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Abstract

The immune system should constitute a strong selective pressure promoting viral genetic diversity and evolution. However,
HIV shows lower sequence variability at T-cell epitopes than elsewhere in the genome, in contrast with other human RNA
viruses. Here, we propose that epitope conservation is a consequence of the particular interactions established between HIV
and the immune system. On one hand, epitope recognition triggers an anti-HIV response mediated by cytotoxic T-
lymphocytes (CTLs), but on the other hand, activation of CD4+ helper T lymphocytes (TH cells) promotes HIV replication.
Mathematical modeling of these opposite selective forces revealed that selection at the intrapatient level can promote
either T-cell epitope conservation or escape. We predict greater conservation for epitopes contributing significantly to total
immune activation levels (immunodominance), and when TH cell infection is concomitant to epitope recognition (trans-
infection). We suggest that HIV-driven immune activation in the lymph nodes during the chronic stage of the disease may
offer a favorable scenario for epitope conservation. Our results also support the view that some pathogens draw benefits
from the immune response and suggest that vaccination strategies based on conserved TH epitopes may be
counterproductive.
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Introduction

Host cellular immunity is thought to be a major factor

determining the evolution of HIV-1 and other human viruses,

from the intrapatient to the global population level [1,2]. It has

been shown that cytotoxic CD8+ T lymphocytes (CTLs) and

helper CD4+ T lymphocytes (TH cells) play a critical role in the

early and long-term containment of the virus [3–10]. Further-

more, there is epidemiological evidence showing that certain HLA

class I alleles (e.g., B27 andB57) influence the rate of disease

progression [11–14], and HLA-associated HIV-1 polymorphisms

may contribute significantly to the global viral diversity and

evolution [1,15–19]. Given this, HIV-1 genome regions encoding

T-cell epitopes should be under frequent positive or diversifying

selection, and thus, these regions should show increased genetic

variability. However, unexpectedly, the opposite pattern has been

observed in several studies [4,20–27].

The reasons underlying the relatively low genetic diversity of T-

cell epitopes in HIV-1 remain poorly understood. One proposed

explanation is epitope detection bias [23,28], whereby mismatches

between the peptides used in epitope screening studies and the

actual sequence of the assayed viruses tend to produce false

negative results in highly variable regions of the viral genome,

creating an artificial negative association between immunogenicity

and variability. It has also been suggested that epitope conserva-

tion may be determined by host factors. The immuno-proteasome

preferentially processes hydrophobic residues, and these should

tend to show relatively low variability because they often occupy

internal regions of the protein that are important for correct

folding [29,30]. Finally, it has been suggested that regions of the

viral genome where functional constraint is weaker may have

evolved generalized immune escape at the global host population

level and thus show fewer extant epitopes than other, more

constrained regions [23,31]. However, analysis of HIV-1 sequenc-

es spanning several decades was not consistent with this hypothesis

[32], and there is little phylogenetic evidence supporting global

escape in HIV-1 [33]. Furthermore, all the above hypotheses fail

to explain why no systematic T-cell epitope conservation has been

observed in other highly variable and prevalent human viruses

such as influenza, hepatitis C, and dengue viruses [34–37].

Here, we first carried out a sequence variability analysis to

validate and further characterize epitope conservation in HIV-1.

Confirming previous findings, sites in the viral genome mapping to

both TH and CTL epitopes were consistently less variable than

those not mapping to any described T-cell epitopes. In contrast,
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T-cell epitopes tended to be associated with increased variability

levels when this same analysis was carried out for hepatitis C virus

(HCV). We also found that HIV-1 epitope conservation was

probably determined by intrapatient evolutionary processes and

was evident in Gag p24 and Nef proteins even after accounting for

epitope detection bias. Based on this, we hypothesized that T-cell

epitope conservation may result from the particular interactions

established between HIV-1 and the immune system. Although

epitope recognition triggers an anti-HIV immune response, the

virus replicates more efficiently in activated TH cells [38–46].

Therefore, the variability of T-cell epitopes may be determined by

the balance between two opposite selective pressures, one favoring

immune escape and another favoring immune activation. To

tackle this issue, we developed a mathematical model of the

intrahost infection dynamics and T-cell responses. We found that

sequence conservation may be favored at TH epitopes or CTL

epitopes co-mapping with TH epitopes, whereas immune escape

should be selected otherwise. The model suggested that epitopes

triggering vigorous (immunodominant) TH -cell responses should

be more conserved than those triggering weak or moderate

responses. This is consistent with the fact that epitope conservation

was better supported for highly immunogenic proteins such as Gag

p24 and Nef [10,20]. Furthermore, we predict that epitope

conservation may be favored if TH cells frequently become

infected in the process of being activated by professional antigen-

presenting cells (pAPCs) (transinfection). Since transinfection

appears to be an important mechanism for viral dissemination in

the lymph nodes during the chronic stage of the disease [47–49],

our model may help to explain why escape rates tend to slow down

as the infection progresses [50–52]. Finally, our findings suggest

that vaccines that do not elicit HIV-specific TH cell activation may

have improved efficacy.

