
Identifying Neural Drivers with Functional
MRI: An Electrophysiological Validation
Olivier David

1,2*
, Isabelle Guillemain

1,2
, Sandrine Saillet

1,2
, Sebastien Reyt

1,2
, Colin Deransart

1,2
,

Christoph Segebarth
1,2

, Antoine Depaulis
1,2

1 INSERM, U836, Grenoble Institut des Neurosciences, Grenoble, France, 2 Université Joseph Fourier, Grenoble, France

Whether functional magnetic resonance imaging (fMRI) allows the identification of neural drivers remains an open
question of particular importance to refine physiological and neuropsychological models of the brain, and/or to
understand neurophysiopathology. Here, in a rat model of absence epilepsy showing spontaneous spike-and-wave
discharges originating from the first somatosensory cortex (S1BF), we performed simultaneous electroencephalo-
graphic (EEG) and fMRI measurements, and subsequent intracerebral EEG (iEEG) recordings in regions strongly
activated in fMRI (S1BF, thalamus, and striatum). fMRI connectivity was determined from fMRI time series directly and
from hidden state variables using a measure of Granger causality and Dynamic Causal Modelling that relates synaptic
activity to fMRI. fMRI connectivity was compared to directed functional coupling estimated from iEEG using asymmetry
in generalised synchronisation metrics. The neural driver of spike-and-wave discharges was estimated in S1BF from
iEEG, and from fMRI only when hemodynamic effects were explicitly removed. Functional connectivity analysis applied
directly on fMRI signals failed because hemodynamics varied between regions, rendering temporal precedence
irrelevant. This paper provides the first experimental substantiation of the theoretical possibility to improve
interregional coupling estimation from hidden neural states of fMRI. As such, it has important implications for future
studies on brain connectivity using functional neuroimaging.
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Introduction

Distinguishing efferent from afferent connections in
distributed networks is critical to construct formal theories
of brain function [1]. In cognitive neuroscience, the dis-
tinction between forward and backward connections is
essential in network models [2,3]. This is also important
when describing how information is exchanged between
different brain systems [4] and how neural coding is
embedded in biological networks [5]. Such hierarchical
structure is biologically grounded in the asymmetry of
connections between neuronal ensembles, as suggested by
computational neuroanatomy studies [6–9]. In clinical neuro-
science, distinguishing neural drivers (i.e., the source of
driving or forward connections in the brain—usually from
deep pyramidal cells) from other brain regions is essential
when trying to identify structures involved in the origin or in
the control of pathological activities. Epileptic seizures are
illuminating in that sense. They are characterised by
paroxysmal activities which, in the case of focal seizures,
originate from the ‘‘epileptic focus’’, i.e., a neural network
restricted to a particular cortical structure, and eventually
spread to other structures of the brain [10]. The epileptic
focus can thus be interpreted as a neural driver of the
pathological activity.

In relation to the existence of distributed networks,
theories of brain function have recently promoted the
concept of functional integration [11]. Functional integration
specifies that brain functions are mediated by transient
changes of interactions between certain brain regions,
instantiated either by autonomous mechanisms (dynamical
systems operating at the limit of stability) or by the action of
neural drivers reinforced by the experimental context. In

integrated neuroscience, these formal ideas have initiated a
search for neural networks using sophisticated signal analysis
techniques to estimate the connectivity between distant
regions [4,12–18]. At the brain level, connectivity analyses
were initiated in electrophysiology (electroencephalography
[EEG] and magnetoencephalography [MEG]) because electri-
cal brain signals have an excellent temporal resolution that
makes them particularly amenable to such analyses. Con-
nectivity measures in EEG and MEG [13,16] rely on the
estimation of metrics of interaction that are more or less
related to the notion of temporal precedence (because of
propagation and synaptic delays) of the activity in the driving
structure with respect to that in the driven ones.
Despite their attractive neurodynamical features, EEG and

MEG studies in healthy subjects are limited by their poor
spatial resolution. Functional magnetic resonance imaging
(fMRI), in contrast, exhibits excellent spatial resolution and
has become the method of choice for mapping brain
functions. During neuronal activation, fMRI is sensitive
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mainly to changes of local perfusion and oxygen uptake by
neurones [19]. FMRI therefore provides an indirect measure
of neuronal activity. The dynamical properties of the
technique highly depend on the neurovascular coupling that
relates vascular changes to neural activity [20–22]. However,
this physiological limitation, which compromises the tempo-
ral resolution (;2 s) of metabolic neuroimaging techniques,
has not prevented careful analyses of connectivity using fMRI.
Connectivity measurements with fMRI quantify either func-
tional connectivity, i.e., the correlation of fMRI time series
between different regions [23–25], or effective connectivity, i.e.,
coupling parameters in generative models of fMRI time series
[14,15,26]. Although numerous fMRI studies have shown
exciting results about brain connectivity, it remains uncertain
whether fMRI can be used to identify neural drivers. This is
what we propose to evaluate here, in a genetic animal model
of absence epilepsy using intracerebral EEG and simulta-
neous EEG/fMRI recordings.

We use the Genetic Absence Epilepsy Rats from Strasbourg
(GAERS) [27]. This animal model has been validated in terms
of isomorphism, homology, and pharmacological predict-
ability to be reminiscent of typical absence epilepsy, a form of
generalised nonconvulsive epilepsy occurring during child-
hood in humans [28]. GAERS result from genetic selection of
Wistar rats over 80 generations. Animals show spontaneous
spike-and-wave discharges (SWDs) associated with behaviou-
ral arrest and slight perioral automatisms. These nonconvul-
sive seizures last 20 s on average and are repeated every
minute when the rat is at rest. Intracerebral EEG recordings
have shown that the frontoparietal cortex and ventrolateral
nuclei of the thalamus play an important role in the
generation and/or maintenance of these seizures [27,29].
Using local field potential and intracellular recordings, we
have shown recently that SWDs originate from the perioral
region of the first somatosensory cortex [30]. A similar

finding had earlier been obtained in another genetic model
of absence epilepsy [31,32] .
We assess in this study whether fMRI can show evidence of

the first somatosensory cortex being a neuronal driver during
SWDs. We provide a comparative evaluation of vector
regression models (Granger causality) [33] and Dynamic
Causal Modelling (DCM) [14]. A key distinction between
these models is that Granger causality tests for statistical
dependencies among observed (time-lagged) physiological
responses, irrespective of how they are caused. In contrast,
dynamic causal models represent hidden states that cause the
observed data and are therefore causal models in a true sense.
If the mapping between the hidden brain states and observed
responses is not causal, Granger causality estimated directly
from fMRI time series can be very misleading. An example of
a noncausal mapping is regional variations in the hemody-
namic response function (HRF) that delay hemodynamic
responses in fMRI, relative to their hidden neuronal causes
(see Protocol S1 for further explanation). Minimising the
blurring effects of hemodynamic variability using explicit [34]
or implicit (such as in DCM [14]) deconvolution techniques is
thus the key aspect of any functional connectivity analysis
using fMRI. This paper provides the first, to our knowledge,
experimental substantiation of the theoretical possibility to
estimate, in fMRI, functional connectivity from hidden neural
variables and therefore demonstrates the raison d’être for
DCM and other deconvolution techniques.

