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Sex Differences in Empathy and Systemizing and the EMB theory
Individuals with ASC score lower than typical males on the ‘Reading the Mind in the Eyes’ task [1], the Social Stories Questionnaire [2], the Friendship and Relationship Questionnaire (which tests the importance of emotional intimacy and sharing in relationships) [3] and on tests of recognizing complex emotions from videos of facial expressions or audios of vocalizations [4]. Individuals with ASC have intact or superior functioning on tests of intuitive physics [2,5], a domain which shows a sex difference in favor of males [2]. Individuals with ASC are faster and more accurate than controls on the Embedded Figures Task (EFT), a task on which typical males perform better than typical females [6,7]. The EFT requires good attention to detail, a prerequisite for systemizing. 
Additional evidence for the EMB theory comes from measures of autistic traits. On the Childhood Autism Spectrum Test (CAST) [8,9] boys score higher than girls [10], and children with ASC score higher than controls [11]. On the Autism Spectrum Quotient (AQ) [12] individuals with ASC score higher than those without a diagnosis [12] and the same has been found on the child and adolescent versions of this instrument 
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[13,14]
, as well as on a toddler measure of autistic traits [15]. Among controls, males score higher than females 
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[12,13,14]
 a finding that has been reported cross-culturally 
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[16,17,18,19]
. Similar results have been found using the Social Responsiveness Scale (SRS) [20] on which individuals with an ASC diagnosis score higher than typical males, who in turn score higher than typical females [21].
Sex Differences in the Brain and the EMB theory
Longitudinal Studies
Longitudinal MRI studies demonstrate maturational changes in human brain development across the lifespan that show clear sex differences. Males have larger brains than females, a difference already apparent approximately 2 weeks after birth and that persists even when controlling for differences in birth weight 
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[22]
. Infant males possess approximately 10% more gray matter (GM), 6% more white matter (WM), and 7% larger subcortical volumes than infant females 
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[22]
.  Early in life, infants and toddlers with autism show even more pronounced brain size that typical males. Evidence for this comes from studies showing increased head circumference [23], and GM and WM enlargement throughout cortex [24], within the first years of life in ASC. A recent longitudinal MRI study in infants and toddlers shows that the typical male enlargement of frontal and temporal GM is more pronounced in ASC 
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[25]
. Between the ages of 4-20 years old, typical males continue to possess more white matter (WM), and WM grows in a linear fashion within both sexes [26]. During adolescence, WM growth has a steeper trajectory in males than females 
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[27]
. Gray matter (GM) in contrast, matures in a nonlinear (cubic or quadratic) fashion across most of cortex between the ages of 4-33 years old 
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[28]
. The age at which GM reaches its peak size differs in a lobe-specific manner across frontal, parietal, and temporal cortex, with males peaking later than females 
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[26,27]
. A similar pattern of protracted neural development in males is observed in the cerebellum 
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[29]
. 

Because males generally have larger brains than do females, this gross difference in brain size is a potential confound in studies assessing neural sexual dimorphism. For this reason it is important to either consider differences between the sexes after controlling for total brain volume, or in samples where males and females are matched on total brain volume. When looking at the data in this way, some striking regionally-specific sex differences appear: Frontal GM (but not WM) and corpus callosum volume are proportionally increased in size in females relative to males, after accounting for total brain volume. In contrast, occipital GM and WM are proportionally increased in size in males relative to females 
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[27]
. Within the cerebellum, the superior and inferior lobes are increased in size in males than females, while there are no differences in the size of the anterior lobe or corpus medullare 
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[29]
. 
So far, the lack of longitudinal studies in autism in the age ranges of 4 years through to adulthood limit what is known about whether such sexual dimorphism is exaggerated in autism. Thus, when longitudinal studies across the lifespan in autism are conducted, we will be able to assess whether exaggerations of sexual dimorphism in these particular ways persist past early infancy and childhood.

Cross-Sectional Studies

While longitudinal investigations are important in characterizing neural sexual dimorphism across the lifespan, these studies have been limited to gross aggregate measurements across large regions of cortex. This limits the scope for pinpointing exactly where regionally specific proportional differences in size between the sexes may exist. However, several cross-sectional voxel-based morphometry (VBM) and cortical thickness studies of neural sexual dimorphism have been reported which help pinpoint exactly where such sexual dimorphism is found. 