Empirical Evidence for Epitope Conservation in HIV-1
To confirm widespread T-cell epitope conservation in HIV-1,

we downloaded 100 full-length subtype B sequences from different

patients and 220 experimentally validated epitopes (CTL or TH)

from the Los Alamos HIV-1 database. The epitope list included

the ‘‘A list’’ of 88 best-defined epitopes CTL epitopes and also 132

TH epitopes. Using Shannon’s entropy (H) to quantify variability

at each amino acid site, we found that sites mapping to T-cell

epitopes tended to be more conserved than those not mapping to

any of these epitopes (Figure 1A). This association appeared to be

mainly driven by CTL epitopes in Env (two-way ANOVA:

p,0.001) and Nef (p,0.001) proteins, and by TH epitopes in Gag

(p = 0.005). However, the separate effects of TH and CTL epitopes

are difficult to ascertain because they tend to co-map in the HIV

genome (Fisher’s exact test: p,0.001) [53] and, also, because

epitopes currently classified as CTL-only may actually be TH

epitopes as well, since the latter group has been less extensively

studied. The most consistent conservation pattern was observed

when comparing sites that mapped to both CTL and TH epitopes

(H = 0.14660.016) with those not mapping to any of these

epitopes (H = 0.25560.01; nested ANOVA: p,0.001).

To check that the results were not dependent on how epitopes

have been curated, we repeated the analysis using the complete list

of 741 CTL epitopes instead of the ‘‘A list.’’ This confirmed T-cell

epitope conservation throughout the genome (nested ANOVA:

p,0.001). Although the above analyses accounted for differences

in variability across genes, we further checked whether epitope

conservation may be a by-product of other selective factors in two

ways. First, we included RNA structure in the analysis, a major

factor constraining HIV variability [27,54]. We found that

nucleotide sites mapping to T-cell epitopes were more conserved

than those not mapping to these epitopes regardless of whether

they were involved in establishing base-pairs in the genomic RNA

structure of the virus (nested ANOVA: p,0.001). Second, we

verified that epitope conservation was not a byproduct of 59R39

variability gradients by introducing genome position as a covariate

in the analysis.

To assess whether epitope conservation is determined by

intrapatient or host population-level evolutionary processes, we

downloaded $10 HIV-1 subtype B sequences from each of 100

patients and calculated the average intrapatient amino acid

entropy at each amino acid site. Since HIV transmission typically

involves one or a few viral particles [55–57], the intrapatient

sequence entropy largely reflects the variability accumulated over

the course of an individual infection. We again observed that sites

mapping to T-cell epitopes (CTL ‘‘A list’’ and TH) tended to be

more conserved (H = 0.01260.001) than those not mapping to any

of these epitopes (H = 0.01860.001; nested ANOVA: p,0.001;

Figure 1B). Indeed, changes in entropy associated with the

presence of T-cell epitopes were qualitatively very similar to those

observed at the host population level (Figure 1A versus 1B). This

suggests that T-cell epitope conservation in HIV-1 is determined

at the intra-patient level.

If T-cell epitope conservation was a methodological artifact

(e.g., epitope detection bias) or produced by host factors (e.g.,

selective peptide processing), it should also be evident in other

highly variable human viruses. HCV provides a convenient test

case because, similar to HIV, it is a rapidly evolving pandemic

virus, establishes chronic infections in humans, and is strongly

targeted by T-cell immunity [58–63]. We aligned 100 HCV

subtype 1a polyprotein sequences, calculated the per-site amino

acid entropy as above, and downloaded experimentally defined

HCV 1a TH or CTL epitopes from the Immune Epitope Database

(IEDB). We found that, throughout the genome, amino acid sites

mapping to at least one T-cell epitope were significantly more

variable (H = 0.73060.007) than those not mapping to any of

these epitopes (H = 0.63660.004; nested ANOVA: p,0.001), the

Author Summary

A key component of the immune response against viruses
and other pathogens is the recognition of short foreign
protein sequences called epitopes. However, viruses can
escape the immune system by mutating, so epitopes
should accumulate high levels of genetic variability. This
has been documented in several human viruses, but in
HIV, unexpectedly, epitopes tend to be relatively con-
served. Here, we propose that this is a consequence of the
peculiar interactions that occur between HIV and the
immune system. As with other viruses, recognition of HIV
epitopes promotes the activation of cytotoxic and helper T
lymphocytes, which then orchestrate a cellular immune
response. However, HIV infects helper T lymphocytes as
their target cell in the body and does so more efficiently
when these cells have been activated to participate in an
immune response. Mathematical modeling showed that, in
some cases, HIV may take advantage of immune activa-
tion, thus favoring epitope conservation. This should be
more likely to occur with epitopes that trigger more
vigorous T-cell responses, and during the process known
as ‘‘trans-infection,’’ in which helper T lymphocytes are
infected while being activated. Our results highlight the
potential advantages of an HIV vaccination strategy based
on epitopes that stimulate cytotoxic T lymphocytes
without specifically stimulating helper T lymphocytes.
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association being most evident for genes E2 and NS4b (Figure 1C).

