruent, and neutral trials were administered, respectively. The
results of the executive function measures are presented in Table S2 and Fig
S1. We failed to reject the null hypothesis of no difference in both the working
memory capacity measures (mean partial-credit load scores: operation span,
t(46.197) = 1.327, p = 0.19; symmetry span, t(47.485) = -0.131, p = 0.90), and
in inhibitory control (mean congruency effect, t(34.747) = 0.863, p = 0.39).

Reaction time analyses
Experimental participants might have needed more time to perform an addi-
tional cognitive operation when describing completed events (perfective aspect)
regardless of the difference of interest (non-aligned sentences). The picture stim-
uli mostly showed events in the middle of the action. This might have required
that speakers first had to transform their mental representation from an ongoing
event to a completed event. By contrast, when planning sentences in imper-
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fective aspect (describing ongoing events) no such additional transformation is
needed.

In order to evaluate this possibility, we compared speech onset latencies be-
tween sentences produced in perfective and imperfective aspect to test whether
there are behavioral differences in when speakers started articulating their utter-
ances, depending on whether the event is described as already being completed
or as ongoing.

In the analysis we included all and only trials in which participants pro-
duced intransitive or transitive sentences in imperfective or perfective aspect
and overtly named all event participants conforming to the instructions. We
excluded trials with speech onset latencies later than 6000 ms or longer than
2.5 SD away from each participant’s mean speech onset latency. On balance,
4066 trials (68.1%) were included in the analysis.

Speech onset latencies were modelled with Gamma regression [18] with sen-
tence transitivity and alignment condition (aligned/imperfective aspect vs. non-
aligned/perfective aspect) as critical predictors and length of the subject NP (in
syllables), trial number, verb codability and visual picture complexity (number
of black pixels) as control variables (cf. section on statistical analyses below). A
random intercept by participant with a random slope for sentence transitivity
and a random intercept by stimulus picture with a random slope for alignment
condition were included; this constitutes the maximal random effects struc-
ture in the study’s between-participants design [3]. We failed to reject the null
hypothesis of no differences between intransitive and transitive sentences or be-
tween non-aligned/perfective aspect and aligned/imperfective aspect sentences
(all p > 0.13, Table S3, Fig S2). We conclude that any differences in speakers’
task demands in the two alignment conditions are unlikely to have lead to the
effects we observed.

Details on experimental procedure
Experimental sessions started with participants giving informed consent and
reading the instructions (in Hindi). The experimenter then answered any ques-
tions about the procedure and mounted the EEG cap and calibrated the eye
tracker. Participants first read a summary of the instructions on the screen
again before starting a practice block in which they saw example pictures ac-
companied by prerecorded example descriptions that demonstrated how intran-
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sitive and transitive pictures could be described in imperfective or perfective
aspect. Next, the same pictures were presented again in a different order and
participants were asked to describe them spontaneously themselves.

Experimental trials started with the presentation of a scrambled version of
the trial’s stimulus picture with a superimposed fixation square. This square
was positioned randomly in one out of five positions on the top of the screen
(left, left-middle, middle, right-middle, right) for a jittered interval between 1750
and 2250 ms (serving as baseline period). The fixation square was positioned
at the top of the screen to avoid that participants’ gaze already fell on one
of the event participants when the stimulus picture appeared [13, 21, 22, 25].
Scrambled versions of the stimulus pictures were used during presentation of
the fixation square to make the luminosity of this display similar to the display
of the stimulus picture without providing an actual preview of the stimulus [17].
To produce the scrambled pictures, pixels were randomly redistributed over the
screen (cf. Fig S3). Following the fixation square display, the stimulus picture
appeared and participants described it, ending the trial with a button press on
a response pad after they finished speaking.

E-Prime 2.0 (Psychology Software Tools, Sharpsburg) was used to present
stimuli and control the data recordings. Stimulus pictures were presented at
a distance of approximately 60 cm on the screen of a Tobii TX-300 eye tracker
(Tobii AB, Stockholm; refresh rate = 60 Hz) with a resolution of 1920 × 1080
pixels. The pictures exhibited a grey background (hex triplet: B9B9B9) to re-
duce the overall contrast between the drawing’s black lines and the background.

The impedance of the EEG was kept below 50 kΩ, following the manufac-
turer’s recommendation. Vocal responses were recorded using a microphone
positioned next to the screen and directed at the participant.

Details on data preprocessing
Vocal responses were transcribed and annotated with additional information.
This information included: (a) the order of words, (b) the words speakers chose
to describe characters and actions, (c) case marking on nouns, (d) the aspect of
the verb, and (e) whether the speakers corrected themselves or started over.

Eye tracking data were processed in R [26]. Fixations were detected in the
raw samples from the eye tracker [9, 32] and subsumed in gazes containing
all consecutive fixations on one area of interest [15], making the fixation data
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a measure of visual attention by interpolating saccades between fixation loca-
tions on the same object on the screen. For each sample in each trial, we then
calculated whether visual attention fell on one of the defined areas of interest
(agent and patient). Fixation samples were aggregated into 100 ms bins for
each trial to reduce the temporal auto-correlation between consecutive fixation
samples as eye movements are much slower than the eye tracker’s sampling rate
[1, 5, 16]. We included only transitive sentences in response to the presentation
of two-participant pictures in the eye tracking analysis because in intransitive,
one-participant pictures only one character is available to be fixated. This re-
stricts the possibilities for fixations that are not directed towards the subject
character.

