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Abstract

Programmed cell death protein 1 (PD-1) is expressed on T cells upon T cell receptor (TCR)

stimulation. PD-1 ligand 1 (PD-L1) is expressed in most tumor environments, and its binding

to PD-1 on T cells drives them to apoptosis or into a regulatory phenotype. The fact that PD-

L1 itself is also expressed on T cells upon activation has been largely neglected. Here, we

demonstrate that PD-L1 ligation on human CD25-depleted CD4+ T cells, combined with

CD3/TCR stimulation, induces their conversion into highly suppressive T cells. Furthermore,

this effect was most prominent in memory (CD45RA−CD45RO+) T cells. PD-L1 engagement

on T cells resulted in reduced ERK phosphorylation and decreased AKT/mTOR/S6 signal-

ing. Importantly, T cells from rheumatoid arthritis patients exhibited high basal levels of

phosphorylated ERK and following PD-L1 cross-linking both ERK signaling and the AKT/

mTOR/S6 pathway failed to be down modulated, making them refractory to the acquisition

of a regulatory phenotype. AltogetherAU : PleaseconfirmthattheedittothesentenceAltogether; ourresultssuggestthatPD � L1signalingonmemoryT :::didnotaltertheintendedmeaningofthesentence:, our results suggest that PD-L1 signaling on memory

T cells could play an important role in resolving inflammatory responses; maintaining a tol-

erogenic environment and its failure could contribute to ongoing autoimmunity.

Introduction

Therapies for autoimmune diseases and chronic inflammation are mainly directed toward

reestablishing a balance in the immune system. When the immune system responds to infec-

tious agents, to tumor transformation, or to a vaccine antigen, several mechanisms exist to

limit collateral damage leading to T cell–dependent immunopathology [1,2] However, not all
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the mechanisms intended to limit pathological immune responses and their specific molecular

pathways are fully understood. Regulatory T cells (Tregs) are key players in maintaining

immune homeostasis and tolerance to self [3]. FOXP3 is considered the master regulator of

Tregs by controlling their development and function, although its sole expression is not suffi-

cient to define a human Treg. Stimulation of effector CD4+ T cells by T cell receptor (TCR)

and CD28 cross-linking results in a vigorous proliferation and transient up-regulation of

FOXP3 [4,5] and, although these CD4+FOXP3+ T cells are suppressive, they rapidly lose

FOXP3 expression and suppressive capacity [6]. Other molecules central to tolerance are the

cytotoxic T-lymphocyte–associated antigen 4 (CTLA-4) and Programmed cell death protein 1

(PD-1). CTLA-4 exerts its inhibitory function by competing with CD28 for costimulatory

ligands CD80 and CD86 or by stripping them from antigen-presenting cells (APCs), thereby

reducing the costimulatory signals that T cells receive [7]. PD-1 can block a TCR-induced stop

signal that limits T cell activation [8], as one of the mechanisms described for CTLA-4 [9], and

favors inducible Treg (iTreg) generation from naïve T cells [10]. Furthermore, PD-1 ligand 1

molecule (PD-L1, also known as B7-H1 or CD274) has been described on AU : Anabbreviationlisthasbeencompiledforthoseusedinthetext:Pleaseverifythatallentriesarecorrect:APCs and tumor

cells to induce cell death and promote iTreg cell conversion through the binding of PD-1

expressed on activated CD4+ T cells [10,11]. While CTLA-4 plays an important role in second-

ary lymphoid organs during the initial stage of T cell activation, PD-1 regulates activated T

cells at a later stage, typically in peripheral tissues where PD-L1 is expressed under certain

physiological and pathological conditions by hematopoietic (e.g., dendritic cells in the gut)

and nonhematopoietic cells (e.g., tumor cells) [12,13]. PD-L1 binding to PD-1 on T cells trig-

gers a signaling cascade that has been extensively investigated [14]. In contrast, a signaling cas-

cade downstream of PD-L1 has been so far neglected due to its short cytoplasmic tail and the

lack of obvious signal transduction motifs in its sequence. However, an early report showed

that cancer cell resistance to apoptosis is lost following transduction with a PD-L1 construct

lacking the cytoplasmic domain [15]. RecentlyAU : PleasenotethatIFNhasbeendefinedasinterferoninitsfirstmentioninthesentenceRecently; ithasbeenshownthatPD � L1intracytoplasmictailcan:::Pleasecorrectifnecessary:, it has been shown that PD-L1 intracytoplasmic

tail can trigger a signal cascade that make cancer cells resistant to interferon (IFN)-mediated

cytotoxicity through a STAT3/caspase-7-dependent pathway [16]. By serendipity, Amarnath

and colleagues observed changes in the percentage of T-bet, FOXP3, and CD80 on PD-L1-ex-

pressing T cells that was not further investigated [11] but was indicative of a PD-L1 reverse sig-

naling. In addition, Diskin and colleagues recently showed that binding to PD-L1 induced

STAT3-dependent “back signaling” in CD4 T cells that prevented activation and polarization

[17].

In this study, we demonstrated that cross-linking of PD-L1 on CD4+CD25− T cells, in com-

bination with CD3/TCR, induced their conversion into highly suppressive iTregs from the

memory pool by modulating the mitogen-activated protein kinase (MAPK) pathway, increas-

ing STAT3 and STAT5 phosphorylation and decreasing ERK phosphorylation downstream to

the TCR signaling pathway and antagonizing the AKT/mTOR pathway. Importantly, we

showed that T cells from rheumatoid arthritis patients failed to modulate both ERK signaling

and the AKT/mTOR pathway upon PD-L1 engagement. This could contribute to the defective

resolution of inflammation leading to disease persistence and progression.

Results

Concomitant PD-L1 and TCR complex engagement activates

CD4+CD25− T cells

PD-1/PD-L1 signaling has been described as an inhibitory pathway that typically inhibits T

cell responses following the binding of PD-1 expressed by T cells to its ligand PD-L1 expressed
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on B cells, macrophages, and dendritic cells. However, the fact that PD-L1 itself can be highly

expressed on activated human CD4+ T cells has been overlooked.

To investigate whether PD-L1 plays a role on CD4+ T cells, we analyzed the expression of

PD-L1 and its receptor PD-1 on freshly isolated CD4+CD25− T cells (>96% purity) [18]. PD-1

was detected on a small subpopulation of resting CD4+CD25− T cells, whereas PD-L1 expres-

sion was absent (Fig 1A). Then, their expression was analyzed after in vitro activation with

plate-bound anti-CD3 antibody (αCD3) alone or in combination with anti-CD28 antibody

(αCD3/αCD28). Both stimulations up-regulated PD-1 and PD-L1 after 24 h, but high expres-

sion of PD-1 and PD-L1 were observed only with αCD3/αCD28 activation after 72 h (Fig 1A).

We questioned whether the engagement of PD-L1 on T cells might have an effect. Thus, we

activated CD4+CD25− T cells with plate bound anti-CD3/anti-PD-L1 antibodies (αCD3/

αPD-L1) and compared their phenotype to cells exposed to αCD3 or αCD3/αCD28 (Fig 1B).

Of note, a matching isotype control antibody was coated in combination with αCD3 to keep

the same concentration of each antibody on the well. After 72 h, the percentage of CD25+ T

cells was comparable between αCD3/αPD-L1 and αCD3/αCD28 stimulations but significantly

higher than αCD3 alone (means of 76.6%, 71% and 43.2%, respectively) (Fig 1C and 1D), sug-

gesting an effect of PD-L1 in T cells. Cross-linking with αCD3/αPD-L1 promoted the highest

percentage of CD25high cells (Fig 1C and 1D) and up-regulated the surface molecule CTLA-4,

thus inducing phenotypic characteristics common to Treg cells (S1A and S1B Fig). Further-

more, the total number of cells recovered was similar between the different stimulations at the

end of culture (S1C Fig), supporting the idea that the conversion into CD25+FOXP3high cells

upon PD-L1 engagement is a functional change rather than the enrichment of a particular sub-

set during the culture. Although most FOXP3+ T cells would have been in the CD25+ fraction

that was depleted before activation, the increase in FOXP3 percentage upon αCD3/αPD-L1

stimulation could be due to the activation and expansion of a FOXP3+CD25− T cell popula-

tion. To confirm that the differentiation of CD4+CD25−FOXP3− T cells into FOXP3+ T cells

was due to de novo expression rather than to the expansion of a contaminating preexisting

FOXP3+ T cell population in the preparation, we analyzed FOXP3 expression on cell trace vio-

let-labeled cells. This experiment revealed that FOXP3 was up-regulated not only in dividing

cells but also in nondividing cells, demonstrating that the induction of FOXP3 was indeed

mediated by PD-L1 engagement and was not an artifact due to the proliferation of a contami-

nating FOXP3+ T cell population (Fig 1E).