Results

Our data analysis involved three distinct components. First,
we characterised the hemodynamic response to seizure
activity using conventional statistical parametric mapping
to identify regionally specific responses. To motivate sub-
sequent analyses of coupling, we then characterised the
regional variations in the hemodynamic responses by
optimising the parameters of a hemodynamic model for
different regions of interest (ROIs) separately. The second
component of our analyses comprised a comparative evalua-
tion of Granger causality, before and after deconvolution of
hemodynamics, and DCM using key regions identified by the
whole brain analyses above. We assessed the significance of
directed functional connectivity estimated from the Granger
causality measure using surrogate data that removed local
time dependencies between regions. To address the equiv-
alent issue with DCM, we used Bayesian model comparison.
This entailed comparing a set of models with different
directed connections and identifying the model with the
largest evidence. The third set of analyses provided an
experimental validation of the model selection by analysing
directed coupling using intracerebral EEG (iEEG) from the
same regions. We used two complementary approaches for
cross-validation. First, a simple characterisation of propaga-
tion delays, using event-related responses (time-locked to
SWDs), enabled us to examine the latency of propagation on
a millisecond by millisecond level and establish the direction
of connections through temporal precedence. Second, in a
series of more elaborate analyses, we used asymmetries in
directed generalised synchrony. Using these invasive electro-
physiological data, we were able to identify a network model
that served as a reference to validate fMRI connectivity
analyses.
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Author Summary

Our understanding of how the brain works relies on the develop-
ment of neuropsychological models, which describe how brain
activity is coordinated among different regions during the execution
of a given task. Knowing the directionality of information transfer
between connected regions, and in particular distinguishing neural
drivers, or the source of forward connections in the brain, from other
brain regions, is critical to refine models of the brain. However,
whether functional magnetic resonance imaging (fMRI), the most
common technique for imaging brain function, allows one to
identify neural drivers remains an open question. Here, we used a rat
model of absence epilepsy, a form of nonconvulsive epilepsy that
occurs during childhood in humans, showing spontaneous spike-
and-wave discharges (nonconvulsive seizures) originating from the
first somatosensory cortex, to validate several functional connectiv-
ity measures derived from fMRI. Standard techniques estimating
interactions directly from fMRI data failed because blood flow
dynamics varied between regions. However, we were able to
identify the neural driver of spike-and-wave discharges when
hemodynamic effects were explicitly removed using appropriate
modelling. This study thus provides the first experimental sub-
stantiation of the theoretical possibility to improve interregional
coupling estimation from hidden neural states of fMRI. As such, it
has important implications for future studies on connectivity in the
functional neuroimaging literature.



EEG Preprocessing
EEG recorded during fMRI was of sufficient quality to

easily visualise periods of SWDs (Figure 1). Quantification of
SWDs was performed by extracting EEG power between 4 and
20 Hz. On average, SWDs showed an increase of power by a
factor 2.34 as compared to interictal activity, which corre-
sponded to 2.57 times the standard deviation of interictal
power. FMRI regressors were obtained by convolving such
EEG power with a canonical HRF [34]. Note that this
convolution smoothes and introduces a delay in the SWD
time series on the order of several seconds (corresponding
approximately to the time to peak of the HRF). FMRI
regressors were used to construct statistical parametric maps
(SPMs) of regional effects in cerebral blood volume (CBV)
related to the occurrence of SWDs.

Networks Activated during SWDs
Highly significant and reproducible seizure-related activa-

tions (CBV increases) and deactivations (CBV decreases) were

found at the animal level (p , 0.001, Familywise Error [FWE]
corrected) and at the group level (n ¼ 6, p , 0.05, FWE
corrected) (Figure 2 and Table 1). At the group level,
activations were found in the barrel field of the primary
somatosensory cortex (S1BF), the centromedial, mediodorsal,
and ventrolateral parts of the thalamus (CM/MDL/MDC/CL/
PC/VL/Po), the retrosplenial cortex (RSA/RSGb), and the
reticular part of the substantia nigra (SNR). These structures
are known to be involved in the generation or control of
absence seizures. The cerebellum and nuclei of the pons
(Mo5) and of the medulla oblongata (MdV) were also found
activated. In addition, several areas were found deactivated,
such as the striatum (CPu), the limb representation of the
primary somatosensory cortex (S1HL/S1FL), the visual cortex
(V1M/V1B/V2L), and the secondary motor cortex (M2).

Hemodynamic Response Functions
The HRF was found to last significantly longer in S1BF than

in other ROIs (Figure 3A). A similar effect was observed in the

Figure 1. EEG Preprocessing

Upper panel: black (‘‘EEG [4 20 Hz]’’): 15 min of EEG recordings (band-pass filtered between 4 and 20 Hz) during EPI acquisition obtained in one rat.
White (‘‘SWD detection’’): EEG power in the 4–20 Hz range (shifted to zero in between SWDs). Grey (‘‘fMRI regressor’’): previous EEG power convolved
with a canonical HRF. Lower panel: short time window showing the EEG at seizure onset.
doi:10.1371/journal.pbio.0060315.g001
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Figure 2. Maps of SWD-Related Changes in CBV

Left: activation¼ increase of CBV; right: deactivation¼ decrease of CBV. Top: typical example of activation/deactivation pattern obtained for a single
animal (n¼ 1, p , 0.001, FWE corrected). Bottom: activation/deactivation pattern of the group of animals (n¼ 6, fixed effect analysis, p , 0.05, FWE
corrected). Structures activated at the group level are listed in Table 1.
doi:10.1371/journal.pbio.0060315.g002
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Table 1. List of Activated and Deactivated Structures during SWDs

CBV Changes Structures Abbreviations Coordinates

D-V M-L A-P

Activations Primary somatosensory cortex, barrel field S1BF �3.2 6 5.4 �2.6

Thalamus, centromedial, mediodorsal and ventrolateral parts CM/MDL/MDC/CL/PC/VL/Po �3.2 6 0.8 �6.7

Substantia nigra, reticular part SNR �6.5 6 2.3 �8.7

Cerebellum �12.9 0 �5.1

Medulla oblongata (reticular formation) MdV �13.8 0 �9.6

Retrosplenial cortex, barrel field RSA/RSGb �3.9 6 1.0 �1.4

Pons (motor trigeminal nucleus) Mo5 �9.7 6 2.2 �8.3

Deactivations Secondary motor cortex M2 2.8 6 1.5 �2.5

Striatum CPu 0.3 6 3.4 �6.0

Primary somatosensory cortex, limb region S1HL/S1FL �1.0 6 2.8 �2.1

Visual cortex V1M/V1B/V2L �7.1 6 4.0 �1.5

Secondary somatosensory cortex S2 �2.6 6 6.5 �5.4

See Figure 2. Coordinates indicate the centre of clusters, in the atlas of Paxinos and Watson referenced to bregma [62]. Abbreviations are those used in the atlas of Paxinos and Watson
[62]. Statistical analysis: n¼ 6, fixed effect analysis, p , 0.05, FWE corrected.
A-P: anteroposterior; D-V: dorsoventral; M-L: mediolateral.
doi:10.1371/journal.pbio.0060315.t001