This pattern contrasts with the results obtained for HIV.

To further characterize T-cell epitope conservation in HIV, we

used a dataset from a high-throughput study in which T-cell

responses were determined for a large number of individuals

infected with HIV-1 subtype C using the IFNc enzyme-linked

immunospot assay [18]. Thus, epitopes were empirically verified

for each patient. These assays involved a battery of synthetic

peptides evenly distributed throughout the viral genome, thus

eliminating potential problems of region oversampling. Further-

more, the full genome sequence of the infecting virus was available

for 113 patients, allowing us to identify every mismatch between

the assay peptides and the viral sequence and, thus, to

systematically discard epitope detection bias. Among these 113

patients, peptides showing at least one positive immune response

were less variable (H = 0.16560.014) than nonimmunogenic

peptides (H = 0.21060.008; one-way ANOVA: p = 0.005), thus

confirming epitope conservation. This difference was significant

for Gag p24 (one-way ANOVA: p = 0.001) and Nef (one-way

ANOVA: p,0.001), whereas it was nonsignificant for Gag p17,

Pol, and Env (Figure 2). Qualitatively equivalent results were

obtained using the number of amino acid substitutions per codon

(dN) instead of entropy, whereas we found no association between

immunogenicity and the number of synonymous substitutions (dS)

(Table 1). The latter lack of association further shows that epitope

conservation is unlikely to stem from selective pressures acting on

RNA structure or from 59R39 conservation gradients. Consis-

tently, nonimmunogenic peptides were richer in positively selected

codons (dN/dS.1) than immunogenic peptides in both Gag p24

and Nef. Finally, we note that these results are probably more

reliable for Gag p24 than for Nef since they are based on a larger

number of assays (1,485 versus 357).

The Immune Activation Model
We sought to develop a model that could account for the

following observations made above: T-cell epitopes are less variable

than other regions of the viral genome; epitope conservation

appears to be determined by intrapatient evolutionary processes;

after ruling out possible confounders, the conservation signal is

found mainly in highly immunogenic proteins; HCV and other

human viruses do not show widespread epitope conservation. Also,

since both T-cell escape and epitope conservation have been

documented in HIV-1, it becomes important to identify key factors

determining which of these outcomes should take place.

We suggest that, since HIV-1 replicates more efficiently in

activated TH cells, epitope conservation may provide payoffs to the

virus by increasing the pool of virus-susceptible cells. On the other

hand, epitope conservation is costly because it triggers an anti-

HIV CTL response. To explore how the complex interactions

established between HIV-1 and the cellular immune system may

favor or select against epitope escape, we built a mathematical

model involving TH cells, CTLs, and pAPCs (Figure 3A). We

included pAPCs because TH cell activation is mediated by MHC

II epitopes, which are only present in pAPCs. Also, pAPCs are an

important viral transmission vehicle (see below). In the model, TH

cells could be activated by HIV epitopes or other, non-HIV,

antigens (e.g., from microbial translocation). We denoted the latter

background activation. Dendritic cells are the main type of pAPCs

in the context of an HIV infection, but macrophages also fall into

this category. CTL activation required recognition of an HIV

epitope presented by the MHC I of an infected TH cell or a pAPC,

and co-stimulatory cytokines released from active TH cells.

Cytokine co-stimulation was not epitope-specific, meaning that it

could also come from background-activated TH cells. Background

activation of CTLs is not relevant in the context of the model and

was thus not considered. Activated CTLs lysed infected TH cells

after recognizing an MHC I epitope. However, error-prone

replication gave rise to progeny virions carrying escape mutations

in their CTL or TH epitopes. We defined CTL escape mutants as

those failing to trigger MHC I-mediated CTL activation and cell

killing, TH escape mutants as those failing to trigger MHC II-

mediated TH cell activation, and T-cell escape mutants as those

escaping both types of response.

Critically, HIV-1 replication and viral load are dependent on

levels of TH cell activation [38–41]. In nonactivated cells, the

efficiency of reverse transcription is lower than in activated cells

because of the limited dideoxynucleotide availability , low ATP

levels hamper nuclear transport of the pre-integration complex,

and gene expression is less well-supported by key transcription

factors such as NF-kB and NFAT [42–44]. As a result, the

infection cycle can be arrested at the reverse transcription step and

the incomplete viral DNA degraded unless the cell undergoes

activation within days following viral entry [42,45,46]. TH cells

can become infected in the process of being activated by pAPCs,

though. A mechanism for this is transinfection, whereby dendritic

Figure 1. Association between amino acid variability and T-cell epitopes in subtype B HIV-1 (A, B) and HCV 1a (C). Mean 6 SEM
entropy (H) is shown for sites not mapping to any T-cell epitopes (white) and for those mapping to TH epitopes (blue), CTL epitopes (red), or both
(purple). In (A) and (C) amino acid entropy was quantified at the host population level (100 sequences from different patients), whereas in (B) it was
quantified at the intrapatient level (average from 100 patients containing $10 sequences each). For HIV, only Gag, Pol, Env, and Nef are shown
because they contain the vast majority of T-cell epitopes. No significant differences in variability associated with T-cell epitopes were found in other
genes. Regions with overlapping reading frames were excluded from the analysis. For HCV, only genes with at least five sites in each category were
plotted. Notice that the y-axis is broken to accommodate the extremely variable epitopes in E2.
doi:10.1371/journal.pbio.1001523.g001
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cells can transmit virions bound to their DC-SIGN or L-SIGN