Several reports have shown that suboptimal TCR stimulation favors the generation of

iTregs [19]; therefore, to discard any putative artifact that could lower the αCD3 concentration

due to a displacement by the αPD-L1, we combined αCD3 and αPD-L1 at different ratios and

concentrations in a matrix fashion. Our results clearly showed that iTreg conversion is due to

the specific cross-linking of PD-L1 and it is observed independently of the αCD3 concentra-

tion (S1B Fig). In addition, to rule out the possibility that the conversion was due to the spe-

cific αPD-L1 clone used, MIH1, 3 additional αPD-L1 antibodies were also tested. The results

obtained with the 3 new antibodies were similar to the results with the MIH1 antibody,

although some variation was seen arguable due to the different antibody affinities (S1D Fig).

Signaling through PD-L1 in the absence of PD-1 engagement activates and

converts CD4+CD25− T cells into highly suppressive iTreg cells

The results so far suggested that PD-L1 could function as a cosignaling molecule supporting

TCR signaling pathways. We previously showed that FOXP3 expression could be mediated

solely by CD28 stimulation independently of TCR signaling [20]. Thus, we questioned whether

the engagement of PD-L1 alone could drive the expression of FOXP3 without a concurrent
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Fig 1. PD-L1 cross-linking on CD4+CD25− T cells promotes their activation and proliferation. (A) Representative

dot plots showing the expression of PD-1 and PD-L1 on freshly isolated CD4+CD25− T cells (left panel) and upon

stimulation with αCD3 or αCD3/αCD28 at different time points (24, 48, and 72 h) (right panel). (B) Schematic

representation of different activation conditions used in our model. CD4+CD25− T cells were stimulated as indicated

in (B) for 72 h, and (C) the expression of CD25 and FOXP3 was analyzed and (D) quantified (n = 8 from 7
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TCR signal. The cross-linking of PD-L1 in the absence of TCR stimulation was unable to pro-

mote T cell activation and conversion into a CD4+CD25+FOXP3high T cell subpopulation (S1B

Fig), indicating that TCR signal is a conditio sine qua non to induce a Treg phenotype. Previ-

ous studies have shown that the binding of PD-L1 to PD-1 expressed on T cells promotes

iTreg conversion [10,11]. Thus, it is possible, although unlikely, that cross-linking PD-L1 ren-

dered PD-1 free to interact with another ligand (e.g., PD-L2), which, in turn, leads to PD-

1-mediated conversion to iTregs [10]. To exclude this possibility, we generated PD-1-deficient

CD4+CD25− T cells using CRISPR/Cas9 technology, and we stimulated them under the condi-

tions described in Fig 1B. A significant reduction in the percentage of PD-1+ cells (average

efficiency of 88%) was obtained upon CRISPR/Cas9-mediated-PD-1 gene editing compared to

mock-treated T cells (Figs 2A and S2) in all conditions (unstimulated, αCD3, αCD3/αCD28,

and αCD3/αPD-L1). As shown in Fig 2B and 2C the percentage of conversion of PD-1-defi-

cient CD4+CD25− T cells into CD25highFOXP3high T cells was comparable to what we

observed in mock-treated T cells following αCD3/αPD-L1 stimulation, suggesting that an

intrinsic signaling through PD-L1 and not through PD-1 occurred in our model.

To further define how PD-L1 signaling modulates the activation of CD4+CD25− T cells, we

used an unbiased multidimensional analysis via cytometry by time-of-flight (CyTOF). First,

the overall effect of the 3 different conditions was assessed on manually gated live

CD45+CD3+CD4+ T cells by performing a marker enrichment modeling (MEM) analysis (S3

Fig). As shown in Figs 1C and S1, PD-L1 engagement led to an enrichment in CD25, FOXP3,

and CTLA-4. Furthermore, MEM analysis revealed that PD-1, CD69, CD28, CXCR3, CCR4,

Ki67, and OX40 were also enriched upon PD-L1 stimulation compared to αCD3 and αCD3/

αCD28. viSNE was used to create a map of manually gated live CD45+CD3+CD4+ T cells and

arrange them along t-SNE (Fig 2D). For the identification of specific cell clusters, we used a

SOM-based method, followed by a consensus clustering algorithm to cluster cells and identify

specific cell subsets between the 3 activation conditions described above (S4A and S4B Fig).

The unbiased analysis confirmed our previous observation (Fig 1C and 1D), namely the

engagement through PD-L1 was able to activate conventional T cells. In detail, FlowSOM

identified 8 metaclusters of nonactivated cells being negative for CD25 (S4A Fig) showing the

highest expression upon CD3 activation (S4C Fig), while the other 42 metaclusters included

cells with intermediate and high CD25 expression (S4A Fig). Cells activated upon PD-L1

engagement showed a significantly higher CD25 expression (S4D Fig) compared to αCD3

alone, and they could be divided in 2 different groups according to the expression of Ki67.

This marker has been used to distinguish between metaclusters of proliferating and nonproli-

ferating cells. Although no significant differences were found, we observed higher percentages

of CD25+Ki67+ cells (S4E Fig) upon PD-L1 cross-linking compared to αCD3/αCD28 and

αCD3 stimulation, while the levels of CD25+Ki67− cells (S4F Fig) following αCD3/αCD28 and

αCD3/αPD-L1 activation were comparable compared to αCD3 alone. The analysis on

FOXP3+ cells showed that PD-L1 ligation significantly induced more CD25highFOXP3+ cells

(S5A Fig) compared to the other activation conditions. We identified 3 metaclusters of

Ki67+CD25highFOXP3+ cells (S5B Fig) that were enriched under αCD3/αPD-L1 activation,

independent experiments). Data are represented using boxplots indicating the min and max and median; ��P< 0.01

and ���P< 0.001 by RM one-way ANOVA followed by Tukey multiple comparison test. (E) Representative plots

showing proliferation (Cell Trace Violet dye dilution) and FOXP3 expression of CD4+CD25− T cells stimulated as in

(B) for 72 h. Percentages of FOXP3 positive cells (box) are indicated. Data are representative of at least 2 independent

experiments. Values for each data point can be found in S1 Data. Full gating strategies from representative plots are

shown in S1 Gating Strategy. PDAU : AbbreviationlistshavebeencompiledforthoseusedinFigs1 � 8:Pleaseverifythatallentriesarecorrect:-1, Programmed cell death protein 1; PD-L1, PD-1 ligand 1; RM, repeated measures;

TCR, T cell receptor.

https://doi.org/10.1371/journal.pbio.3001199.g001
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Fig 2. PD-L1 signaling activates and converts CD4+CD25− into iTregs. (A) Representative dot plots showing CD25 and PD-1

expression on untreated control, mock-treated, and CRISPR/Cas9-PD-1-edited CD4+CD25− T cells activated for 72 h as

indicated. (B) Representative plots showing FOXP3 and CD25 expression of untreated control, mock control, and CRISPR/

Cas9-PD-1-edited CD4+CD25− T cells activated for 72 h as indicated. (C) Cumulative results expressed as percentage of

CD25highFOXP3high T cells. Data are expressed as mean ± SD and are pooled from at least 2 independent experiments (n = 3
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and Ki67−CD25highFOXP3+ cells were significantly increased after αCD3/αPD-L1 compared

to αCD3/αCD28 and αCD3 alone (S5C Fig). CD25highFOXP3+cells included a heterogeneous

group of cells defined by 9 different metaclusters with differential expression of FOXP3 and

markers involved in Treg suppression, activation, and homing (S5D Fig). We focused on

those metaclusters expressing high levels of FOXP3 as they best represent the population

reported in Fig 1C. The percentage of CD25highFOXP3high cells was significantly higher after

αCD3/αPD-L1 activation versus αCD3 stimulation (S6A Fig) and consisted of 4 metaclusters

(Fig 2E). The CD25highFOXP3high cells belonging to the metacluster 24 were significantly

more abundant after αCD3/αPD-L1 activation compared to αCD3/αCD28 and αCD3 alone

(��P< 0.01 and �P< 0.05, respectively) (Fig 2E). They were characterized by proliferating

cells expressing high level of CTLA-4, OX40, CCR4, and ICOS markers compared to

Ki67+CD25highFOXP3high cells (metacluster 38) (Figs 2E and S6B). Furthermore, these cells

had a lower expression of Helios compared to the other CD25highFOXP3high cells subsets (Figs

2E and S6B). Notably, Ki67+CD25highFOXP3high cells were characterized by a lower expres-

sion of TIGIT compared to the Ki67−CD25highFOXP3high (metacluster 44 and 45) cells (Figs

2E and S6B). The differential expression of the studied markers has been confirmed using

MEM analysis on metaclusters representing CD25highFOXP3high cells (S6C Fig).