Figure 3. Hemodynamic Response Functions of (De)activated Structures during SWDs

(A) Hemodynamics of activated and deactivated structures during SWDs. HRFs for the different ROIs were generated using the median value (see Table
2) of parameters of a truncated hemodynamic model (see Equation 1) adjusted to the ROI time series.
(B) From prior values (in blue) of hemodynamic parameters (see Table 2), the effect of each parameter to explain the behaviour of the HRF in S1BF (in
green) was evaluated by changing the parameters to their value estimated in S1BF, one at a time. The abnormally slow hemodynamics in S1BF is
primarily explained by the strong decrease in the autoregulation constant of the CBF on the vasodilatation (in cyan).
doi:10.1371/journal.pbio.0060315.g003
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striatum, to a much lesser extent. These HRFs are kernels of a
hemodynamic model, the parameters of which were esti-
mated for every fMRI session. The estimated distribution of
hemodynamic parameters in S1BF was found to be signifi-
cantly different from one of the other ROIs in almost all
possible pairs tested (Wilcoxon test, p , 0.01 uncorrected; see
Table 2). To determine which parameter underlies predom-
inantly the slowness of the HRF in S1BF, we generated
different HRFs using prior values of the hemodynamic
parameters, with the exception of one parameter, which
was set to the value estimated in S1BF (Figure 3B). This
allowed us to conclude that the strong decrease of the
autoregulation constant c, instantiating a stable feedback of
changes in cerebral blood flow (CBF) on vasodilatatory effects
(see Equation 1), is the main cause of the pathological
hemodynamics observed.

These results show a large heterogeneity of HRF wave-
forms, in particular in S1BF and in the striatum, which has a
significant impact on the estimation of connectivity. Estima-
tion of temporal precedence, or of information transfer, and
prediction between time series will be affected much by the
variability in time to peak of the HRFs. Therefore, these
results call for cautious interpretation of causality results
directly obtained from hemodynamic measures (see Protocol
S1 for a conceptual schematic).

fMRI Connectivity
Granger causality analyses. The oriented networks esti-

mated using the linear measure of Granger causality applied
to CBV-weighted signals directly and to state variables
obtained after devonvolution of hemodynamics are shown in
Figure 4. At the animal level, significant direction of
information transfer is not detected for each connection,
and a certain degree of variability is observed between
animals. Results at the group level are more significant and
easier to interpret. They show a clear distinction between the
networks that are estimated without and after deconvolution
of hemodynamics. Indeed, direct analysis of fMRI time series
leads to the estimation of the striatum as being the driver of
the network: significant (p , 0.05) driving effects were found
from the striatum onto the S1BF (FStriatum!S1BF� FS1BF!Striatum

¼ 0.047, p , 0.001) and onto the thalamus (FStriatum!Thalamus—

FThalamus!Striatum ¼ 0.011, p ¼ 0.023). The interaction between
S1BF and thalamus did not show any consistent direction of
information transfer (FThalamus!S1BF� FS1BF!Thalamus¼ 0.000, p
, 0.471). In contrast, after deconvolution of hemodynamics,
the Granger causality estimated from hidden neural states
concludes that S1BF is the neural driver: FS1BF!Striatum �
FStriatum!S1BF ¼ 0.017, p ¼ 0.038; FS1BF!Thalamus—FThalamus!S1BF

¼ 0.032, p ¼ 0.002; and F Striatum!Thalamus � FThalamus!Striatum ¼
0.010, p ¼ 0.046.
To sum up, Granger causality at the group level disclosed

the predicted architecture in which S1BF drove the other
regions, only when applied to hidden neural states. This
result clearly demonstrates the important confounding role
of hemodynamic variability in functional networks estimated
directly from fMRI time series.
Dynamic Causal Modelling. Connectivity estimated at the

neuronal level (with a conjoint deconvolution of the
hemodynamic effects) by DCM revealed the driving role of
the first somatosensory cortex S1BF, as may be concluded by
comparing the model evidences, at the group level, of the
different classes of models tested (Figure 5B, top). This
finding was remarkably consistent between animals (Figure
5B, bottom; in Rat 3, however, the most likely model indicated
the striatum as the neural driver, but this finding did not
survive averaging over model classes). For the most likely
model (S1BF driver, model 3, see Figure 5B), Figure 5C shows
neuronal and hemodynamic kernels estimated at the group
level for each region. Kernels were obtained using the median
value of the distribution of model parameters estimated for
each session [14]. In agreement with the architecture of the
model, neuronal responses of S1BF (in blue) preceded those
of the striatum (in red) and of the thalamus (in green). The
delay between S1BF and the other regions at half the
magnitude of neuronal kernels was about 1.5 s. This value
corresponds to the delay observed in intracerebral EEG
between first EEG changes in S1BF and the ensuing spread of
SWDs to other regions [30]. Interestingly, DCM was able to
estimate HRF heterogeneity among regions interconnected at
the neuronal level, indicating an effective correction of
hemodynamic variability. The HRF in S1BF (in blue) was
much slower (half-width¼ 21 s, j¼ 0.97, c¼ 0.04, s¼ 2.70, and
a¼ 0.32) than that of other regions (thalamus, in green: half-

Table 2. Hemodynamic Parameters Corresponding to the HRF Time Series Shown in Figure 3

CBV Changes Region of Interest Signal Decay j Autoregulation c Transit Time s Exponent a

Prior values 0.65 0.41 0.98 0.32

Activations S1BF 0.52 0.03 2.24 0.28

Thalamus 0.77 (0.0025) 0.31 (0.0002) 1.72 (0.0032) 0.33 (0.0004)

SNR 0.72 (0.0072) 0.40 (0.0001) 1.16 (0.0001) 0.32 (0.0002)

Cerebellum 0.86 (0.0021) 0.38 (0.0003) 1.42 (0.0005) 0.34 (0.0005)

Medulla 0.77 (0.0019) 0.38 (0.0001) 1.21 (0.0001) 0.33 (0.0002)

RSA/RSGb 0.69 (0.0356) 0.38 (0.0008) 1.18 (0.0008) 0.32 (0.0022)

Pons 0.72 (0.0090) 0.41 (0.0001) 1.16 (0.0001) 0.32 (0.0003)

Deactivations M2 0.80 (0.0124) 0.27 (0.0032) 1.91 (0.1560) 0.32 (0.0017)

Striatum 0.75 (0.0051) 0.21 (0.0013) 2.09 (0.2627) 0.31 (0.0010)

S1HL/S1FL 0.67 (0.2959) 0.31 (0.0004) 1.44 (0.0036) 0.31 (0.0090)

V1/V2 0.76 (0.0043) 0.40 (0.0002) 1.10 (0.0003) 0.32 (0.0001)

S2 0.68 (0.1169) 0.36 (0.0001) 1.28 (0.0002) 0.32 (0.0006)