lectins to the TH cells with which they establish MHC II-type

immune synapses [48,49]. Another possible mechanism is cis-

infection, whereby virions released from infected dendritic cells or

macrophages are transmitted to synapsing TH cells. However,

pAPCs are not major viral producers [64], and therefore, we

neglected viral replication in these cells and cis-infection for

simplicity. The contribution of HIV-specific immune activation

and transinfection to viral spread and pathogenesis is supported by

the observation that HIV-specific TH cells are more readily

infected than other subpopulations of active TH cells [65],

reducing their life span and compromising the generation of

effective anti-HIV responses [66].

We also built a ‘‘control’’ model in which the virus infects

nonimmune cells (denoted C) instead of TH cells, but which was

otherwise identical to the HIV model (Figure 3B). This allowed us

to parallel the comparison between HIV and HCV made above

(Figure 1). To address whether TH and CTL escape mutants

should be capable of outgrowing the wild-type virus given the

intrapatient selective forces imposed by the cellular immune

response in the HIV and control models, we considered a single

immune response-escape cycle. Successive cycles ultimately

leading to immune exhaustion and AIDS have been modeled

previously and are important for understanding the natural history

of the infection and pathogenesis [67–69].

Some of the model parameter values could be adjusted based on

available empirical evidence. We chose a cell division rate (r) of

0.05 day21 (i.e., a doubling time of 13.9 days) and a death rate (C)
of 0.005 day21 for resting cells (a half-life of t1/2 = 139 days) and of

0.1 day21 (t1/2 = 6.9 days) for activated cells [70]. The homeostatic

TH cells concentration was C0
4 r½ �

~1,000 cells=mL [71]. We

assumed that cellular division was suppressed above the homeo-

static value, and this was modeled using a unit step function

Figure 2. Association between amino acid variability and T-cell immunogenicity in HIV-1 subtype C using data from a high-
throughput study [18], controlling for epitope detection bias (see text). The average entropy (H) is shown for peptides that produced at
least one positive immune reaction (red) versus those showing no reactivity (blue). Only genes with at least five peptides in each category are shown.
Genome regions with overlapping reading frames were excluded. Dotted lines indicate ANOVA-estimated marginal means. ** 0.001,p,0.01;
*** p,0.001. n.s., not significant.
doi:10.1371/journal.pbio.1001523.g002

Table 1. Estimated number of nonsynonymous substitutions
per codon (dN), synonymous substitutions per codon (dS), and
percentage of codons under positive selection (% dN.dS) in
peptides showing at least one positive immune reaction
(epitopes) versus those showing no reactions (non-epitopes),
using data from a HIV-1 subtype C high-throughput study
[18].

Protein Epitopes Nonepitopes

dN dS % dN.dS dN dS % dN.dS

Gag p17 2.860.3 4.460.2* 6.562.4 2.860.4 5.460.3* 6.263.7

Gag p24 0.860.1** 3.960.3 1.460.9** 1.560.1** 4.260.3 5.861.0**

Pol RT 1.160.1 4.960.3 1.861.1 1.260.1 4.660.1 3.360.5

Pol INT 0.860.1 3.860.5 2.161.4 0.860.1 3.860.3 2.260.7

Env 2.361.3 4.561.0 11.363.6 3.760.4 5.660.3 10.361.0

Nef 1.960.2** 5.160.4 2.861.2* 3.160.2** 5.960.4 7.361.5*

Total 1.760.2* 4.760.2 4.460.8* 2.260.1* 5.060.1 6.260.4*

*ANOVA comparing epitopes and nonepitopes: 0.01,p,0.05.
**0.001,p,0.01.
doi:10.1371/journal.pbio.1001523.t001
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(denoted H). The death rate constant of infected cells was C4 i½ � = 1

day21 [72–77], and the viral production rate of infected cells (a)