Altogether, these data showed that CD3/PD-L1 signaling induces a different program in

CD4+ T cells than CD3/CD28 stimulation resulting in the generation of different population

subsets within the CD25highFOXP3high population.

In order to investigate whether FOXP3high T cells induced by PD-L1 ligation had regulatory

functions, we assessed their suppressive capacity. Cells generated by αCD3/αPD-L1 cross-link-

ing were significantly more suppressive than those generated with both αCD3 alone and

αCD3/αCD28 (Fig 2F and 2G). Thus, these data suggest that T cells generated upon PD-L1

cross-linking acquired a highly suppressive function and became iTregs.

Memory T cells but not naïve T cells are converted into regulatory

FOXP3+ CD4+ T cells by PD-L1 cross-linking

Previous in vitro and in vivo studies have shown that generation of iTreg cells involves the

peripheral activation of naïve T CD4+ cells in the presence of TGF-β and IL-2 [21]. However,

the capacity of memory T cells to be converted into FOXP3+ iTreg is still controversial [22,23].

Thus, we evaluated the contribution of the CD4+CD25− T cell subpopulations, i.e.

CD4+CD25−CD45RA−CD45RO+ (memory) T cells and CD4+CD25−CD45RA+CD45RO−

(naïve) T cells, to the generation of iTreg cells upon PD-L1 engagement. Naïve and memory T

cells were sorted according to CD45RA and CD45RO expression, and PD-1 and PD-L1

expression were analyzed by flow cytometry before (Fig 3A) and after stimulation with αCD3

different donors). (D) Representative viSNE map of manually gated CD45+CD3+CD8−CD4+ T cells clustered using surface and

intracellular markers. Shown are maps for expression of indicated markers and the CD25highFOXP3high metaclusters from

FlowSOM analysis. (E) Heatmap of the median expression of 30 markers across the 4 metaclusters representing the

CD25highFOXP3high cells. The color in the heatmap represents the median of 0 to 1 scaled expression values of arcsinh

transformed data for each marker. Dots represent the percentages of the indicated metaclusters in CD3+CD8−CD4+ cells;
��P< 0.01 and ���P< 0.001 by two-way ANOVA followed by Tukey multiple comparison. (F) Representative histograms

showing CFSE dilution of effector CD4+ T cells (1 × 105) activated with αCD3/αCD28 beads at a 40:1 (cell/bead) ratio and

cultured alone or in the presence of iTreg cells at the indicated ratios (Treg/Teff) for 5 days. (G) Quantification of suppression at

1:20 ratio of Treg/Teff cells. (n = 7 from 7 independent experiments). Data are represented using boxplots indicating the min and

max and median; �P< 0.05 and ���P< 0.001 by RM one-way ANOVA followed by Tukey multiple comparison test. Values for

each data point can be found in S1 Data. Full gating strategies from representative plots are shown in S1 Gating Strategy. CFSE,

Carboxyfluorescein succinimidyl ester; iTreg, inducible Treg; PD-1, Programmed cell death protein 1; PD-L1, PD-1 ligand 1; RM,

repeated measures; Teff, effector T cell; Treg, regulatory T cell.

https://doi.org/10.1371/journal.pbio.3001199.g002
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Fig 3. iTreg conversion is induced preferentially in memory cells upon PD-L1 engagement. (A) Gating strategy

used to sort CD4+CD25− T cells in naïve and memory subsets based on their CD45RO and CD45RA expression (left

panel). Representative plot of sorted populations stained for PD-1 and PD-L1 expression (right panel). (B)

Quantification of CD25 and FOXP3 expression on memory (upper panel) (n = 4) and naïve (bottom panel) (n = 7)

subsets following 72 h of activation with αCD3, αCD3/αCD28, and αCD3/αPD-L1. Bars represent the mean ± SD;
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and αCD3/αCD28 (S7 Fig). After stimulation with αCD3 and αCD3/αCD28, the expression

of PD-L1 and PD-1 on naïve T cells remained low and rapidly became undetectable (S7 Fig).

In contrast, on resting memory T cells (Fig 3A), PD-1 was highly expressed, while low levels of

PD-L1 were detected. Following stimulation, an up-regulation of both PD-L1 and PD-1 on

memory T cells occurred over time (S7 Fig). This result suggested that memory T cells had

become more prone to PD-L1 stimulation. In fact, cross-linking by αCD3/αPD-L1 was able to

induce conversion of memory T cells to CD25+FOXP3+ Tregs (Fig 3B, upper panel), while

naïve T cells stimulated under the same conditions failed to convert into CD25+FOXP3+ T

cells (Fig 3B, bottom panel). In contrast to αCD3/aPD-L1, αCD3/αCD28 stimulation induced

CD25 and FOXP3 expression in both naïve and memory T cells (Fig 3B and 3C), suggesting

that the negligible expression of PD-L1 on naïve T cells and the failure to up-regulate it upon

stimulation are, at least in part, the cause for the lack of response to αCD3/αPD-L1 cross-link-

ing. Upon PD-L1 engagement, memory T cells showed high suppressive capacity (Fig 3D),

supporting their phenotypical and functional identity as iTregs.

Since IFN-γ is able to induce the up-regulation of PD-L1 [24] and IL-10 is a well-known

mediator of Treg suppression [25], we analyzed the cytokines produced by memory and naïve

T cells following stimulation. We observed an increase of IL-10 production that has been

reported to correlate with a suppressive role during the resolution phase following inflamma-

tion [26]. Memory T cells produced high levels of IFN-γ, particularly after cross-linking with

αCD3/αPD-L1 (Fig 3E), while naïve T cells produced insignificant levels of IFN-γ regardless

of the stimulus (Fig 3E). This suggests a positive feedback loop that sustains the expression of

PD-L1 on those memory FOXP3+ iTregs that keep the balance between tolerogenic and

inflammation to limit immune-mediated side effects. Overall, these data indicate that, in our

system, PD-L1 engagement preferentially converts memory T cells into functional iTregs.

Moreover, since naïve T cells do not convert under αCD3/αPD-L1 condition, but the unfrac-

tionated CD4+CD25− T cells behave as memory T cells, we asked whether IFN-γ produced by

memory T cells contributed to the conversion of naïve T cells by up-regulating PD-L1. Like

memory T cells, naïve T cells stimulated with αCD3/αPD-L1 in the presence of recombinant

human IFN-γ showed an increase of CD25highFOXP3high frequency although not statistically

significant compared to naïve T cells without IFN-γ, while naïve T cells stimulated with αCD3

alone or αCD3/αCD28 in the presence of IFN-γ remained unchanged (Fig 4A and 4B).

PD-L1 ligation on memory T cells drives iTreg conversion by

concomitantly down-regulating AKT/mTOR/S6 and TCR/MAPK signaling

cascades

Cytokines, TCR signaling, costimulatory/coinhibitory molecules, and metabolic changes are

known to influence the generation of Tregs in the periphery. Since several reports have shown

that suboptimal TCR stimulation favors the generation of iTregs [19], we investigated whether

�P< 0.05, ��P< 0.01, and ���P< 0.001 by RM one-way ANOVA followed by Tukey multiple comparison. (C)

Representative plots showing combined analysis of FOXP3 and CD25 and expression on memory and naïve subsets

under the indicated conditions. (D) Representative histograms showing CFSE dilution of effector CD4+ T cells

activated with αCD3/αCD28 beads and cultured alone or in the presence of memory or naïve T cells stimulated as in

(B) at a 1:20 (Treg/Teff) ratio for 5 days. Histograms are representative of 2 independent experiments (n = 3).