Values between brackets indicate the uncorrected p-value derived from a matched-paired Wilcoxon test between S1BF and other ROIs. For more information, see Equation 1.
doi:10.1371/journal.pbio.0060315.t002
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width ¼ 7 s, j ¼ 0.36, c ¼ 0.12, s ¼ 1.75, and a ¼ 0.27; and
striatum, in red: half-width¼ 8.5 s, j¼ 0.50, c¼ 0.09, s¼ 1.99,
and a ¼ 0.29), despite the fact that neuronal responses were
the fastest in this region. Note that HRFs estimated by DCM
were very similar to those estimated without taking into
account neuronal connections between regions (Figure 3).
Finally, Figure 5D shows extrinsic connectivity, obtained
from the median value of the distribution in matrices A and C
(see Equation 5) over animals and sessions, for the most
plausible model (model 3, see Figure 5B). Input connectivity
strength, decreasing between S1BF (1.00), striatum (0.66), and
thalamus (0.33), reflects amplitude of hemodynamic signals
recorded (see group t-values in Figure 2 and time series in
Figure 5A and 5C).

IEEG Connectivity
Spike averaging. Analysis of the averaged spike-and-wave

complex (Figure 6) indicates that the peak of the first spike in
S1BF preceded by 5.5 ms and 10 ms those measured in the
thalamus and the striatum, respectively. This average se-
quence of activation was found in all five rats except one in
which the spike in thalamus was found to precede the one in
S1BF by 2.2 ms. In addition, the average spike recorded in
S1BF was sharper and did not show a large slow wave as is the
case in the thalamus and in the striatum. These character-
istics indicate a specific electrical signature in S1BF,
potentially related to its role as neural driver.

Generalised synchronisation. The oriented network esti-
mated by a measure of generalised synchronisation between
iEEG signals was obtained by averaging, for each pair of

regions (X, Y), the interaction measure D(Y j X)�D(X j Y) (see
Protocol S2) over seizures and animals between 2 and 8 s after
seizure onset (Figure 7). Significant driving effects were found
from S1BF onto the striatum (p , 10�9, Wilcoxon test
uncorrected for multiple comparisons) and onto the thala-
mus (p , 0.002). The interaction between striatum and
thalamus did not show any consistent direction of informa-
tion transfer (p . 0.39). Connectivity analysis of iEEG signals
thus confirmed the role of S1BF as neural driver for thalamic
and striatal activity.

Discussion

In this study, we used a well-recognised animal model of
absence epilepsy (GAERS) [27,28] to assess whether fMRI can
be used to determine directionality of interactions between
remote brain regions. In epilepsy research, estimating neuro-
nal drivers (i.e., epileptogenic zone) within epileptic networks
is one of the major issues. In drug-resistant patients with focal
epilepsy, for instance, the precise determination of neuronal
drivers should have a major surgical impact [35]. This is also
true in cognitive neuroscience, in which the possibility to
estimate oriented interregional connectivity should permit
the refinement of network theories of brain function [3].
Although it is well established that SWDs in absence

epilepsy result from paroxysmal oscillations within cortico-
thalamic networks, the respective contributions of the neo-
cortex and of the thalamic relay nuclei in the initiation of
such activity are still debated [31,36]. It was first suggested
that SWDs originate from a subcortical pacemaker with

Figure 4. Functional Connectivity Estimated from Granger Causality

Oriented networks estimated using the linear measure of Granger causality for each animal (left) and for the group (right), without (top) and after
(bottom) hemodynamic deconvolution. For each pair of regions (X, Y), the directionality and colour of the arrows indicate the sign and statistical
significance (obtained from surrogates) of Fx!y � Fy!x (see Equation 4), respectively. See main text for details. St, striatum; Th, thalamus.
doi:10.1371/journal.pbio.0060315.g004
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widespread and diffuse cortical projections [37–41] or from
an interaction between cortical and thalamic neurons.
However, data from a pharmacological model of SWDs in
the cat [42–44] and from a genetic model of absence epilepsy,
the Wistar Albino Glaxo/Rijswijk (WAG/Rij) rat [31,32,45],
provided evidence for a leading role of the cerebral cortex. In

the GAERS, it was found that SWDs are initiated in the facial
region of the somatosensory cortex before propagating, or
not (for brief SWDs), to the ventrolateral thalamus and to the
primary motor cortex [30]. In addition, inhibition of this part
of the first somatosensory cortex by local application of
tetrodotoxin was shown recently to suppress SWDs (P. O.
Pollack, S. Mahon, M. Chavez, and S. Charpier, unpublished
data). In human patients with absence epilepsy, fMRI [46] and
positron emission tomography (PET) [47] studies showed the
involvement of the thalamocortical system during SWDs, but
without any clear evidence for the site of initiation of such
activity.
Here, using concurrent fMRI and EEG measurements, we

obtained SWD-correlated changes in CBV beyond the
thalamus and S1. Significant activations or deactivations
were also found in the brainstem, cerebellum, SNR, striatum,
and different cortices (retrosplenial, visual, limb region of S1,
and motor and sensory secondary). Interestingly, all these
structures were activated bilaterally, resulting in a sym-
metrical network. Whereas, to our knowledge, the role of the
cerebellum in the generation or control of SWDs has hitherto
not been addressed, the spreading of discharges to different

Figure 5. Dynamic Causal Modelling

(A) Example showing how DCM (model 1) fitted measured data from a session containing four seizures.
(B) Model comparison using the negative free energy (for clarity, the average over the models of the negative energy has been removed). Top: at the
group level, the models 1–5 assuming S1BF as being a driver are the most plausible (model 3 is the most plausible at the group level, mainly because of
the high value of its evidence in rat 2). Bottom: this result at the group level was found in all rats when pooling over each class. However, in rats 3 and 5,
a model assuming the striatum as a driver was found the most plausible (in rat 5, this finding was not significant, i.e., difference of negative energy with
a model assuming S1BF as being a driver was lower than three).
(C) Neuronal and hemodynamic kernels at the group level obtained from median value of model parameters estimated at the individual level for the
most plausible model (model 3, see [B]).
(D) Extrinsic connectivity, obtained after averaging matrices A and C over the animals, for the most plausible model (model 3, see [B]).
doi:10.1371/journal.pbio.0060315.g005

Figure 6. Spike and Wave Complex Averaged over Seizures and Rats

The spike observed in S1BF precedes by 5.5 ms and by 10 ms (time to
peak) those measured in the thalamus and in the striatum, respectively.
doi:10.1371/journal.pbio.0060315.g006
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cortices was described [48]. CBV changes in striatum and
substantia nigra pars reticulata are particularly noteworthy,
as these structures, respectively the input and output of the
basal ganglia, were suggested to control epileptic seizures in
different animal models [49]. For instance, activation of
dopaminergic transmission in the striatum suppresses seiz-
ures, whereas its inhibition by dopaminergic antagonists
aggravates SWDs [50]. Similarly, inhibition of the substantia
nigra pars reticulata by pharmacological manipulation is well
known to block epileptic seizures in different models,
including the GAERS [51]. Our EEG/fMRI results are thus in
line with the view that SWDs propagate to different cortical
regions, and to subcortical regions as well. Activation of basal
ganglia circuits would allow endogenous regulation of SWDs,
which can be artificially enhanced by neuromodulation
techniques [49].