In the largest VBM study to date, assessing 465 adults ages 17-79 years old, males have proportionally larger amygdalae, cerebellum (near the superior lobule), and left temporal pole. In contrast, females have proportionally larger orbitofrontal and cingulate cortex as well as lateral fronto-parietal-temporal regions such as perisylvian language areas (Heschl’s gyrus/planum temporale), inferior frontal gyrus, and inferior parietal lobule [30]. Many replications of the amygdala and cerebellum findings in both VBM and region of interest (ROI) studies have been reported 
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[29,31,32,33,34,35,36,37]
. 
Similarly for females, studies consistently find increased thickness or size of cortex in females, particularly in lateral fronto-parietal cortices 
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[31,32,34,37,38,39,40,41]
. This may be because the female brain has increased cortical gyrification, particularly in lateral fronto-parietal cortices, which implies increased cortical surface area despite smaller total brain size [42]. 

The human brain is also markedly asymmetrical [43] and some anatomical asymmetries are more pronounced in males. The most robust sexual dimorphism in anatomical asymmetry is in perisylvian language areas such as Heschl’s gyrus and planum temporale. This area is typically larger in the left hemisphere than the right [44] and this Left>Right asymmetry is larger in males than in females 
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[30,45,46]
.
Of these more localized examples of sexual dimorphism in brain structure, which are exaggerated in autism?  The amygdala is substantially enlarged early in development (independent of total brain volume) in ASC 
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[47,48,49]
. The corpus callosum (CC) is consistently identified as smaller in individuals with ASC [50], and this is consistent with the finding that the CC is proportionally larger in typical females 
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[27]
. Perisylvian language areas such as Heschl’s gyrus/planum temporale are typically proportionally larger in females and are smallest in ASC 
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[51,52]
. Similarly, the pattern of Left>Right asymmetry within planum temporale is highly exaggerated within ASC [53]. Finally, females tend to have a larger lateral fronto-parietal cortex 
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[38,40,42]
 and in ASC there is evidence of proportional lateral fronto-parietal cortical thinning [54] or reduction in GM density [55] in later development (post-childhood). Few studies have compared controls to ASC using samples of both males and females, but those that do consistently report more pronounced atypical neurodevelopment of these regions in females with ASC 
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[25,48,56,57]
. However, these studies suffer from small sample sizes in females. This points to the need for future research to test sex differences in controls and ASC within the same study using larger samples.
Sex Differences in Brain Function and the EMB theory

The ‘default mode network’ (DMN) is decreased in functional connectivity in males relative to females during resting conditions 
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[58]
. In ASC, connectivity within the DMN is even more decreased during rest 
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[59,60,61,62]
 (see Figure 1). Using task-related fMRI, typical males show decreased activity in the posterior parietal cortex (BA 7) during the Embedded Figures Test (EFT) [63] and people with ASC show even less activity in BA 7 during this task 
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[64,65,66]
 (see Figure 2). 

Finally, typical males show decreased activity bilaterally in the inferior frontal gyrus (BA 44/45) during the ‘Reading the Mind in the Eyes’ Test relative to typical females [63], and people with ASC show even less activity in this region during this task [67] (see Figure 3). Comparing across Figures 1-3 we see the predicted pattern [Females > Males > Autism]. In addition, mothers and fathers of children with ASC also show hyper-masculinization of brain activity during the EFT and Eyes tasks [63], suggesting that this neuroimaging phenotype is partially genetic. Whether this is true of all parents of children with ASC, or just the sub-group with the ‘Broader Autism Phenotype’ [68] needs to be clarified.

Figure 1: Exaggerated sexual dimorphism using fMRI in the Default Mode Network (DMN).  
(A) Females show stronger connectivity within the DMN compared to males 
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[58]
. 

(B) Reduced DMN connectivity in ASC [59].
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Figure 2: Exaggerated sexual dimorphism using fMRI on the Embedded Figures Test (EFT). 
(A) An example of the EFT.  

(B) Females show greater activity than males during the EFT in posterior parietal cortex [63].  

(C) Reduced activation in posterior parietal cortex in ASC during the EFT 
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[64,65,66]
.
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Figure 3: Exaggerated sexual dimorphism using fMRI on the ‘Reading the Mind in Eyes’ (Eyes) test. 

(A) An example of the Eyes task.  

(B) Females show greater activity than males in inferior frontal gyrus during the Eyes task [63]. 

(C) Reduced activation in inferior frontal gyrus in ASC during the Eyes task [67].
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The effects of fetal testosterone on the animal brain

Animal experiments enable the manipulation of testosterone levels through castration (since testosterone is produced in males by the testes) or through injecting testosterone into the pregnant dam or the neonate. The neonatal testosterone surge in rats (the most commonly used model organism) is generally considered to be developmentally equivalent to the 2nd trimester surge in humans since rats are born at an earlier stage of development compared to humans. 