Quantification of suppression at 1:20 ratio of Treg/Teff cells, bars represent the mean ± SD. (E) Absolute values of

IFN-γ and IL-10 cytokine production by memory and naïve cells activated for 24, 48, and 72 h under the indicated

conditions. Values for each data point can be found in S1 Data. Full gating strategies from representative plots are

shown in S1 Gating Strategy. CFSE, Carboxyfluorescein succinimidyl ester; IFN-γ, interferon gamma; IL-10,

interleukin 10; iTreg, inducible Treg; PD-1, Programmed cell death protein 1; PD-L1, PD-1 ligand 1; RM, repeated

measures; Teff, effector T cell; Treg, regulatory T cell.

https://doi.org/10.1371/journal.pbio.3001199.g003
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PD-L1 ligation resulted in a modulation of the TCR signaling cascade. To assess this, we iso-

lated CD4+CD25− memory T cells and stimulated them with αCD3 alone for 24 h to allow the

up-regulation of PD-L1, then cells were activated under the 3 conditions for 15 min. Although

both αCD3/αPD-L1 and αCD3/αCD28 conditions induced similar levels of CD25 expression

(Fig 1D), western blot analysis revealed that αCD3/αCD28 simulation increased significantly

ERK1/2 phosphorylation (Fig 5A and 5B), whereas αCD3/αPD-L1 engagement had the oppo-

site effect showing a slightly attenuated TCR/MAPK signaling pathway compared to αCD3

alone, as shown by the lower phosphorylation of ERK1/2 (Fig 5A and 5B). In addition, it is

well established that the mTOR pathway is required in conventional T cells but dispensable by

Tregs [27,28]. mTOR has as a downstream target p70 S6 kinase which, in turn, phosphorylates

the S6 ribosomal protein. Thus, we evaluated the AKT/mTOR/S6 pathway using phosphory-

lated S6 (pS6) as an indicator of the mTOR pathway activation status. As shown in Fig 5A and

Fig 4. PD-L1 costimulation promotes iTreg conversion of naïve T cells in the presence of IFN-γ. (A)

Representative dot plots showing CD25 and FOXP3 expression after 72 h of culture of naïve CD4+CD25− T cells

isolated from healthy donors in the presence or absence of rhIFN-γ. (B) Cumulative results expressed as percentage of

CD25highFOXP3high T cells. Data are expressed as mean ± SD and are pooled from at least 2 independent experiments

(n = 5). �P< 0.05 and ��P< 0.01 by two-way ANOVA followed by Tukey multiple comparison. Values for each data

point can be found in S1 Data. Full gating strategies from representative plots are shown in S1 Gating Strategy. IFN-γ,

interferon gamma; iTreg, inducible Treg; PD-L1, PD-1 ligand 1; rhIFN-γ, recombinant human interferon gamma.

https://doi.org/10.1371/journal.pbio.3001199.g004
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5C, high levels of pS6 were obtained with αCD3/αCD28 cross-linking, while pS6/S6 ratio after

αCD3/αPD-L1 cross-linking was not only significantly lower than after αCD3/αCD28 stimu-

lation but also 50% lower than following αCD3 stimulation alone (Fig 5A and 5C). Further-

more, αCD3/αCD28 stimulation led to the highest level of pAKT, while PD-L1 ligation

showed similar levels of pAKT compared to both αCD3 alone and unstimulated cells (Fig 5D

and 5E, left panel). Altogether, these results confirmed that PD-L1 delivers a signal in T cells.

Moreover, PD-L1 signal is different than the signal induced by both αCD3 and αCD3/αCD28

stimulations, and it is indicative of a modulation of the central metabolic AKT/mTOR pathway

associated with the acquisition of a regulatory phenotype [29].

Fig 5. Cosignaling through PD-L1 promotes iTreg conversion by modulating AKT/mTOR/S6 and TCR/MAPK pathways. (A)

Representative immunoblot of pERK1/2, ERK1/2, pS6, and S6 in memory T cells upon 15 min of activation under the indicated

conditions. α-Tubulin was used as loading control. Western blot quantification of (B) ERK1/2 (pERK1/2/ERK ratio) and (C) S6 (pS6/

S6 ratio) activation status are shown (n = 6, 6 independent experiments). Data are represented using boxplots indicating the min and

max and median; �P< 0.05, ��P< 0.01, ��� P< 0.001, and ����P< 0.0001 by RM one-way ANOVA followed by Tukey multiple

comparison. (D) Representative flow cytometry histograms showing the MFI of pAKT, pSTAT3, and pSTAT5 following 48 h of

stimulation under the indicated conditions. (E) Quantification of pAKT, pSTAT5, and pSTAT3 MFI (n = 6). Data are represented

using boxplots indicating the min and max and median; �P< 0.05, ��P< 0.01, and ���P< 0.001 by RM one-way ANOVA followed by

Tukey multiple comparison test. Values for each data point can be found in S1 Data. Full gating strategies from representative plots are

shown in S1 Gating Strategy. Full blots are available in S1 Raw Images. ERK1/2, total ERK; iTreg, inducible Treg; MAPK, mitogen-

activated protein kinase; MFI, mean fluorescence intensity; pAKT, phospho-AKT; PD-L1, PD-1 ligand 1; pERK1/2, phospho-ERK1/2;

pS6, phopho-S6; pSTAT3, phospho-STAT3; pSTAT5, phospho-STAT5; RM, repeated measures; S6, total S6; TCR, T cell receptor.

https://doi.org/10.1371/journal.pbio.3001199.g005
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Since other signals play a role in the conversion and function of Tregs, we sought to analyze

STAT5 and STAT3 phosphorylation status that are known to participate in Treg development

and function [30,31]. STAT3 and STAT5 phosphorylation were significantly higher when T

cells were stimulated with αCD3/αCD28 compared to αCD3 stimulation alone or in combina-

tion with PD-L1 (Fig 5D and 5E). While αCD3/αPD-L1 cross-linking showed a consistent

and reproducible increase in STAT3 and STAT5 phosphorylation, it did not reach statistical

significance compared to αCD3 stimulation alone. (Fig 5D and 5E). Collectively, these data

suggest an intrinsic signaling through PD-L1 that favors the conversion of memory T cells into

a regulatory phenotype by reducing the strength of the TCR signaling, antagonizing the AKT/

mTOR pathway, and increasing STAT3 and STAT5 phosphorylation to intermediate levels.

PD-L1 engagement fails to induce a regulatory phenotype in rheumatoid

arthritis patients

Previous studies have reported that T cells in rheumatoid arthritis (RA) patients have ERK

phosphorylated at higher levels than healthy donors and that these levels are further increased

upon activation [32,33]. It has been suggested that the dysregulation in ERK activity in RA

patients predisposes to the activation of autoreactive T cells favoring disease progression [32].

Since PD-L1 ligation led to a combined reduction of ERK and S6 phosphorylation in healthy

donors, we sought to investigate whether PD-L1 engagement was able to modulate T cell sig-

naling in RA patients.

CD4+CD25− T cells from RA patients were stimulated with αCD3, αCD3/αCD28, and

αCD3/αPD-L1 following the same protocol used for healthy donors. As expected, the level of

pERK in RA patients was more than 2-fold higher than in healthy individuals in all stimulatory

conditions (Fig 6A and 6B). Healthy donor CD4+CD25− T cells cross-linked with αCD3/

αPD-L1 showed a significant reduction in S6 phosphorylation compared to αCD3 and αCD3/

αCD28 (Fig 6C), whereas in RA patients, cross-linking with αCD3/αPD-L1 resulted in similar

levels of S6 phosphorylation to those seen in response to αCD3 stimulation alone (Fig 6D). In

addition, T cells isolated from RA patients showed comparable levels of AKT phosphorylation,

regardless of the stimulus used (Fig 6E and 6F), and it was higher than the observed levels in

healthy donors (Fig 5D and 5E). Altogether, this indicates that PD-L1 engagement on

CD4+CD25− T cells from RA patients is unable to down-modulate both the TCR/MAPK sig-

naling and AKT/mTOR pathway. Furthermore, both STAT5 and STAT3 phosphorylation

reached the highest levels when stimulating with αCD3/αCD28 on CD4+CD25− T cells from

RA patients (Fig 6E and 6F) as in T cells from healthy donors (Fig 5D and 5E). In contrast to

healthy donors, RA-derived T cells showed significantly higher levels of STAT5 and STAT3

phosphorylation when cross-linked with αCD3/αPD-L1 compared to αCD3 alone (Fig 6E

and 6F). Overall, these findings suggest that T cells from RA patients may be incapable of

acquiring a regulatory phenotype. Therefore, we analyzed the phenotype of CD4+CD25− T

cells after αCD3/αPD-L1 engagement. Due to the high basal level of pERK, cells had a lower

threshold of activation that was evidenced by the strong up-regulation of CD25 under all

experimental conditions, particularly when cross-linked with αCD3/αCD28 and αCD3/

αPD-L1 with almost 100% of cells becoming CD25+ (Fig 7A and 7B). We also found a similar

percentage of CD25highFOXP3high cells following αCD3/αPD-L1 and αCD3/αCD28 cross-

linking (Fig 7A and 7C) that was in line with the similar pattern of cytokine production (Fig