Two EEG/fMRI studies were performed in the WAG/Rij rat
[52,53]. Bilateral activations were also found in the fronto-
parietal cortex, the thalamus, and brainstem nuclei. No
deactivations were reported, however. GAERS and WAG/Rij
rats, though similar in many aspects, show also some differ-
ences, in particular in the features of spontaneous SWDs [28].
These differences may explain why fMRI activations only
partly overlap. Importantly, a strong activation in S1BF is
observed in both models. This finding supports the important
role of this part of the cortex in the initiation of SWDs, as
demonstrated by electrophysiology in GAERS and in Wag/Rij
rats [30–32].

In the present study, in addition to revealing the spatial
organisation of the epileptic network, we estimated the HRF
to SWDs in the different regions involved. We thereby used a
truncated hemodynamic model [20] characterised by various
parameters directly related to underlying biophysical pro-
cesses. In the model used, it is assumed that changes in
synaptic activity trigger vasodilatatory effects described by
the lumped time constant called ‘‘signal decay j.’’ Vaso-
dilatation induces changes in cerebral blood flow (CBF),
which in return have an autoregulation effect on changes in
vasodilatation (constant c in the model). Changes in CBV are
then obtained from changes in CBF using a state equation

with two parameters (a transit time s and an exponent a for
nonlinear effects). Our main finding here was an abnormally
slow HRF in S1BF, due to near suppression of the
autoregulation mechanisms of CBF on vasodilatation. The
autoregulation constant c is a lumped parameter that
summarises, in dynamical terms, the effects of many different
physiological processes involved in the feedback autoregula-
tory mechanisms occurring during functional hyperemia.
Functional hyperemia, which matches the delivery of blood
flow to the activity level of each brain region, requires
coordinated cellular events that involve neurons, astrocytes,
and vascular cells [54]. Deregulation of the function of any of
these cell types in S1BF thus appears as a plausible
physiological mechanism to explain the abnormally long
time constant of CBF feedback that we found. Additional
experiments in the future are needed to reveal which
processes involved in regulation of vasodilatation by blood
flow are exactly altered in the first somatosensory cortex of
the GAERS.
Such differences in hemodynamic properties allowed us to

challenge the face validity of functional connectivity analyses
in fMRI. For simplicity and reproducibility among animals of
this validation study of functional connectivity in fMRI, we
selected three regions of interest that (1) were the most
consistently activated over sessions and animals, (2) exhibited
different hemodynamics, and (3) were easily integrated in our
current understanding of SWDs. We selected first S1BF
because of recent evidence indicating its role as a cortical
driver, second the ventrobasal thalamus because it is known
that the thalamocortical loop is implicated in SWDs, and
third the striatum because of various studies suggesting its
role in the control of SWDs. Other structures also showing
significant CBV changes at the group level were ignored,
either because the signal-to-noise ratio was too low at the
session level (because estimated connectivity is related to
effect size and highly depends on signal-to-noise ratio, this
would have entailed a significant loss of results reproduci-
bility between animals and sessions), or because no exper-
imental evidence was available for validating connectivity
results (for instance, it would have been difficult to interpret

Figure 7. Direction of Information Transfer Estimated in iEEG from the Measure of Generalised Synchronisation

A significant and stable, among the first seconds of SWDs, driving effect was found from S1BF towards thalamus and striatum. No consistent
directionality was found for the connection between striatum and thalamus.
doi:10.1371/journal.pbio.0060315.g007
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fMRI connectivity results for cerebellum that has never been
explored in GAERS).

The Granger causality measure tested [25,33], heavily based
on the concepts of temporal precedence, information trans-
fer, and prediction between time series, estimated the
striatum as being the neural driver of SWDs when applied
directly to fMRI signals. This result strongly contradicts the
evidence from the literature [49]. We then evaluated whether
the very same Granger causality measure, but applied to
hidden neural states estimated after deconvolution of
hemodynamic effects in fMRI time series, would be more
compelling. It was indeed the case since S1BF was identified
as the neural driver at the group level. Comparison of the
results of both analyses demonstrates that the failure of
connectivity analysis from original fMRI time series to
identify S1BF as the neural driver is due to regional
variability of the HRFs. Finally, connectivity analyses at the
neuronal level using DCM were also able to reconstruct a
meaningful connectivity pattern. Bayesian model comparison
showed a clear preference for the models specifying S1BF as
the neuronal driver, with consistent reproducibility among
animals. At the animal level, results obtained with DCM were
more reproducible than with the linear implementation of
Granger causality. It is probable that more sophisticated
approaches, including multivariate, nonlinear, parametric, or
nonparametric implementation of Granger causality [55–57],
would have allowed a significant improvement in result
reproducibility between animals.

fMRI connectivity analyses were validated using iEEG data
obtained in freely moving rats. The directionality of
interactions, estimated from the asymmetry of a measure of
generalised synchronisation, clearly indicated S1BF as being
the driver. The generalised synchronisation measure relies on
time-embedding of iEEG signals (Takens’ theorem). This
manipulation depends upon some parameters that are
sometimes difficult to optimise [58], and moreover, its
theoretical underpinnings [59] might not be totally fulfilled
by brain signals. In view of these potential difficulties, for
construct validation in terms of spike propagation, the
averaged SWD complex was computed, and a temporal
precedence of the activity in S1BF was demonstrated, as
anticipated from iEEG generalised synchronisation and from
fMRI connectivity.

Because fMRI does not provide sufficient information to
reconstruct accurate electrical activity, the neuronal model
used in DCM remains necessarily simple, allowing the
generation of caricatures of neural states. Nevertheless,
DCM distinguished different functional hypotheses in a
meaningful way. To our knowledge, this study provides the
first experimental validation of DCM for fMRI using invasive
EEG recordings. The so-called ‘‘synaptic activity’’ estimated
by DCM remains difficult to interpret. First-order electrical
kernels (see Figure 5) do not allow the generation of EEG-like
signals if convoluted with a random input (as classically done
when modelling EEG with neural mass models [60]) because
their time constant (;2 s) is too large to generate the 7–9-Hz
oscillations that characterise SWDs in GAERS. Their dynamic
properties are more compatible with the rate of change of
EEG power often observed at the beginning of seizures (see
Figure 1 in [30]). The coupling parameters of DCM might
then be interpreted as indications of how changes in EEG
power are transferred between regions. Because DCM

parameters in fMRI are estimated from several minutes of
recordings, the significant difference that was found between
models implies that the information transfer is more or less
stable during seizures—in other words, that one direction of
information transfer dominates. This is indeed what we
observed in iEEG, as far as connectivity from S1BF was
concerned (Figure 7). Finally, it is important to note that, like
any model-based approach, results depend on the assump-
tions of the generative model used. In particular, current
implementation of DCM [14] does not take into account time
lags between neural populations due to conduction velocities
and propagation through dendritic trees. Elaborating and
validating a more realistic neural model for DCM in fMRI
taking time dependencies into consideration would be
interesting, but goes well beyond the scope of this work.
This study is, to our knowledge, the first electrophysio-

logical validation of fMRI connectivity analyses based on
Granger causality and Dynamic Causal Modelling using a
well-characterised animal model of functional coupling. As
such, it has important implications for such studies that are
starting to predominate in the functional neuroimaging
literature on connectivity. Our results clearly indicate that
one must minimise spurious interactions due to hemody-
namic variability between brain regions using explicit or
implicit (such as in DCM) deconvolution of hemodynamic
effects in fMRI time series. Otherwise, directed functional
connectivity results should be taken cautiously, particularly if
one cannot demonstrate that hemodynamic properties are
the same in every region analysed.