Such studies have taught us much about the effects of early testosterone exposure. For example, fetal testosterone (fT) modulates apoptosis in the sexually dimorphic nucleus of the preoptic area (SDN-POA) within the hypothalamus 
 ADDIN EN.CITE 

[69,70]
, the anteroventral periventricular nucleus (AVPV) located in the periventricular gray area at the rostral extreme of the third ventricle 
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[71,72]
. Neonatal testosterone (nT) (manipulated at birth) also modulates apoptosis in the sexually dimorphic nucleus of the preoptic area [69] and in a sexually dimorphic nucleus of motoneurons called the spinal nucleus of the bulbocavernosus [73] 
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[74,75]
. nT also promotes the differentiation of vasopressin-expressing cells in the sexually dimorphic bed nucleus of the stria terminalis (BNST) and medial amygdaloid nucleus [76], and modulates dendritic spine density and astrocytic complexity in the arcuate nucleus [77]. Androgen and estrogen receptors are densely expressed throughout these regions as well as important subcortical structures implicated in autism, such as the amygdala, and hippocampus [78] Manipulation of fT and nT levels influences many aspects of the neuroanatomical sexual dimorphism in the amygdala and hippocampus 
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[76,79,80,81,82,83,84]
.
Sex steroid receptors also exist in many areas of the cerebral cortex [78]. However, given the much smaller cerebral cortices in species such as rats and mice, where most of the studies have focused on, relatively few studies have explored fT and/or nT effects on the cerebral cortex. Furthermore, despite several studies on the behavioral effects of fT exposure on rhesus macaques 
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[85,86]
, no reports on their neuroanatomy have yet been published. This is an important area for future research as rhesus macaques and humans share some sexually dimorphic features in brain development, such as overall larger brain volume in males, proportionately larger WM volumes in males, and proportionately greater volumes of the putamen, caudate, and hippocampus in females [87]. Thus, studies on nonhuman primates and their correspondence to studies of fT-effects on sexual dimorphisms in the cerebral cortex of humans will be an exciting new avenue for extending knowledge on how early exposure to androgens affects later expression of sexual dimorphism in the brain.
Fetal androgens affect ASC traits: evidence from rare medical conditions 

The most widely used medical model of fT effects on behavior is Congenital Adrenal Hyperplasia (CAH), a condition in which an enzymatic defect (usually caused by mutations in the gene coding for 21-hydroxylase (CYP21), or the 11-beta hydroxylase (CYP11B1), results in exposure to high levels of adrenal androgens, beginning very early in gestation. Prenatal androgen exposure is in the normal male range [88]. It has an estimated incidence of 1 in 15,000 live births [89]. 

The model has been validated by the consistent finding that females with CAH are more interested in male-typical activities and are less interested in female-typical activities, relative to unaffected females 
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[90,91,92,93,94]
. Females with CAH have been reported to score higher than sex-matched controls on spatial orienting, mental rotation and targeting, which could reflect enhanced systemizing 
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[95,96,97,98]
. The magnitude of these effects is in the range of 0.5 to 1 standard deviations (r values from 0.23 to 0.36). It has also been suggested that females with CAH have lower empathy, intimacy, and desire for close social relationships, though this may reflect other factors 
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[99,100,101,102]
. The magnitude of these effects varies widely with the test used so more targeted tests are clearly needed. 

Of more relevance to the EMB and fT theories of ASC, girls with CAH also have a higher number of autistic traits on the Autism Spectrum Quotient (AQ) relative to their unaffected sisters [103] (a difference of 0.5 SD, r = 0.24). It should also be noted that CAH is usually diagnosed shortly after birth and treatment instituted which returns androgens to a normal female level. Thus, if the nT surge is implicated in risk for ASC, CAH will not be a fully appropriate model.

A second example of a rare medical condition affecting response to fT is Complete Androgen Insensitivity Syndrome (CAIS). It occurs when there is a complete deficiency of working androgen receptors. It is an X-linked recessive disorder and hence occurs more often in chromosomal males. Prevalence is approximately 1 in 20,000 live male births [89]. At birth, chromosomally male infants with CAIS are phenotypically female, despite their XY complement, and are therefore usually raised as girls, given girls’ names and develop a female gender identity. At puberty, breasts develop under the influence of estrogen derived from testicular androgens. The testes remain undescended, their existence unknown to the individual and their families, but producing testosterone. In the absence of any functioning androgen receptors the individual appears indistinguishable from typical females in outward appearance. Diagnosis usually takes place in adolescence when menarche fails to occur. The discovery of the Y chromosome in such individuals comes as a huge shock psychologically, and the majority of such individuals choose to continue living with their female identity, not disclosing their AIS 
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[89,104]
. No study has yet examined ASC traits in this group (predicted to be lower than in typical XY males if autistic traits are influenced by fT) or ASC diagnosis (predicted to be lower than typical XY males), in part because CAIS is rare. Such a study would be highly complementary to existing work in females with CAH.  