7D). Since αCD3/αCD28 and αCD3/αPD-L1 induced a similar phenotype ex vivo, we next

assessed their suppressive capacity. CD25+FOXP3high cells generated from RA patients gener-

ated with either αCD3/αCD28 or αCD3/αPD-L1 showed a suppressive behavior similar to

activated T cells (Fig 7E) [34]. Furthermore, CD4+CD25+ T cells from RA patients proliferated
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Fig 6. PD-L1 engagement fails to convert CD4+CD25− T cells from RA patients into iTreg cells. Representative

flow cytometry histograms (A) and bar charts (B) showing the percentage of pERK1/2 in HDs and RA patients upon

the indicated stimulation. (C) Representative immunoblot of pERK1/2, ERK1/2, pS6, and S6 in CD4+CD25− T cells

isolated from HDs upon 15 min of activation under the indicated conditions. α-Tubulin was used as loading control (n
= 6). Data are represented using boxplots indicating the min and max and median; �P< 0.05, ��P< 0.01, and
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extensively in a suppression assay compared to healthy donor cells, suggesting that the inhibi-

tion observed may be due to the overgrowth of this population of cells during the coculture

(S8 Fig) as already reported by others [35]. Altogether, our results suggest a defect on CD4+ T

cells from RA patients where PD-L1 engagement was unable to induce a phenotype different

than that of CD28 costimulation that could be a contributing cause to diseases progression.

Discussion

PD-L1 is up-regulated on T cells after activation, but its role on T cells remains elusive. Here,

we describe how the engagement of PD-L1 on effector T cells functions as a cosignal to pro-

mote a regulatory phenotype. Our study demonstrates that PD-L1, like the canonical costimu-

latory molecule CD28, supports TCR signaling for an optimal induction of T cell activation

and proliferation. However, unlike CD28, cosignaling through PD-L1 induced a unique

CD25highFOXP3high population that is highly suppressive.

The effects of PD-1 signaling on T cells have been extensively studied, particularly in the

context of the cancer microenvironment where the engagement of PD-L1 expressed by tumor

cells inhibits T cell response against the tumor. PD-L1 is used in cancer as a biomarker of poor

prognosis and immune-checkpoint inhibitor therapies with anti-PD-1 blocking antibodies are

currently trialed with encouraging results [36]. However, blocking PD-1/PD-L1 axis is not

without pitfalls and adverse effects such as autoimmune diseases are among the most fre-

quently described [37]. The rationale of using an anti-PD-1 blocking antibody is to avoid a

negative signal into the T cells when engaging PD-L1 on tumor cells [38,39]. Anti-PD-L1

blocking antibodies aiming at disrupting this interaction could have an additional effect since

PD-L1 was described to deliver a survival signal to tumor cells [15] that confers resistance to

IFN-mediated toxicity [16].

The data from this study may help to explain a long-standing conundrum that antigen-pre-

sented by human activated CD4+ T cells led to unresponsiveness and even a suppressive phe-

notype [40]. In humans, activated T cells express the major histocompatibility complex class II

[41,42] and other costimulatory (e.g., CD80) and coinhibitory (e.g., CTLA-4) molecules [43–

45]. We have shown that the recognition of HLA-DR–peptide complexes on activated T cells

by other activated T cells led to anergy, and this occurs despite the expression of costimulatory

molecules (CD80 and CD86) on the same T cells [46]. Our results suggest that the expression

of PD-1 and PD-L1 on activated T cells could contribute to the induction of anergy during T–

T interaction. However, whether the interaction of PD-1:PD-L1 during T:T presentation plays

an important role in vivo in inhibiting an immune response by inducing CD4+ Tregs could

not be tested in a murine model due to the lack of MHC-II expression on activated mouse T

cells [47].

High-dimensional data analysis suggests that PD-L1 engagement generated a specific subset

of cells (metacluster 24) with low expression of Helios and high levels of ICOS, CD28, CCR4,

���P< 0.001 by RM one-way ANOVA followed by Tukey multiple comparison. (D) Representative immunoblot of

pERK1/2, ERK1/2, pS6, and S6 in CD4+CD25− T cells isolated from RA patients (n = 6). Data are represented using

boxplots indicating the min and max and median; �P< 0.05, ��P< 0.01, and ���P< 0.001 by RM one-way ANOVA

followed by Tukey multiple comparison test. (E) Representative flow cytometry histograms showing the MFI of pAKT,

pSTAT3, and pSTAT5 of RA CD4+CD25− T cells following 48 h of stimulation under the indicated conditions. (F)

Quantification of pAKT, pSTAT5, and pSTAT3 MFI shown in (E) (n = 5). Data are represented using boxplots

indicating the min and max and median; �P< 0.05 and ��P< 0.01 by RM one-way ANOVA followed by Tukey

multiple comparison test. Values for each data point can be found in S1 Data. Full gating strategies from representative

plots are shown in S1 Gating Strategy. Full blots are available in S1 Raw Images. ERK1/2, total ERK; HD, healthy

donor; MFI, mean fluorescence intensity; pAKT, phospho-AKT; pERK1/2, phospho-ERK1/2; pS6, phopho-S6;

pSTAT3, phospho-STAT3; pSTAT5, phospho-STAT5; RA, rheumatoid arthritis; RM, repeated measures; S6, total S6.

https://doi.org/10.1371/journal.pbio.3001199.g006
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and CTLA-4 compared to the other CD25highFOXP3high cells. T cells with a similar phenotype

(CD28high ICOShigh and CTLA-4high Helios−) have been described as memory Tregs [48].

These cells encompass peripheral iTregs with methylated FOXP3 locus, which produce IL-10,

and are highly suppressive ex vivo and display plasticity under inflammatory conditions. Our

results indicate that PD-L1 engagement induces a defined subset of iTregs and the enrichment

on the metaclusters mentioned above could help to define the markers to further investigate

Fig 7. Phenotype, cytokine production, and suppressive ability of RA CD4+CD25− T cells upon PD-L1

engagement. (A) Representative dot plots showing CD25 and FOXP3 expression after 72 h of culture of CD4+CD25−

T cells isolated from RA patients under the conditions indicated (left panel). (B, C) Quantification of CD25 and

FOXP3 expression. Data are represented using boxplots indicating the min and max and median and are pooled from

at least 2 independent experiments (n = 5); ���P< 0.001 and ����P< 0.0001 by RM one-way ANOVA followed by

Tukey multiple comparison. (D) Absolute values of cytokine production by RA CD4+CD25− T cells activated under

the indicated conditions. (E) Suppression of RA CD4+CD25− T cells at 1:20 ratio. Data are expressed as mean ± SD

and are pooled from at least 2 independent experiments (n = 3). Values for each data point can be found in S1 Data.

Full gating strategies from representative plots are shown in S1 Gating Strategy. PD-L1, PD-1 ligand 1; RA, rheumatoid

arthritis; RM, repeated measures.

https://doi.org/10.1371/journal.pbio.3001199.g007
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the role of this population in healthy donors resolving an inflammation and understand their

role in chronic infections, transplantation, and within tumors.

The fact that only memory T cells were susceptible to conversion into iTregs upon PD-L1

engagement suggests a potential role of PD-L1 in fine-tuning T cell effector activity in periph-

eral tissues and subsequently in limiting and resolving the immune response in an inflamma-

tory environment (Fig 8). In fact, it is plausible that the preferential engagement of PD-L1 and

the resulting conversion of memory effector into Tregs is an additional level of control

required to restore the equilibrium of the immune system after the insult occurs preventing

autoimmunity.

Notably, several groups have shown that PD-1/PD-L1 axis contributes to peripheral toler-

ance by promoting iTreg conversion [10,49]. However, all these studies have exclusively

focused on the signaling pathway downstream PD-1 receptor in T cells. Other studies have

shown that a reverse signaling could occur for another PD-L1 partner, i.e., CD80 [50–52]. Our

results demonstrate that PD-L1 also can signal on T cells inducing a regulatory phenotype by

reducing TCR-mediated signals. In line with this, Gagliani and colleagues have recently shown

that the trans-differentiation of Th17 cells into Tregs was induced when the signals through

the TCR were inhibited showing that this event led to a resolution of the ongoing immune

response [53]. Furthermore, another study in humans has shown that FOXP3+ Tregs were

generated continuously from the CD4+CD45RO+CD25−FOXP3− T cell pool. However, these

Tregs disappeared rapidly as they were highly susceptible to apoptosis upon antigen removal

and immune response clearance [54]. Similar results obtained in vivo with murine T cells have

shown that in contrast to high level, low levels of TCR signals promoted iTreg generation in

the periphery [55]. Other experiments performed in vitro demonstrated that prolonged TCR

signaling on murine T cells antagonized the induction of FOXP3 through the AKT/mTOR sig-

naling cascade [10,56].