was chosen such that the burst size was a/C4 i½ � = 5,000 particles/

cell, a value which falls within the realistic range of 16103–56104

particles/cell [78–81]. The rate constant for CTL-mediated cell

killing was k = 0.1 day21 = C4 i½ �/10, such that at equilibrium

approximately 10% of virus-induced cell death was due to CTL

activity [52]. Published virion clearance constants (CV) vary amply,

from 0.3 day21 [72,76] to .30 day21 [82], and we chose an

intermediate value of 15 day21. The HIV-1 mutation rate is

approximately m = 361025 per nucleotide site per cell infection

[83]. To consider a single escape mutant, we set the mutation rate

to m = 1025. For some parameters, such as the in vivo rate of viral

absorption to TH cells (s) and pAPCs (sD), we did not find

empirical data and these were adjusted to produce realistic peak

titers, set-point titers, and fractions of infected cells. Virus–cell and

cell–cell interactions were modeled as AB/(A+B), where A and B

are the interacting elements. For instance, TH cells infected with

the wild-type virus (TH w½ � ) were killed by activated CTLs (TC a½ � ) at

a rate k
TC a½ �TH w½ �

TC a½ �zTH w½ �

. In this function, cell killing is limited by target

cell availability if TC a½ �&TH w½ � and by CTL availability if

TC a½ �%TH w½ � . Thus, cell infection and activation were modeled as

saturating processes. We assumed that infection rates for each viral

type saturate as a function of the total viral density. For instance,

activated TH cells (TH a½ � ) were infected by wild-type virions (Vw) at

a rate s
TH a½ �Vw

TH a½ �zVwzV48
, where V48 is the load of T-cell escape

virions. Conversely, cells were infected by escape virions at rate

s~
TH a½ �V48

TH a½ �zVwzV48
. Thus, wild-type infection rates decreased as

the density of escape viruses increased and vice versa, reflecting

competition among viruses for cells. The full list of variables and

parameters and the systems of ordinary differential equations

defining the models are shown in the Appendix S1.

We started simulations with one infected cell and homeostatic

values of resting target cells (TH or C). We also provided a large pool

of HIV-susceptible active TH cells for the primary infection to

mimic the initial spread of HIV through the mucosa or gut-

associated lymphoid tissue (GALT). The model captured the typical

HIV infection dynamics, in which viral load increases rapidly until

reaching a peak days or weeks after transmission and subsequent

exhaustion of the initial pool of susceptible cells and CTL activation

make the viral load drop but fail to eradicate the infection (Figure 4).

A dynamic equilibrium or set point was reached in which the virus

continued to replicate, the immune system remained activated, and

viral loads showed stable values within the typical range of 103 to

105 viral copies/mL [84] for the parameter values used. The control

model produced similar dynamics.

CTL (non-TH) escape mutants always became dominant in both

the HIV and control models, whereas TH (non-CTL) cell escape

mutants were neutral in the control model and neutral or

Figure 3. Schematic representation of the HIV immune activation model and the control model. (A) Model of the cellular immune
response against HIV. In the absence of immune activation, pools of resting TH (CD4) cells, CTLs (CD8), and pAPCs divide at rates, r4, r8, rD and die at
rates C4 r½ � , C8 r½ � , and CD r½ � , reaching homeostatic concentrations C0

4½r�
, C0

8½r�
, and C0

D½r�, respectively. Activated TH cells become infected through contact
with free virions at a rate constant s, whereas resting cells are assumed to be non-susceptible to the virus. TH cells are activated at a rate constant a4

after contacting a pAPC with an HIV epitope or by other antigens at rate constant b (background activation). TH cells establishing synapses with
pAPCs have a probability d of being concomitantly infected with the same viral type. Infected cells release virions at a rate constant a and die at a rate
constant C4½i�. CTL pre-activation occurs after contacting infected cells (a8) or pAPCs (a8D). A co-stimulatory signal from activated TH cells is necessary
for completing CTL activation (a89). Infected cells are lysed by CTLs at a rate constant k. Death rate constants for activated TH cells (C4½a� ), CTLs (C8 a½ � ),

and pAPCs (CD a½ � ) and virion inactivation rates (CV) are not shown for simplicity. The full list of variables and parameters is available in Appendix S1,

which also provides references to empirical work justifying the parameter values used (see also main text). A fraction m of the virions released in each
cell infection become escape mutants. Avoidance of CTL activation or CTL-mediated killing leads to CTL escape (red bars), whereas avoidance of TH

cell activation leads to TH escape (blue bars). The model allows full T-cell (purple), TH-only (blue), and CTL-only (red) escape mutants. (B) Control
model in which the virus targets a nonimmune cell type C (e.g., hepatocytes, epithelial cells, etc.) instead of TH cells. Two key differences with the HIV
model are that viral replication is not dependent upon immune activation and that transinfection does not take place. Variables, parameters, and
equations for this model are also shown in Appendix S1.
doi:10.1371/journal.pbio.1001523.g003
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deleterious in the HIV model (not shown). The reason why TH cell

escape does not per se provide a fitness advantage is that these

mutants can be targeted by CTLs activated by the wild-type virus

or other antigens. In addition, in the HIV case, TH escape mutants

act as a sink of susceptible cells and are thus dependent on cells

activated by the wild-type virus or on background activation for

replicating, making them potentially deleterious. Therefore,

considering CTLs and TH cells together, full T-cell (TH and

CTL) escape may be favored or selected against depending on the

balance between the benefits of CTL escape and the potential

costs of TH escape. We are able to find parameter values that

produced T-cell escape rates similar to those reported in studies of

patient serial samples (Figure 4) [50,67]. The timing of escape

could also be varied from weeks postinoculation to years. In

contrast, other parameter combinations disfavored T-cell escape

mutants, and epitopes remained invariant if the infection was

initiated with the wild-type, or they reverted to the wild-type if the

infection was initiated with escape mutants (Figure 4C, F). In these

cases, epitope conservation was promoted. In contrast, in the

control model, T-cell escape occurred systematically and the rate

of escape was faster than in the HIV case for the same parameter

values. This showed that epitope conservation can be explained by

the particular nature of the HIV infection, in which TH escape can

be costly for the virus.