Materials and Methods

Animal preparation and data acquisition. Experimental procedures
and animal care were carried out in accordance with the European
Community Council Directive of 24 November 1986 (86/609/EEC).
They were approved by the Ethical Committee in charge of animal
experimentation at the Université Joseph Fourier, Grenoble (proto-
col number 88–06). Six male adult GAERS (281 6 56 g) were used for
the fMRI/EEG study, and five adult GAERS (two males, three females;
232 6 70 g) were recorded in iEEG.

fMRI/EEG experiments. Spontaneous seizures were measured
during magnetic resonance (MR) experiments using EEG. Animals
were equipped with three carbon electrodes located on the skull near
the midline (frontal, parietal, and occipital), several hours prior to
the MR experiments. Two additional carbon electrodes were used to
monitor cardiac activity (electrocardiography [ECG]). Because ab-
sence epilepsy is suppressed by anaesthesia, animals were maintained
conscious under neuroleptanalgesia.

Anaesthesia was induced under 5% isoflurane, maintained under
2% isoflurane during animal preparation, and stopped during MR
acquisition. The femoral artery was catheterised to allow admin-
istration of an iron-based superparamagnetic contrast agent (injected
as a bolus just before MR preparatory settings, 8 mg Fe/kg, i.e., 145
mmol Fe/kg, Sinerem) and infusion of curare and analgesics. Just
before inducing neuroleptanalgesia, a tracheotomy was performed,
and animals were ventilated at 90 breaths/min throughout the rest of
the experiment. Neuroleptanalgesia was induced using an intra-
venous bolus of d-tubocurarine (1 ml/kg). Animals were then
maintained under intravenous infusion of a mixture of d-tubocur-
arine (1.2 mg/kg/h), Fentanyl (3 lg/kg/h), and haloperidol (150 lg/kg/h)
[30].

Animals were secured in an MR-compatible, customised, stereo-
taxic headset with ear and tooth bars. They were positioned in the
magnet, maintained in position between 3 and 4 h for data
acquisition, and then sacrificed. Rectal temperature was monitored
and kept at 37 8C using a heating pad positioned under the animal.

MR imaging was performed in a horizontal-bore 2.35 T magnet
(Bruker Spectrospin), equipped with actively shielded magnetic field
gradient coils (Magnex Scientific) and interfaced to a SMIS console
(SMIS). A linear volume coil was used for excitation (internal
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diameter 79 mm), and a surface coil was used for detection (Rapid
Biomedical). Both coils were actively decoupled.

T1-weighted anatomical images were acquired using a 3D-MDEFT
sequence with parameters optimised following the procedure
described in [61]: voxel size ¼ 0.333 3 0.333 3 0.333 mm3, TI ¼ 605
ms, quot¼0.45, alpha¼228, TR/TE¼15/5 ms, and BW¼20 kHz. CBV-
weighted measurements were made with gradient-echo echo-planar
imaging (EPI) acquisition (two shots, data matrix¼ 483 48, FOV¼ 35
3 35 mm2, 15 contiguous 1.5-mm-thick slices covering the whole
brain, alpha ¼ 908, TE ¼ 20 ms, TR ¼ 3 s). Functional volumes were
acquired over about 2 h, in several 30-min sessions to prevent
overheating of the gradient hardware. 3D-MDEFT and EPI images
were centred to facilitate superimposition.

EEG and ECG signals were sampled simultaneously with fMRI at
1,024 Hz (SD32, Micromed). ECG was merely used to monitor the
physiological state of animals. When ECG revealed a heart frequency
below 250 beats/min, the experiment was terminated, and the animal
was sacrificed. EEG and fMRI temporal coregistration was ensured by
the EEG acquisition software recording a TTL signal from the MR
system at each volume acquisition.

iEEG experiments. For the iEEG recordings, GAERS were
implanted with intracerebral electrodes under general anaesthesia
(diazepam 4 mg/kg intraperitoneally [i.p.], ketamine 100 mg/kg i.p.).
Pairs of electrodes formed of stainless steel wires (0.175 mm)
separated by 2 mm on the longitudinal axis were stereotaxically
placed in each structure targeted. Stereotactic coordinates were as
follows, with the bregma as reference [62]: (1) first somatosensory
cortex S1BF (anteroposterior [AP]:�1 and�3 mm; mediolateral [ML]:
þ5 mm; and dorsoventral [DV]:�3 mm), (2) ventrobasal thalamus (AP:
�2.3 and�4.2 mm; ML:þ2.4 mm; and DV:�6.2 mm), and (3) striatum
(AP:þ3 and�0.8 mm; ML:þ3 mm; and DV:�6 mm). Two additional
electrodes (stainless steel screws) were fixed in the nasal and occipital
bones to serve as reference and/or ground. All electrodes were
connected to a female microconnector that was fixed to the skull by
acrylic cement. Animals were allowed to recover for a week, during
which they were handled daily for habituation. Once implanted, the
rats were kept alive 2 mo at maximum. They were killed by an
overdose of pentobarbital, and their brains were then removed and
cut into 20-lm coronal sections. These sections were stained with
cresyl violet, and each site was localised with reference to the atlas of
Paxinos and Watson [62,63]. Electrode implantation was considered
correct if the centre of gravity of the pair of electrodes was located
within the targeted structure.

Electroencephalograms were recorded in awake, freely moving
animals, using a digital acquisition system (Cambridge Electronic
Design) with a sampling rate of 2 kHz and analog filters (high-pass
filter 1 Hz/low-pass filter 90 Hz). During the recording sessions, rats
were continuously watched to detect abnormal posture or behaviour.
Sessions did not exceed 2 h and were performed between 9:00 AM and
5:00 PM.

fMRI/EEG data analysis. fMRI data analysis was done using SPM5
(Statistical Parametric Mapping, Wellcome Department of Imaging
Neuroscience, Functional Imaging Laboratory, London, UK). Some
routines of this software were adapted to rat imaging in accordance
with [63].

Spatial preprocessing. For each session, EPI volumes were first
realigned to account for motion correction. All images were then
normalised to a 3D-MDEFT template with coordinates chosen
according to the rat atlas of Paxinos and Watson, with the origin at
the bregma [62]. Normalised images were resampled to reach an
isotropic spatial resolution of 0.4 mm. Finally, normalised EPI images
were smoothed with a Gaussian kernel of 0.5-mm width. Statistical
analysis was done on smoothed, normalised, and realigned EPI
images.