Electrophysiological data were processed in MATLAB (The Mathworks, Nat-
ick MA) with the EEGLAB [7], ERPLAB [19] and FieldTrip [23] toolboxes and
in R. Before transformation into dB relative to the baseline period, outlier power
values were identified for each participant across all regions of interest (lowest
and highest 2.5% of values, respectively) and linearly interpolated.

In the eye tracking analysis, only trials in which participants described
two-participant stimulus pictures with grammatical, transitive sentences with
overtly mentioned agents, patients and verbs with agent-patient-verb (“SOV”)
word order in either perfective or imperfective aspect were included. We ex-
cluded sentences in other aspects (e.g., continuous) from the analysis. Perfective
transitive sentences in which the agent NP did not carry ergative case mark-
ing (postposition ne) or imperfective sentences with accusative-marked subjects
were excluded, as were responses with speech onsets after presentation of the
stimulus picture that were longer than 6000 ms or more than 2.5 SD longer than
a participant’s mean speech onset latency. Trials were also excluded if partic-
ipants corrected themselves or started over with their description. Pauses or
disfluencies, however, were tolerated because they are a natural feature of lan-
guage use. For the eye tracking analysis, we additionally excluded trials in which
the participants did not look at the fixation dot at stimulus onset. We did this to
preclude that planning processes were influenced simply by whichever character
happened to be fixated at that time [13, 21]. Trials in which the first fixation on
the agent or the patient occurred later than 500 ms after stimulus picture onset
and trials with track loss (defined as a gap of more than 600 ms between two
consecutive fixations) were excluded, as were trials in which participant never
fixated on either the agent or the patient character.

In the EEG analysis, we also included intransitive sentences with overtly
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mentioned argument and verbs with SV word order in either perfective or im-
perfective aspect. The structural exclusion criteria were the same as for the eye
tracking analysis. We additionally excluded epochs that were found (upon visual
inspection) to be contaminated by heavy artifacts. To avoid muscle artifacts
resulting from movements of the articulators during the 0–800 ms analysis time
window, only epochs of trials in which participants began speaking later than
1500 ms after picture onset and that did not contain any “pre-speech noises”
(such as smacking lips or saying “uh”) were included. One participant was re-
placed because no audio was recorded from the participant’s vocal responses
due to malfunctioning recording equipment.

Details on statistical analyses
In the generalized mixed effects regression for the eye tracking data, a number of
control predictors were included to accommodate their potential influence [28]
on fixations to the agents in the pictures:

• Speech onset latency to capture effects on the fixation curves that are due
to faster or slower planning. Speech onset latency also served as a general
predictor of planning effort (main effect and interactions with time terms).

• The codability of agents/subjects and verbs, reflecting how much partici-
pants agreed on how to spontaneously name the characters and the de-
picted actions to indicate the ease of naming [14, 31] (main effect). Cod-
ability was measured by calculating the Shannon entropy H [30] of naming
choices for agent and verb in the trials included in the analyses, where a
lower value of H means that speakers agreed to a higher degree on which
names and words to use than a higher value of H.

• Total length in syllables of the agent noun phrase, including any modifiers
(e.g., adjectives) that participants might have produced to account for the
fact that non-aligned agent phrases that include the ergative case marker
ne are inherently longer than aligned (nominative) agents (main effect
and interactions with time terms). It is important to note, however, that
agent phrase lengths also differed within aligned and within non-aligned
sentences because participants labeled the characters spontaneously with
names consisting of one or more syllables.
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• Trial number to capture possible syntactic priming effects [24], as well as
fatigue and training effects over the course of the experiment (main effect
and interactions with time terms).

• Properties of the stimulus pictures that might have influenced eye move-
ments were captured by including as predictors the visual complexity
of the picture (measured as the number of black pixels, assuming that
more complex pictures contain more lines and shapes), the size of the
agent/subject and patient areas of interest (in percent coverage of the
screen) and the humanness of the agent characters (main effects).

The number of fixation hits on the agent in each respective previous time
bin was included as a predictor to control for temporal auto-correlation in the
eye movement signal [1, 5, 29]. Categorical predictors were deviation coded
(-0.5, 0.5). Continuous predictors were z-transformed. We used the maximal
random effects structure justified by design [2, 3]. No random effects for control
predictors were included [3]. Models were fit with the lme4 package [4] in R
[26]. The full model output is shown in Table S4.

The tree-based algorithm used for modelling power changes [11] also allows
the inclusion of control variables (like in the eye tracking analysis). These were:

• Speech onset latency (main effect and interactions with time terms)

• Agent/subject and verb codability (main effect)

• Length of the agent phrase in syllables (main effect and interactions with
time terms)

• Trial number (main effect and interactions with time terms)

• Agent humanness (main effect)

• Number of saccades that were initiated during the analysis time window
to account for effects of potential remnants of eye movement artifacts in
the data (main effect and interactions with time terms).

Temporal auto-correlation was taken into account by including the power
value at the previous time step as a predictor. Crossed random effects for
participants and stimuli were included with random intercepts and slopes for the
polynomial time terms. The random slope for linear time by stimuli was dropped
for the alpha band model to allow model convergence. Control variables and
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random effects were estimated globally. Categorical predictors were treatment
coded (0, 1). Continuous predictors were z-transformed.
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