Our results show that PD-L1 engagement attenuated the activation of AKT/mTOR/S6 and

TCR/MAPK pathways during the conversion of effector T cells into iTreg cells. In addition,

the combinatorial inhibition of those pathways, which converge on S6 activation, has been

shown to be effective in inhibiting memory T cell response [57,58]. Furthermore, we showed

that PD-L1 signaling led to a slight increase of STAT3 and STAT5 phosphorylation. The role

of STAT5 signaling in the generation of iTreg cells is well documented [30]. Although high lev-

els of STAT3 phosphorylation are associated with an inflammatory phenotype, low levels of

pSTAT3 are necessary for Treg generation [59]. We have previously described a Treg popula-

tion which expresses STAT3 [60], and more recently, it has been shown that FOXP3 acts as a

cotranscription factor with STAT3 leading to IL-10 production [61], consistent with the high

levels of IL-10 produced by αCD3/αPD-L1 generated cells. Recently, Diskin and colleagues

have shown that PD-L1 engagement up-regulated STAT3 signaling in CD4+ T cells that miti-

gates a T helper 1 and 2 polarization while partially promoting a T helper 17 differentiation

[17]. However, it is important to highlight that their experimental setup differs from ours in

many aspects, i.e., we used purified CD4+CD25− T cells as starting point, while Diskin and col-

leagues used total or CD4+ T cells. They cultured T cells in plates coated with aCD3/aCD28

Abs with a monomeric soluble PD-1-Fc that is capable of blocking PD-L1.

In our study, we have observed that PD-L1 engagement on T cells from RA patients was

neither able to modulate ERK signal, nor the mTOR pathway. Nevertheless, a strong phos-

phorylation of both STAT3 and STAT5 was induced, suggesting that the ligation of PD-L1 in

RA patient T cells is not able to limit inflammation and may be in part responsible for the

development of autoimmune responses. Based on this observation, it is possible that the abro-

gation of PD-L1 signaling pathway might contribute to the onset of rheumatic immune-related

side effects observed in neoplastic patients receiving PD-1/PD-L1 blocking therapy [37,62].
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Fig 8. Proposed role of PD-L1 on contraction of activated effector T cells. (i) Activation: Following TCR/CD28 stimulation of memory T cells,

MAPK/ERK pathway and AKT/mTOR/S6 pathway are activated. (ii) Inflammation: Activated T cells migrate to the sites of inflammation where

they produce large amount of IFN-γ that induce and sustain PD-L1 expression. (iii) Conversion: PD-L1 ligation on effector T cells induces a

reverse signal that reduces ERK phosphorylation and attenuates the AKT/mTOR/S6 pathway leading to the conversion into iTregs by up-

regulating FOXP3 and CTLA-4 expression and secretion of IL-10. (iv) Regulation: iTregs exert their regulatory functions on effector cells

PLOS BIOLOGY PD-L1 signaling on human memory CD4+ T cells induces a regulatory phenotype

PLOS Biology | https://doi.org/10.1371/journal.pbio.3001199 April 26, 2021 17 / 27

https://doi.org/10.1371/journal.pbio.3001199


However, the number of RA patients in our study is limited, and a larger cohort will be needed

to confirm our observation.

In conclusion, our data suggest that PD-L1 engagement may play a crucial role in regulating

the immune response and for this reason merits further exploration and may reveal therapeu-

tic opportunities.

Materials and methods

Blood samples

Peripheral blood was obtained from anonymized leukocyte cones supplied by the National

Blood Transfusion Service (NHS Blood and Transplantation, Tooting, London, UK). After

obtaining written informed consent, blood samples and clinical/demographic data were col-

lected from rheumatoid arthritis patients (S1 Table) recruited into the Pathobiology of Early

Arthritis Cohort (PEAC) or into the Experimental Medicine and Rheumatology Biobank.

Both studies received the approval from the local ethic committees (Rec. No. 05/Q0703/198

and 07/Q0605/29, respectively).

T cells isolation

RosetteSepAU : PleaseprovidemanufacturerlocationdetailsforSTEMCELLTechnologiesandMiltenyiBiotecinthesentenceRosetteSepHumanCD4þ TcellenrichmentcocktailðSTEMCELLTechnologiesÞwas:::Human CD4+ T cell enrichment cocktail (STEMCELL Technologies, Canada) was

used to purify CD4+ T cell fraction, and CD25 Microbeads II (Miltenyi Biotec, Germany) were

used to separate CD4+CD25− T cells from CD4+CD25+ T cell fraction according to manufactur-

er’s instructions. The purityAU : PleaseprovidemanufacturerlocationdetailsforBDBiosciencesinthesentenceThepurityofCD4þ CD25 � cellswasbetween96%to:::of CD4+CD25− cells was between 96% to 98%. To isolate

CD4+CD25−CD45RO− naïve T cells and CD4+CD25−CD45RO+ memory T cells, T CD4+ cells

were stained with anti-CD4, anti-CD25, anti-CD45RA, and anti-CD45RO and sort on a 3 lasers

FACS-ARIA high-speed cell sorter (BD Biosciences, USA).

T cell activation and cytokine analysis

CD4AU : PleaseprovidemanufacturerlocationdetailsforeBioscienceandBioLegendintheirfirstmentionsinthesentenceCD4þ CD25 � Tcellswerestimulatedwith5mg=mL:::+CD25− T cells were stimulated with 5 μg/mL plate-bound anti-CD3 Ab (clone OKT3,

eBioscience, USA) in combination with 10 μg/mL plate-bound anti-CD28 Ab (clone CD28.2,

BioLegend, USA) or 10 μg/mL plate-bound anti-PD-L1 Ab (CD274, clone MIH1, eBioscience

or when specified Biolegend clone 29E.2A3 and R&D research grade biosimilar Atezolizumab

and Durvalumab clones Hu124 and Hu125, respectively) or IgG1 isotype control Ab (clone

P3.6.2.8.1, eBioscience). CellsAU : PleaseprovidemanufacturerlocationdetailsforLonzaandBioserainthesentenceCellswereactivatedfor72hintheabsenceof :::were activated for 72 h in the absence of exogenous IL-2, in a

48-well plate (VWR) at the density of 106/mL in X-VIVO15 medium (Lonza, Switzerland) sup-

plemented with heat inactivated 5% human AB serum (Biosera, France). Supernatants were

used to detect human T cells cytokine production using LEGENDplex Human Th-Cytokine

Assay (BioLegend, USA) following manufacturer’s instructions. Cytokines were acquired on a

FACSCanto II (BD Bioscience). Data analysis was carried out on LEGENDplex Data Analysis

Software.

Flow cytometry

FollowingAU : PleaseprovidemanufacturerlocationdetailsforThermoFisherScientificinthesentenceFollowingactivation; TcellswerestainedwithLIVE=DEADFixable:::activation, T cells were stained with LIVE/DEAD Fixable Yellow Dead Cell Stain

Kit according to the manufacturer’s instructions (Thermo Fisher Scientific, USA). Cells were

controlling the inflammation. These transient iTreg cells restrain the magnitude of the immune response bringing back the immune system to

homeostasis. Schematic representations were created with Biorender.com. CTLA-4, cytotoxic T-lymphocyte–associated antigen 4; IFN-γ,

interferon gamma; IL-10, interleukin 10; iTreg, inducible Treg; MAPK, mitogen-activated protein kinase; PD-L1, PD-1 ligand 1; TCR, T cell

receptor.

https://doi.org/10.1371/journal.pbio.3001199.g008
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then washed and labeled with a combination of antibodies to surface molecules: CD4, CD25,

PD-1, PD-L1, and CTLA-4. FOXP3 staining was performed with Foxp3/Transcription Factor

Staining Buffer Set (eBioscience) according to the manufacturer’s instruction. Stained cells

were acquired on 5-lasers LSRFortessa X20 (BD Bioscience) and analyzed using Flowjo (ver-

sion 9.7.5 for Mac and 10.6.2 for Windows). The list of all labeled antibodies used in this study

can be found in S2 Table.