Statistical maps of SWD-related regional CBV changes. Statistical
maps of regional CBV changes in relation to SWDs were obtained
using the standard procedure applied in EEG/fMRI studies of epilepsy
[64,65]. It consists of the detection of epileptic events in the EEG. A
regressor of interest for fMRI data is then obtained by convolving
EEG epileptic events with a model of the hemodynamic impulse
response function [66]. If the impulse response is causal (which is
usually the case), it is assumed that electrical activity precedes and
causes hemodynamic changes.

SWDs were extracted from the EEG using a moving average (time
window length¼ 2 s; sampling rate¼ 5 Hz) of EEG power between 4
Hz and 20 Hz. SWD power was then scaled such as to be about zero
between SWDs and about one during SWDs. Note that it was not
necessary to correct imaging or cardiac artefacts in our data because
they were not significant at frequencies of SWDs. The SWD regressor

used for fMRI statistical analysis was obtained by convolving the
normalised SWD power with the canonical HRF provided in SPM5.

For each animal, SPMs of the t-statistic of SWD-related activations
were obtained by correlating the high-pass filtered (cutoff ¼ 0.97
mHz) time series of each voxel with the SWD regressor using a
standard first-level multisession statistical design [67]. Activations at
the group level were obtained using a fixed-effect analysis following
guidelines provided in [68]. The decision to perform a fixed-effect
analysis was based on (1) the reduced number of animals (n¼6) being
too small to perform a random-effect analysis and (2) the excellent
reproducibility between animals of the activation patterns.

Estimation of hemodynamic parameters in regions activated
during SWDs. Activation maps were obtained under the conventional
hypothesis of identical hemodynamics all over the brain. Although
this assumption is particularly convenient to obtain statistical maps,
significant hemodynamic variability is to be expected [69–71]. Taking
into account this spatial variability is critical in identifying neuronal
drivers from fMRI signals. We therefore estimated the HRFs in the
different structures activated.

A biophysical model of brain hemodynamics was used to bio-
logically constrain the estimation of the HRFs. We therefore adapted
the hemodynamic model used in [14,20] to the measurement of CBV-
weighted signals (due to the use of an iron contrast agent). Briefly, we
removed from the distributed version of DCM (SPM5, http://www.fil.
ion.ucl.ac.uk/spm/) the state equation corresponding to the definition
of deoxyhemoglobin content, and we changed the output equation
that was developed for BOLD signals (assuming BOLD signals as
arising from a mixture of CBV and blood oxygenation effects). The
model thus described below is a truncated version of the hemody-
namic model developed in [20]. For the ith region, neuronal activity zi
causes an increase in a vasodilatory signal si (time constant ji) that is
subject to autoregulatory feedback (autoregulation constant ci).
Inflow fi responds in proportion to this signal with changes in blood
volume vi (time constant si and nonlinear constant ai):

_si ¼ zi � jisi � ciðfi � 1Þ
_f i ¼ si

si _vi ¼ fi � v1=ai
i

yi}vi

8>><
>>: ð1Þ

Variations in CBV-weighted signals y were assumed to be propor-
tional and of opposite sign to variations of blood volume v—a CBV
increase shortens the transverse relaxation time [72]. The four
hemodynamic parameters for each region i (ji, ci, si, and ai) were
estimated from the time series of each ROI using a maximisation-
expectation algorithm [73], similar to the one used in the standard
DCM procedure [14].

Deconvolution of hemodynamics. Most methods to infer the
direction of information transfer between two time series are based
on identifying temporal precedence. If past activity of a given region
X helps predicting current activity of another region Y, then it is
assumed that the activity of X causes to some extent the activity of Y.
Although compelling, temporal precedence in fMRI time series may
be biased by regional variability of hemodynamics (see Protocol S1
for an intuitive explanation). Consequences of hemodynamic
variability can be minimised by deconvolving fMRI time series with
a hemodynamic impulse response function. Output time series
represent then hidden state variables that are more closely related
to neuronal activity. Instead of original fMRI time series, such a state-
space model can be used to infer functional connectivity.

Hemodynamic deconvolution of each ROI time series was
performed as described in [34]. Under linear assumption, fMRI
signals m(t) can be modelled as the result of the convolution of neural
states s(t) with a hemodynamic response function h(t):

mðtÞ ¼ sðtÞ � hðtÞ þ eðtÞ ð2Þ

where t is the time and � denotes convolution. e(t) is the noise in the
measurement, assumed here to be white and therefore defined by its
constant power spectrum jEðxÞj2 ¼ e20. The estimation ~sðtÞ of the
neural states s(t) was obtained using the following formula [34]:

~sðtÞ ¼ FT�1
H�ðxÞMðxÞ
jHðxÞj2 þ e20

( )
ð3Þ

where FT�1 denotes the inverse Fourier transform, and H(e), M(e) are
the Fourier transform of h(t), m(t), respectively. For each ROI, the
hemodynamic response function h(t) was obtained after optimising
the parameters of the biophysical model described in Equation 1. The
expectation-maximisation algorithm used for this parameter opti-
misation also provided the value of the noise power spectrum e02.
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Granger causality analysis. Granger causality measures have been
proposed recently to identify the direction of information transfer
between remote brain regions recorded in fMRI [25,33]. In its
simplest version, Granger causality is computed using linear multi-
variate autoregressive models of fMRI time series. For each pair of
brain regions X and Y, the linear influence from X to Y (Fx!y) and
from Y to X (Fy!x) is defined as follows [25]:

x½n� ¼ �
Xp
i¼1

Ax½i�x½n� i� þ u½n�

y½n� ¼ �
Xp
i¼1

Ay½i�y½n� i� þ v½n�

q½n� ¼ x½n�
y½n�

� �
¼ �

Xp
i¼1

Aq½i�q½n� i� þ w½n�

8>>>>>>>>><
>>>>>>>>>:

varðu½n�Þ ¼ R1

varðv½n�Þ ¼ T1

varðw½n�Þ ¼ R2 C
C T2

� �
8>><
>>:

Fx!y ¼ ln
jT1j
jT2j

� �

Fy!x ¼ ln
jR1j
jR2j

� �
:

8>><
>>: ð4Þ

where x and y are the time series of regions X and Y. In Results, they
correspond either to hemodynamic activity (fMRI signals entered
directly into the analysis) or to hidden neural states (obtained from
fMRI signals using Equation 3). x[n] corresponds to the nth time bin of
x. The three first lines of Equation 2 define autoregressive models for
time series of regions X and Y, the three lines below quantify the
residual variances, i.e., how well autoregressive models predict time
series, and the two last lines show how interdependency measures are
defined from the residual variances. Autoregressive models were
estimated using the Matlab package ARfit (http://www.gps.caltech.edu/
;tapio/arfit/) [74,75]. The model order p was defined according to the
Schwarz Bayesian criterion [76]. It measures the efficiency of the
parameterised model in terms of predicting the data and penalises
the complexity of the model, where complexity refers to the number
of model parameters.