A central goal of our HIV model was to identify factors

determining whether T-cell escape or epitope conservation should

take place. We found that transinfection probability and immune

activation levels were two such factors (Figure 5). Since

transinfection implies a temporal and spatial association between

TH cell activation and infection, there should be some correlation

between the type of epitope (wild-type or escape mutant) presented

by a pAPC and the type of virion transmitted to synapsing TH

cells. We denoted this correlation d. In the absence of transinfec-

tion or if every pAPC contained equal amounts of wild-type and

T-cell escape virions, then d = 0, and therefore, TH cells activated

by the wild-type virus would be fully accessible to T-cell escape

viruses. As a result, TH escape should not be detrimental to the

virus, and considering the benefit of evading CTLs, the net effect

of T-cell escape should be positive. In the control model, since

there was no possible transinfection, T-cell escape was always

advantageous. In the HIV model, in contrast, as d increased, T-cell

escape mutants had less and less access to TH cells activated by the

wild-type virus, and since they could not produce their own pools

of activated TH cells, these mutants had a selective fitness

disadvantage and failed to outgrow the wild-type virus. The

magnitude of this disadvantage depended inversely on levels of

background activation, because the latter is a source of susceptible

cells equally accessible to the wild-type and the escape mutant.

Also, for d.0, the outcome depended on the strength of epitope-

specific immune activation relative to background activation. If the

epitope failed to produce T-cell activation (anergy), there was

obviously no advantage associated with escape. Simulations also

showed, however, that if the epitope triggered a strong T-cell

activation (immunodominance), the escape mutant was disfavored

too because the pool of activated TH cells to which the escape

mutant had limited access represented a large portion of total

susceptible cells. Therefore, the model suggests that, in HIV,

immune escape should preferentially take place among epitopes

triggering weak to moderate T-cell responses.

Conclusions
If immune avoidance is beneficial for a virus, escape mutants

should tend to accumulate throughout the course of the infection

unless they incur fitness costs (i.e., defects in other steps of the

Figure 4. Simulated viral load versus time for combinations of parameter values producing biologically meaningful peak loads,
viral loads at set point (copies/mL), and escape rates (days21). In top panels, wild-type and T-cell (CTL/TH) escape variants are shown in black
and purple, respectively. Solid lines refer to the HIV model, whereas dashed lines correspond to the control model. HIV-specific activation rate
constants (a4, a8, a8D, a89), the background activation rate constant (b), and transinfection probability (d) were as indicated below, whereas all other
parameters values were set as indicated in the text. (A) a4 = a8 = a8D = a89 = 0.1, b = 0.001, d = 0.03; (B) a4 = a8 = a8D = a89 = 0.1, b = 0.001, and d = 0.037;
(C) a4 = a8 = a8D = a89 = 0.15, b = 0.001, d = 0.03, and the infection was started with a T-cell escape mutant. (D, E, and F) Changes in the intrapatient
frequency of the escape mutant for the HIV (solid) and control (dashed) models obtained in (A), (B), and (C), respectively. (D) The calculated rate of
escape, as defined in previous work [50], was 0.012 day21 in the HIV model and 0.091 day21 in the control model. (E) The escape mutant reached a
stationary frequency of 0.324 in the HIV model and became fixed in the control model (fixation rate: 0.091 day21). (F) The escape mutant was selected
against and reverted to the wild-type in the HIV case (reversion rate: 0.012 day21), whereas it remained fixed in the control model.
doi:10.1371/journal.pbio.1001523.g004

HIV Epitope Evolution

PLOS Biology | www.plosbiology.org 6 April 2013 | Volume 11 | Issue 4 | e1001523



infection cycle not related to immune evasion) exceeding the

benefits of escape. According to this, fast mutating viruses eliciting

strong T-cell responses and establishing chronic infections should

show the highest frequencies and rates of escape. Upon

transmission to new hosts with different HLA types, however,

the selective advantage of these mutants disappears and the virus

should tend to revert to the wild-type if the escape mutation has

some fitness cost, as has been amply documented in HIV [85–91].

This indeed constitutes a particular instance of antagonistic

pleiotropy, a frequent process among RNA viruses whereby

selectively advantageous mutations in one environment become

deleterious in other environments [92]. As a result of this

alternating selective regime, viral sequence variability at the

population level should be promoted and epitopes should tend to

be more variable than other genome regions. Previous work and

our sequence data analysis (Figure 1) show that HCV fits well into

this pattern, whereas HIV-1 does not.