Androgens and ASC: proxy measures of fT, and current hormones 
Regarding proxy measures of fT, children with ASC have lower second digit to fourth digit (2D:4D) ratios than typically developing children (the difference is between 1 and 2 SD, r ≈ 0.53) 
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[105,106,107]
. 2D:4D ratio is lower in men than in women. Sex differences in 2D:4D ratio are apparent by week 14 of fetal life [108] and 2D:4D ratio is influenced by fT [109]. This suggests that children with ASC have been exposed to higher levels of prenatal androgens. 

Regarding current hormones, androgen-related medical conditions (such as polycystic ovary syndrome (PCOS), ovarian growths, and hirsutism) occur at elevated rates in women with ASC, and in mothers of children with ASC [110]. A subset of male adolescents with ASC also show hyper-androgeny, or elevated levels of androgens, and precocious puberty [111]. Related to this, delayed menarche has also been found in females with ASC [110,112]. While there are many potential causes for this observation, puberty timing partially reflects hormonal programming of the hypothalamic-pituitary-gonadal axis during gestation [113].
In addition, left-handedness, non-right-handedness and ambidexterity are more common in typical males [114] and even more common in individuals with ASC 
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[115,116]
. Body asymmetries are related to prenatal sex hormones, and breast or testis size on the left vs. right sides of the body are related to cognition [117], though the Geschwind and Gallaburda model that first proposed this [118] has been criticized for being over-extended [116]. fT is implicated in left-handedness and asymmetric lateralization 
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[116,119,120,121]
. 

The role of sex steroid genes in ASC and/or autistic traits 

Testosterone is one of the products of a chain of biochemical reactions that synthesize several sex steroids. In the first candidate gene association study of Asperger Syndrome (AS), eight genes in this pathway were nominally associated with a diagnosis of AS. In a parallel candidate gene association study of autistic traits in the general population, five genes from this sex steroid pathway were found to be nominally associated with number of autistic traits (scores on the Autism Spectrum Quotient (AQ) and/or scores on the Empathy Quotient (EQ) [122]. 

Specifically, single nucleotide polymorphisms (SNPs) in the genes encoding Cytochrome P450 containing enzymes (CYP19A1, CYP17A1 and CYP11B1) were associated with differences in allele frequency in a sample of people with AS, compared to a control group selected for low AQ. The other class of genes involved in steroidigenesis is those that code for the Hydroxysteroid dehydrogenases, which do not contain Cytochrome P450. Polymorphisms in three of these genes (HSD11B1, HSD17B4, HSD17B2) were nominally associated with autistic traits and/or a diagnosis of AS [122]. CYP11B1 was additionally associated with scores on the EQ in the general population. CYP19A1 codes for aromatase, the enzyme that catalyses the conversion of testosterone to estradiol. This may offer a crucial clue in the mechanism of action of sex steroids in the brain, since evidence from mouse models shows that testosterone is converted to estrogen in the fetal brain (through aromatase), and exerts its effects through estrogen receptors. Consistent with this, SNPs in the Estrogen Receptors (ESR1 and ESR2) were associated with higher AQ scores in the general population, as well as with a diagnosis of AS. Estrogen receptor expression, both in the neonatal as well as the adult human brain, is tightly linked to expression of oxytocin and vasopressin receptors 
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[123,124]
, whose role in social behavior is well established 
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[125,126]
. Another study measuring gene expression levels in siblings discordant for autism 
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[127]
 reported an over expression of two genes involved in the synthesis of androgens (SCARB1 and SRD5A1) in lymphocyte cell lines derived from the siblings with a diagnosis.  Finally, a recent and novel finding from the same group, implicates a novel gene, retinoic acid-related orphan receptor-alpha (RORA), to the transcription of the protein aromatase, that converts testosterone into estradiol [128]. In post-mortem frontal cortex tissue, these investigators found that expression of RORA and aromatase were highly correlated (r2 = 0.915). Both the expression of RORA and aromatase was reduced in post-mortem frontal cortex tissue of individuals with autism, compared to controls. In another study, RORA expression was reduced in post-mortem frontal and cerebellum tissue of individuals with autism [129] 
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