For each pair of regions (x, y), statistics on the asymmetry of the
interaction measure Fx!y � Fy!x were obtained using 999 surrogate
datasets [77] that were constructed for each session by translating,
independent of each another, ROI time series by a random number
of time samples. Surrogates thus destroyed local time interdepen-
dencies and preserved the properties of each signal taken separately.
They allowed one to estimate distributions of Granger causality
under the null hypothesis that ROI time series were locally
uncorrelated and were not time-locked over sessions and animals.
Null distributions were drawn at the animal and group levels by
averaging Fx!y � Fy!x over sessions and animals for each surrogate
realisation. p-Values on the direction of interactions were obtained
by comparing the value computed from original data to the null
distribution constructed from surrogates (see [77] for a review on
surrogates).

We refer here to the simplest implementation of Granger causality
because it is the most popular in fMRI [25,33]. However, there are
many other possibilities, including parametric and nonparametric
nonlinear approaches that have been applied to the brain, mainly in
electrophysiology [55–57].

Dynamic Causal Modelling. DCM [14] relies on a biophysical model
that connects the neuronal states z, called ‘‘synaptic activity,’’ to fMRI
signals. A bilinear neuronal state equation specifies the connectivity
between n brain regions:

_z ¼ Aþ
X
j

ujBj

 !
zþ Cu ð5Þ

where A, B, and C are connectivity matrices, and u are inputs to the
neural system. The synaptic activity is then transformed into fMRI
signals using the hemodynamic model described in Equation 1. Using
a maximisation-expectation algorithm, DCM proceeds to a conjoint
estimation, from the measured CBV time series, of the neuronal
parameters (connectivity matrices A, B, and C) and of the four
hemodynamic parameters for each region i (ji, ci, si, and ai). In other
words, it performs in one step the hemodynamic deconvolution and

connectivity estimation between hidden neural variables. This
implies a certain degree of interactions between both processes that
potentially results in more robust results than when deconvolution
and connectivity analyses are taken separately.

For the present study, we identified neural drivers within a small
network composed of three regions. To prevent introducing any bias
in the estimation of functional connectivity, we did not take into
account prior anatomical information about probable missing
connections. We thus chose to specify all possible unidirectional
networks comprising direct and/or indirect connections (15 models;
S1BF driver: models 1–5; thalamus driver: models 6–10; striatum
driver: models 11–15) (Figure 8). Because DCM necessitates knowl-
edge of the inputs u, we defined u as being equal to the SWD
regressor—shifted backwards in time (400 ms, which corresponds
approximately to the time constant of the driver’s DCM neuronal
kernel, see results in Figure 5) to account for neuronal filtering (u is a
presynaptic input whereas the EEG reflects multi-postsynaptic
activity [60]). In each model, an input u (non-zero C matrix) was
applied to the assumed neural driver. Here, input u must be thought
of as a practical way to model unstable dynamics intrinsically
generated by an epileptic focus, using simple dissipative neural
models used by DCM as described in Equation 5. In the models shown
in Figure 8, the region receiving input u transfers the information to
other regions with forward connections (matrix A). For parsimony,
we did not allow a modulation of the interregional connection
strength by u (by the means of the modulatory matrix B). We thereby
assumed that the connection strength did not vary between ictal and
interictal states. To conform to standard practice in DCM studies,
only self modulation (first diagonal of B) of the region receiving the
exogenous input was allowed. Actually, because it appears that inputs
u were very close to zero during interictal states, assumptions about
connectivity modulation had little effect on the parameters esti-
mated.

Identification of the neural driver in the 15 competing models
(Figure 8) was done using Bayesian model comparison based on
model evidence [78]. Practically, the model log-evidence was
approximated by the model negative free energy, the criterion used
for optimising the model parameters [14], which is a tight lower
bound on the log-evidence. The most plausible model is the one with
the largest negative free energy, i.e., the best fit to the data. A
difference in log-evidence of approximately three is usually taken as
strong evidence for one model over the other (i.e., the marginal
likelihood of one model is ;20 times the other) [14]. Assuming each
dataset is independent of the others, the log-evidence at the group
level (or at the animal level when different sessions have been
acquired) is simply obtained by adding the log-evidence of each
session [79].

IEEG data analysis. iEEG data analysis was done using a SPM5
Toolbox for intracerebral EEG developed in our laboratory. iEEG
signals were first band-pass filtered between 5 and 100 Hz to capture
the main frequencies of SWDs and to remove motion artefacts in low
EEG frequencies. Seizures were visually detected. Only those showing
(1) no movement artefact, (2) preictal and postictal periods of at least
4 s, and (3) a duration of at least 10 s were kept for further analysis (n
¼ 72).

As a first estimation of the sequence of ‘‘activation’’ within the
three implanted structures, spike averaging over time was performed.
An ad hoc algorithm, based on EEG amplitude thresholding and local
maxima identification, was implemented in which the first peak of the
SWD complex was detected in signals originating from S1BF. The
mean activation pattern was then obtained by averaging each SWD
complex over time, seizures and animals using a time window
covering from 50 ms before up to 80 ms after detected spikes. The
delay between the peaks in the signals from the different structures
was finally measured on the averaged waveforms.

Further functional connectivity analyses in iEEG were performed
using a nonlinear measure based on the concept of generalised
synchronisation [13,16,80,81]. By definition, generalised synchronisa-
tion exists between two dynamical systems X and Y when the state of
the response system Y is a function of the state of the driving system
X:Y ¼ F(X). If F is continuous, two close points on the attractor of X
should correspond to two close points on the attractor of Y. An
important feature of generalised synchronisation is that synchronised
time series can look very dissimilar, which is critical for analysing
highly nonlinear signals such as those measured with EEG in epilepsy.

Details of these methods can be found in Protocol S2. Briefly here,
we used the normalised measure of generalised synchrony D between
regions X and Y as described elsewhere [13,16]. There are two ways to
compute D, which we denote D(X j Y) and D(Y j X). D(X j Y) and D(Y j
X) are not identical for asymmetrical systems. This property can be
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used to dissociate the driver and the driven systems, and we defined
the direction of information transfer between X and Y using D(Y j X)
� D(X j Y). For each seizure, the normalised measure of generalised
synchronisation D was computed on a time window (duration of 4 s to
get sufficient number of time points for robust estimation of
generalised synchronisation), which was translated every 200 ms
between�2 s up to 8 s according to seizure onset. By using a sliding
window, we were able to compute the evidence for directed
connectivity as a function of peristimulus time, after SWDs onset.

Supporting Information

Protocol S1. Time Precedence and Neuronal Causality in fMRI Time
Series

Reported is an intuitive view of the blurring effects of hemodynamics
for the estimation of directional connectivity.

Found at doi:10.1371/journal.pbio.0060315.sd001 (41 KB DOC).

Protocol S2. Measures of Generalised Synchronisation

Reported are concepts and detailed equations used to quantify
generalised synchronisation.

Found at doi:10.1371/journal.pbio.0060315.sd002 (86 KB DOC).
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