The immune activation model provides a possible explanation

for the unexpected epitope conservation in HIV-1. The model

predicts that T-cell escape can be selected against depending on

factors such as transinfection probability, immune activation

levels, or epitope strength. Although CTL escape should per se

be advantageous for the virus, CTL epitopes may be conserved if

they co-map with TH epitopes. As shown here and in previous

work [53], CTL/TH epitope co-mapping occurs more often than

expected by chance, probably because these two types of epitopes

share common cellular pathways. Depending on the above factors,

thus, T-cell escape may occur only in some genome regions or

only in certain individuals. In this sense, the model contributes to

resolving the apparent paradox between T-cell epitope conserva-

tion and the large body of evidence showing that T-cell immunity

is an important selective factor promoting HIV variability. These

disparate findings are unlikely to result from use of different

datasets or methodologies. For instance, in one study, it was found

that that there was a general positive association between specific

HLA types and the occurrence of escape mutations, but that this

association was negative in some cases (i.e., epitopes were

significantly more conserved among patients with the relevant

HLA type than among those with nonmatching HLAs) [93]. It is

also noteworthy that some escape mutations are rapidly favored,

whereas others become dominant only after years of intrahost

replication [52,94]. This is often interpreted in terms of the fitness

costs of escape mutations [51,67,88–90]. However, the immune

activation model can also account for variable rates of escape even

in the absence of fitness costs. Indeed, our model did not assume

any fitness costs for escape mutations. Such costs may explain why

some escape mutations increase in frequency more slowly than

others, fail to be selected, or do not spread in the host population

[26]. However, they cannot explain why genome regions

containing T-cell epitopes tend to be more conserved than those

not containing epitopes, since costs should equally apply to both.

The combination of parameters for which we predicted T-cell

epitope conservation should be more likely in the lymph nodes at

the chronic stage of the disease, during which HIV-specific

activation of TH cells contributes to sustaining the infection and

pAPC-mediated coupled activation-infection of TH cells should be

frequent [47–49]. In contrast, the GALT and other mucosa

contain large pools of background-activated and recent memory

TH cells which are exploited by HIV during primary infection,

thus making the virus less dependent on its own ability to activate

TH cells [95–97]. It has been previously shown that T-cell escape

rates are higher during primary infection than in the chronic stage

of the disease [50–52]. Again, this is often interpreted in terms of

fitness costs, since escape mutations paying weak fitness costs

should be selected faster and be detected at earlier disease stages

than those paying strong costs. Another interpretation is that

epitopes triggering more vigorous T-cell responses tend to

experience faster escape due to the stronger selective pressure

exerted. Our model offers yet another possible interpretation: T-

cell escape may actually be slowed down whenever HIV depends

on its own ability to activate TH cells for replicating, and this is

more likely to occur during the chronic stage than during primary

infection. If the timing of escape was determined by fitness costs,

then late escapes should tend to revert faster than early escapes

upon transmission to new individuals with different HLA types

because of their greater deleteriousness, whereas if the timing of

escape was determined by immune activation levels, the reverse

should be true. These predictions offer a way of testing the above

alternative explanations for why rates of escape differ during the

primary and chronic stages of the disease. Sequence analysis

revealed that, after accounting for dataset biases, epitope

conservation occurred mainly in Gag p24 and Nef (Figure 2). As

expected from the immune activation hypothesis, these proteins

contain several immunodominant epitopes [20,98], whereas they

are not necessarily more likely to exhibit fitness costs than other

HIV genes.

Finally, our model suggests that vaccines based on conserved

TH epitopes might be counterproductive. By creating a pool of

HIV-responsive TH cells, they may pave the way for viral

replication in certain body compartments. This might contribute

to understanding the unexpected results of the STEP vaccine trial,

in which the vaccinated group was found to be at higher risk of

infection than the placebo-treated control group, although there

are many other possible explanations [99,100]. According to our

model, an efficient approach to HIV vaccination may be to use

CTL epitopes that do not stimulate TH cells. These epitopes may

be combined with non-HIV TH epitopes that would co-stimulate

CTLs without providing the immune system with a pool of HIV-

specific memory TH cells. The idea that immune activation can

Figure 5. Immune escape dependence on the HIV-driven T-cell
activation rate constant (a4), trans-infection probability (d),
and background activation (b). Shaded areas indicate parameter
combinations for which T-cell escape mutants became dominant
(frequency .0.5) after t = 1000 iterations (days). T-cell activation rate
constants were set equal to one another (a8 = a8D = a89 = a4), and the
rest of parameter values were as indicated in the text.
doi:10.1371/journal.pbio.1001523.g005
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favor pathogen replication and that, consequently, vaccines based on

conserved epitopes may be counterproductive has also been

proposed for Mycobacterium tuberculosis [101], although the mecha-

nisms at play have not been elucidated in this case and may

potentially differ from those of HIV. Interestingly, tuberculosis-

specific TH cells are also preferentially depleted in HIV-infected

individuals, whereas this is not observed in cytomegalovirus, another

opportunistic pathogen [102,103]. It is possible that, by triggering

immune activation, M. tuberculosis may benefit from HIV-mediated

depletion of TH cells and subsequent immune impairment.