Mass cytometry (CyTOF)

We designed a panel of antibodies based on surface markers and transcription factors. Anti-

bodiesAU : PleaseconfirmthattheedittothesentenceAntibodiesweretaggedwithararemetalisotopeðS3TableÞ:::didnotaltertheintendedthoughtofthesentence:were tagged with a rare metal isotope (S3 Table), while for live and dead staining, cis-

platin has been used. One millionAU : PerPLOSstyle; numeralsarenotallowedatthebeginningofasentence:Pleasemodifythesentence106eventspersampleswereacquiredonTheCyTOF � 2:::events per samples were acquired on The CyTOF-2 mass

cytometer (Fluidigm, USAAU : PleaseprovidemanufacturerlocationdetailsforFluidigminthesentence106eventspersampleswereacquiredonTheCyTOF � 2:::). Data were normalized based on normalization beads (Ce140,

Eu151, Eu153, Ho165, and Lu175). After normalization, FCS files were analyzed using Cyto-

bank platform where automated clustering using t-SNE algorithm was performed on manual

gated CD4 (1 × 105 cells per condition) from 3 independent donors. To partition the cells into

50 distinct metaclusters, we applied the FlowSOM clustering algorithm [63]. MEM scores were

calculated by using RStudio 3.6.1 following the algorithm described by Diggins and colleagues

[64]. FCS files are available on https://flowrepository.org/id/FR-FCM-Z3GZ. Heatmaps were

generated using the online tool available on https://software.broadinstitute.org/morpheus/.

Proliferation and suppression assay

For proliferation assay, CD4+CD25− T cells were labeled using Cell Trace Violet (CTV) prolif-

eration kit (Thermo Fisher Scientific) according to the manufacturer’s instructions and stimu-

lated under the different conditions described above in a 96 U-bottom well plate (VWR) at the

density of 2 × 105 cells. After stimulation, cells were stained for CD4, CD25, and FOXP3 and

analyzed with FACSCanto II flow cytometer (BD). Cell proliferation was determined by moni-

toring CTV dilution.

ForAU : PleaseprovidemanufacturerlocationdetailsforInvitrogeninthesentenceForsuppressionassay;CD4þ CD25 � TcellsðTeffsÞwerelabelled:::suppression assay, CD4+CD25− T cells (Teffs) were labeled with 2.5 μM CFSE for 4 min

at room temperature and activated with anti-CD3/CD28 beads (Invitrogen, USA) at 40:1 (cell/

bead) ratio. Teffs were then cultured alone (1 × 105) or cocultured with HLA-A2 mismatched

iTreg cells at different ratios in a 96 U-bottom well plate. After 5 days, cells were stained with

anti-HLA-A2 and acquired on FACSCanto flow cytometer (BD). The percentage of suppres-

sion was calculated based on the proliferation of Teffs alone compared with the percentage of

proliferation observed in the presence of iTreg cells.

Phosphoflow cytometry

Flow cytometry to assess protein phosphorylation was performed with True-Phos Perm Buffer

(BioLegend) according to the manufacturer’s instruction. Cells were stimulated with 5 μg/mL

plate-bound anti-CD3 Ab for 18 h and then with anti-CD3 Ab alone, or in combination with

10 μg/mL plate-bound anti-CD28 Ab or 10 μg/mL plate-bound anti-PD-L1 Ab for 48 h. Briefly,

cells were fixed for 15 min at 37˚C before permeabilization by slowly adding True-Phos Perm

Buffer. Cells were then stained with anti-pSTAT5, anti-pSTAT3, anti-pERK1/2, and anti-pAKT

Abs. Stained cells were acquired on LSRFortessa X20 and analyzed using Flowjo.

Western blotting

Cells were stimulated with 5 μg/mL plate-bound anti-CD3 Ab for 18 h and then with anti-

CD3 alone, or in combination with 10 μg/mL plate-bound anti-CD28 Ab or 10 μg/mL plate-
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bound anti-PD-L1 Ab for 48 h. CellsAU : PleaseprovidemanufacturerlocationdetailsforCalbiocheminthesentenceCellswerethenwashedwithcoldPBSandlysedin:::were then washed with cold PBS and lysed in RIPA buffer

(Thermo Fisher Scientific) containing protease inhibitor cocktail (Calbiochem, Germany) for

30 min on ice and centrifuged for 15 min at 15,000g. ProteinAU : PleaseprovidemanufacturerlocationdetailsforBio � RadinthesentenceProteinconcentrationsweredeterminedbyQuickStartBradfordassaykit:::concentrations were determined

by Quick Start Bradford assay kit (Bio-Rad, USA), according to the manufacturer’s instruc-

tions. ProteinAU : PleaseprovidemanufacturerlocationdetailsforSigmainthesentenceProteinlysatesweredenaturedbyadding2XLaemmlibuffer:::lysates were denatured by adding 2X Laemmli buffer (Bio-Rad) containing 5%

2-mercaptoethanol (Sigma, Germany) at 95˚C for 5 min. ProteinAU : PleaseprovidemanufacturerlocationdetailsforMilliporeandCellSignalingTechnologyinthesentenceProteinsampleswereseparatedon10%sodiumdodecylsulphate � polyacrylamide:::samples were separated on

10% sodium dodecyl sulphate-polyacrylamide gels and transferred onto polyvinylidene

difluoride (PVDF) membranes (Millipore, Germany) and probed using anti-phospho-p44/42

MAPK (ERK1/2), anti-p44/42 MAPK (ERK1/2), anti-phospho-S6, anti-S6, and anti-αTubulin,

all purchased from Cell Signaling Technology (USA). Detection of the immunoreactive bands

was performed with anti-rabbit or anti-mouse HRP-linked antibody (eBioscience) using the

ECL Western Blotting Substrate (Bio-Rad). ChemiluminescenceAU : PleaseprovidemanufacturerlocationdetailsforGEHealthcareLifeScienceinthesentenceChemiluminescencewasdetectedwiththeImageQuantLASS4000miniðGEHealthcare:::was detected with the Image-

Quant LASS4000 mini (GE Healthcare Life Science, UK). Blots were quantified using ImageJ

Software v1.51k for Mac.

CRISPR/Cas9-PD1 editing

Preparation of crRNA-tracrRNA duplex. The crRNA-tracrRNA duplexes were prepared

immediately before experiments by incubating 200 μM of Alt-R CRISPR-Cas9 tracrRNA

(IDT) with either the Alt-R CRISPR-Cas9 crRNA targeting PDCD1 (target sequence:

GGGCGGTGCTACAACTGGGC) or the Alt-R CRISPR-Cas9 Negative Control crRNA #1

(IDT) at a 1:1 ratio in Nuclease-Free Duplex Buffer (IDT, Cat# 11-01-03-01) at 95˚C for 5 min,

and then the mix was slowly cooled to room temperature. Nuclease-Free Duplex Buffer was

added to the crRNA-tracrRNA duplexes to a final concentration of 61 μM.

Cas9 RNP assembly and electroporation. Cas9 RNPs were prepared immediately before

experiments by incubating the crRNA-tracrRNA duplex with the Alt-R S.p. Cas9 Nuclease V3

(IDT) in a 2:1 ratio (2.5 μM Cas9 + 5 μM crRNA-tracrRNA duplex per electroporation) for 20

min at room temperature. For each electroporation, the cells were resuspended in PBS and

washed at 200g for 10 min at room temperature. Per electroporation, 10 million cells were

resuspended in 87 μl of P3 primary cell nucleofection solution (Lonza) and mixed with 13.5 μl

of Cas9 RNP. Cells with the Cas9 RNP were then transferred to the 100 μL Nucleocuvette Ves-

sel (P3 Primary Cell 4D-Nucleofector X Kit L, Lonza) and electroporated using a 4D nucleo-

fector (Lonza) with program EH-115. After nucleofection, cells were left in 100 μL

Nucleocuvette Vessel for 10 min at room temperature. Cells were then transferred to a 6-well

plate with X-VIVO15 + 5% human AB serum and incubated at 37˚C for 4 to 5 h before

reactivation.

Statistics

Statistical tests were prepared using GraphPad Prism software v8.3. A RM one-way ANOVA

and two-way ANOVA were used to compare one related variable between different activa-

tions. Post hoc tests were used as indicated in the figure legends. P values are reported as fol-

lows: �P< 0.05, ��P< 0.01, ���P< 0.001, and ����P< 0.0001.

Supporting information

S1 Fig. PD-L1 engagement on CD4+CD25− T cells: Evaluation of CTLA-4 surface expres-

sion and total cell number. (A) Representative counter plots showing CD25 and CTLA-4 sur-

face expression after 72 h of culture of CD4+CD25− T cells under the conditions indicated (left

panel) and cumulative results expressed as percentage of CTLA-4+ T cells (right panel). Data

are pooled from at least 3 independent experiments (n = 6 different donors). Data are
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represented using boxplots indicating the min and max and median; ��P< 0.01 and
���P< 0.001 by RM one-way ANOVA followed by Tukey multiple comparison. (B) Represen-

tative counter plots showing the expression of CD25 vs FOXP3 (upper panels) and CD25 vs

CTLA-4 (bottom panels) after stimulating CD4+CD25− T cells for 72 h with different concen-

trations of αCD3 and αPD-L1 as indicated. (C) Absolute cell number following 72 h of culture

under the indicated conditions (n = 7 different donors). Data are represented using boxplots

indicating the min and max and median. (D) Frequency of CD25highFOXP3high after stimulat-

ing CD4+CD25− T cells with αCD3, αCD3/αCD28, and αCD3/αPD-L1 for 72 h. The graph

includes data used in Figs 1D and 3 new donors simulated with all antibodies combinations

and the αCD3/αPD-L1 combination using 3 extra αPD-L1 antibodies clones: 29E.2A3 (Biole-

gend), biosimilar Atezolizumab (clone Hu124, R&D), and Durvalumab (clone Hu125, R&D).

Bars represent the mean ± SD. Values for each data point can be found in S1 Data. Full gating

strategies from representative plots are shown in S1 Gating Strategy. CTLAAU : AbbreviationlistshavebeencompiledforthoseusedinS1 � S3andS6 � S8Figs:Pleaseverifythatallentriesarecorrect:-4, cytotoxic T-lym-

phocyte–associated antigen 4; PD-L1, PD-1 ligand 1; RM, repeated measures.

(TIF)

S2 Fig. PD-1 CRISPR/Cas9 gene-editing efficiency in primary human CD4+ T cells. Cumu-

lative results expressed as percentage of PD-1+ T cells. Data are expressed as mean ± SD and

are pooled from at least 2 independent experiments (n = 3 different donors). �P< 0.05,
��P< 0.01, and ���P< 0.001 were considered significant using two-way ANOVA followed by

Tukey multiple comparison test. Data are represented using bars indicating the mean ± SD.

Values for each data point can be found in S1 Data. Full gating strategies from representative

plots are shown in S1 Gating Strategy. PD-1, Programmed cell death protein 1.

(TIF)

S3 Fig. Marker enrichment modeling analysis on total CD4+ cells. Heatmap of manually

gated live CD4+ T cells showing the MEM scores between the different conditions. MEM

scores for each condition were generated by using the other 2 populations as reference. Values

were mapped from −10 to +10 according to their relative enrichment. MEM, marker enrich-

ment modeling.

(TIF)

S4 Fig. High-dimensional data analysis in live CD3+ CD8−CD4+ T cells. (A) Heatmap of the

aggregate metaclusters showing the median expression of 30 markers. The color in the heat-

map represents the median of 0 to 1 scaled expression values of arcsinh transformed data for

each marker. The dendrogram shows clustering of samples based on hierarchical clustering

with one minus Pearson correlation. Cumulative data showing the percentages of the 50 Flow-

SOM metaclusters in the CD45+CD3+CD8−CD4+ cells. (B) Representative map showing the

50 FlowSOM metaclusters from CD4+CD25− activated with αCD3, αCD3/αCD28, and αCD3/

αPD-L1. Analysis executed on CD45+CD3+CD8−CD4+live cells. Cumulative data showing the

percentages, on CD45+CD3+CD8−CD4+ live cells, of all metaclusters representing (C) CD25−,

(D) CD25+, (E) CD25+Ki67+, and (F) CD25+Ki67− cells. Data are expressed as mean ± SD;
�P< 0.05 by one-way ANOVA followed by Tukey multiple comparison. Values for each data

point can be found in S1 Data.

(TIF)

S5 Fig. High-dimensional data analysis in CD4+CD25highFOXP3+ T cells. Cumulative data

showing the percentage, on CD45+CD3+CD8−CD4+ live cells, of all metaclusters representing

(A) CD25highFOXP3+, (B) Ki67+CD25highFOXP3+, and (C) Ki67−CD25highFOXP3+. Data are

expressed as mean ± SD; �P< 0.05 and ��P< 0.01 by one-way ANOVA followed by Tukey

multiple comparison. (D) Heatmap (upper left panel) showing the median expression of 30
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markers of the aggregate metaclusters representing CD25highFOXP3+ cells. The color in the

heatmap represents the median of 0 to 1 scaled expression values of arcsinh transformed data

for each marker. Stacked bars show the frequency of the 9 CD25highFOXP3+ clusters for all

stimulatory conditions (upper right panel). Representative viSNE maps of manually gated

CD45+CD3+CD8−CD4+ T cells clustered using surface and intracellular markers. Shown are

maps for expression of indicated markers and the CD25highFOXP3+ metaclusters from Flow-

SOM analysis. Each colored square represents the 9 different metaclusters. Values for each

data point can be found in S1 Data.

(TIF)

S6 Fig. High-dimensional data analysis in CD4+CD25HighFOXP3highT cells. (A) Cumula-

tive data showing the percentage, on CD45+CD3+CD8−CD4+ live cells, of all metaclusters rep-

resenting CD25highFOXP3high cells; P< 0.05 by RM one-way ANOVA followed by Tukey

multiple comparison. (B) Representative histograms of CD4+CD25− cells, activated using

αCD3/αPD-L1, showing the expression of indicated markers in metaclusters 24, 38, 44, and

45. (C) Heatmap of CD4+CD25− cells, activated using αCD3/αPD-L1, showing the MEM

scores between metaclusters 24, 38, 44, and 45. Values for each data point can be found in S1

Data. MEM, marker enrichment modeling; RM, repeated measures.

(TIF)

S7 Fig. Kinetics of PD-1 and PD-L1 expression following CD3 and CD3/CD28 stimulation.

Representative dot plots showing PD-1 and PD-L1 surface expression on naïve (left panel) and

memory (right panel) T cells activated with αCD3 or αCD3/αCD28 for the time indicated.

Full gating strategies from representative plots are shown in S1 Gating Strategy. PD-1, Pro-

grammed cell death protein 1; PD-L1, PD-1 ligand 1.

(TIF)

S8 Fig. Suppressive ability of HD and RA CD4+CD25+ T cells upon PD-L1 engagement.

(A) Suppression of CD4+CD25+FOXP3+ T cells from HD and RA following PD-L1 engage-

ment at 1:20 ratio. (B) Representative histograms showing CFSE dilution of effector CD4+ T

cells (1 × 105) activated with αCD3/αCD28 beads at 40:1 (cell/bead) ratio and cultured alone

or in the presence of CTV-labeled CD4+CD25+FOXP3+ T cells from HD and RA following

PD-L1 engagement cells for 5 days. Values for each data point can be found in S1 Data. Full

gating strategies from representative plots are shown in S1 Gating Strategy. CFSE, Carboxy-

fluorescein succinimidyl ester; CTV, Cell Trace Violet; HD, healthy donor; PD-L1, PD-1

ligand 1; RA, rheumatoid arthritis.

(TIF)

S1 Table. Demographic and clinical features of the RA patients included in the study.

CCP, cyclic citrullinated peptides; csDMARDs, conventional synthetic Disease Modifying

Anti-Rheumatic Drugs; n, number; RA, Rheumatoid Arthritis; RF, Rheumatoid Factor; SD,

Standard Deviation. 1csDMARDs include Methotrexate, Sulfasalazine, Hydroxychloroquine,

either alone or in combination. 2Biologics includes certolizumab-pegol (anti-TNFα).

(DOCX)

S2 Table. List of antibodies used for flow cytometry. List of antibodies used in this study

including clones, fluorochromes, and suppliers.

(DOCX)

S3 Table. List of antibodies used for mass cytometry. List of antibodies used in this study

including clones, metalTag, and suppliers.

(DOCX)
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S1 Data. Excel spreadsheet containing, in separate sheets, the numerical data for all figure

panels.

(XLSX)

S1 Gating Strategy. Full gating strategy from representative plots shown in Figs 1A, 1C,

1E, 2A, 2B, 2F, 3A, 3C, 3D, 4A, 5D, 6A, 6E and 7A.

(PDF)

S1 Raw Images. Raw data images of blots shown in main Figs 5A and 6C and 6D. Blots are

cut according to protein markers to allow analysis of multiple proteins from single cell lysates.

“X” indicates irrelevant samples or irrelevant membranes.

(PDF)
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