Methods

Sequence Analysis
A BLAST of the entire reference subtype B sequence (HXB2)

was performed using the HIV Sequence Database search tool

(www.hiv.lanl.gov/components/sequence/HIV/search/search.html),

restrictfing the search to one sequence per patient. For each Gag,

Pol, Env, Vif, Vpu, Vpr, and Nef, 100 translated sequences were

aligned using the MUSCLE algorithm implemented in MEGA v5

(megasoftware.net) and HXB2 as reference sequence. Sequences

with premature stop codons or partial readings were removed.

Protein Shannon’s entropy was calculated for each site of the

alignment as S~
P

pln pð Þ, where p denotes the frequency of each

of the amino acids present at this site. Gaps were treated as another

amino acid. These calculations were carried out using Entropy-one

tool of the HIV Sequence Database with default options. To

estimate synonymous (dS) and nonsynonymous (dN) substitutions

rates from nucleotide sequences, we first used the Datamonkey

server (www.datamonkey.org) to select the best substitution model

and to identify significant recombination breakpoints using the

GARD algorithm [104], using default parameters except for the

inferred substitution model. Using this output, we run the SLAC

algorithm [105] implemented in the HYPHY package [106] to

identify codons under significantly positive or negative selection at a

0.1 probability threshold, and to estimate dN and dS. For the

intrapatient entropy analysis, HIV-1 subtype B sequences were

downloaded for each Gag, Pol, Env, and Nef from the HIV

Sequence Database using the intrapatient search tool and restricting

the search to patients with at least 10 sequences available and with

known time since infection/seroconversion or Fiebig stage. Entropy

values were obtained as above and, for each amino acid site, the

within-host entropy was averaged over 100 patients. For HCV, 100

full-length subtype 1a genomes were downloaded from GenBank

and translated to polyprotein sequences. Alignments and subse-

quent analyses were done as above, using the H77 sequence as

reference.

Epitope Mapping and Analysis
HIV CTL and TH epitopes were downloaded from the HIV

Molecular Immunology Database (www.hiv.lanl.gov/content/

immunology/tables/tables.html). For CTL epitopes, we used the

full set of 741 entries or a curated list of 88 best defined epitopes

(‘‘A list’’), whereas for TH epitopes we used the 132 available

entries (no curated list has been defined for this group). Each

epitope was aligned to the HXB2 sequence, and HXB2 genome

sites were classified based on whether they mapped to at least one

epitope. HCV subtype 1a epitopes were downloaded from the

IEDB (www.immuneepitope.org) selecting the specific epitope type

(MHC I for CTL epitopes and MHC II for TH epitopes), peptides

from proteins as structure type, and Homo sapiens as host organism.

This yielded 101 CTL and 27 TH epitopes. Genome-wide

differences in amino acid entropy associated with the presence

of T-cell epitopes were tested using a fixed-factor nested ANOVA

(presence/absence of T-cell epitope nested within gene). For HIV,

the contribution of RNA structure to the observed variability was

tested using nucleotide instead of amino acid sites and adding this

factor to the above ANOVA design (paired/nonpaired site

according to published structure, nested within gene). The effect

of 59R39 gradients was tested by including genome position as a

covariate in the model. Separate effects of CTL and TH epitopes

were tested using two-way ANOVAs.

High-Throughput Dataset Analysis
We used data from a study in which 396 synthetic peptides were

tested for immunogenicity in a HIV-1 subtype C cohort from South

Africa [18]. The dataset is freely available at www.hiv.lanl.gov/

content/immunology/hlatem/study3/index.html. We restricted

the analysis to 113 individuals for which the full-length genome of

the infecting virus was available. Of the total 44,748 assays

considered (113 patients6396 peptides), the peptide matched

exactly the amino acid sequence of the virus only in 13,127 cases

(29.3%). The straightforward correction for epitope detection bias

would be to restrict the analysis to this subset. However, 118 of the

total 179 positive T-cell reactions (65.9%) corresponded to

nonmatching peptides. These positives may be due to cross-

reactivity, but given that IFN responses can persist for years [107],

they could also correspond to cases of immune escape. Therefore, to

avoid missing a significant fraction of immune-driven viral

variability, we also included these nonmatching T-cell-positive

peptides as valid assays. If any, this should produce an artificially

positive association between variability and immunogenicity. We

then classified peptides in two categories according to whether or

not they produced at least one positive T-cell reaction and tested for

differences between these two groups using a one-way ANOVA in

which the number of valid assays per peptide was included as a

covariate in the model. Amino acid entropy values for each group

correspond to marginal means estimated from the ANOVA model.

Immune Activation Model
We developed a system of ordinary differential equations

describing how TH cell, CTL pAPC counts, and viral loads vary

with time as described in the text and Figure 3A. We also build a

control model including a nonimmune viral target cell type C

(Figure 3B). The full list of variables and parameters, a detailed

description of the model, and the systems of ordinary differential

equations are available in Appendix S1. Simulations were

performed in Mathematica 8 (Wolfram Research). SBML files

describing the model have been deposited in the BioModels

Database (MODEL1302180001 for immune activation model and

MODEL1302180002 for control model)-

Supporting Information

Appendix S1 Model variables, parameters, and systems of

differential equations describing the dynamics of wild-type and

T-cell (TH/CTL) escape viruses for the HIV and control models.

(PDF)
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