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Candida albicans has an elaborate, yet efficient, mating system that promotes conjugation between diploid a and a
strains. The product of mating is a tetraploid a/a cell that must undergo a reductional division to return to the diploid
state. Despite the presence of several ‘‘meiosis-specific’’ genes in the C. albicans genome, a meiotic program has not
been observed. Instead, tetraploid products of mating can be induced to undergo efficient, random chromosome loss,
often producing strains that are diploid, or close to diploid, in ploidy. Using SNP and comparative genome
hybridization arrays we have now analyzed the genotypes of products from the C. albicans parasexual cycle. We show
that the parasexual cycle generates progeny strains with shuffled combinations of the eight C. albicans chromosomes.
In addition, several isolates had undergone extensive genetic recombination between homologous chromosomes,
including multiple gene conversion events. Progeny strains exhibited altered colony morphologies on laboratory
media, demonstrating that the parasexual cycle generates phenotypic variants of C. albicans. In several fungi,
including Saccharomyces cerevisiae and Schizosaccharomyces pombe, the conserved Spo11 protein is integral to meiotic
recombination, where it is required for the formation of DNA double-strand breaks. We show that deletion of SPO11
prevented genetic recombination between homologous chromosomes during the C. albicans parasexual cycle. These
findings suggest that at least one meiosis-specific gene has been re-programmed to mediate genetic recombination
during the alternative parasexual life cycle of C. albicans. We discuss, in light of the long association of C. albicans with
warm-blooded animals, the potential advantages of a parasexual cycle over a conventional sexual cycle.
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Introduction

In most sexually reproducing eukaryotes, meiosis is used to
precisely halve the DNA content in the cell, often for the
formation of haploid gametes from diploid precursor cells.
This specialized form of cell division involves one round of
DNA replication followed by two successive rounds of DNA
division. Each round of DNA division is unique. During the
first meiotic division (meiosis I) extensive DNA recombina-
tion takes place between maternal and paternal homologous
chromosomes, which then are segregated from one another.
The second round of DNA division (meiosis II) more closely
resembles normal mitotic DNA division, in which sister
chromatids are segregated to opposite poles. In the case of
spores in fungi and spermatozoa in animals, all four haploid
nuclei form four different haploid cells, while in the female
meioses of animals only one haploid nucleus survives and
forms the mature oocyte.

The meiotic process has been studied extensively in the
model fungi Saccharomyces cerevisiae and Schizosaccharomyces
pombe. In S. cerevisiae, mating of haploid MATa and MATa
cells normally generates a stable diploid a/a cell that
replicates mitotically until subsequently induced to undergo
meiosis under conditions of limiting nitrogen availability and
the presence of a non-fermentable carbon source [1]. In S.
pombe, mating also occurs between haploid cells but the
diploid state is often transient, immediately undergoing
meiosis to regenerate the haploid form. The sexual program

in S. pombe is again controlled by nutritional cues, as mating
and meiosis normally occur only under starvation conditions
[2]. In both S. cerevisiae and S. pombe, meiosis generates four
recombinant haploid spores held together in an ascus.
While S. cerevisiae and S. pombe are rarely pathogenic in

humans, the related ascomycete C. albicans is an opportunistic
pathogen capable of causing both debilitating mucosal
infections and potentially life-threatening systemic infections
[3]. C. albicans is normally a harmless commensal fungus,
existing in the gastrointestinal tract of at least 70% of the
healthy population [4]. However, C. albicans is also the most
commonly isolated fungal pathogen, particularly targeting
individuals with compromised immune systems and leading
to death in up to 50% of patients with bloodstream infections
[5–7].
Until recently, C. albicans was thought to be asexual, existing
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only as an obligate diploid organism and thus classified
amongst the Fungi imperfecti [8]. However, a robust mating
system has now been uncovered in this organism, in which
mating occurs between diploid mating type-like (MTL) a and
a strains to generate an a/a tetraploid strain. Mating occurs
both under laboratory conditions and in different in vivo
niches in a mammalian host [9–12]. Population studies of
clinical isolates are also consistent with C. albicans strains
undergoing genetic exchange in their natural environment,
albeit at a limited rate [13].

While an efficient mating apparatus has now been
identified in C. albicans, the mating cycle differs in several
important respects from that of S. cerevisiae and other fungi.
For example, mating in C. albicans is regulated by phenotypic
switching; MTL homozygous C. albicans cells can reversibly
switch between two heritable states termed white and opaque,
and only the opaque form is competent for efficient mating
[14]. This unusual mode of mating regulation is so far unique
to C. albicans (and the very closely related yeast, Candida
dubliniensis [15]) making it likely that this adaptation has
evolved to regulate mating of C. albicans strains in their
natural environment—that of a warm-blooded host. Com-
pletion of the mating cycle in C. albicans also seems to occur in
an atypical manner. Although reductional DNA divisions by a
meiotic program have not been observed, tetraploid strains
of C. albicans have been shown to return to the diploid state
via a parasexual mechanism. During this process, tetraploid
cells exposed to certain laboratory media were induced to
lose chromosomes in an apparently random, but concerted,
fashion, thereby forming cells with a diploid, or very close to
diploid, DNA content [16]. The genetic locus responsible for
determining C. albicans mating type (the MTL locus) segre-
gated randomly in these experiments so that many of the
progeny cells were a and a diploid cells that were themselves
mating competent. Mating of diploid cells to form tetraploid
cells, followed by random chromosome loss to generate
diploid progeny cells, thereby constitutes a parasexual mating
cycle in C. albicans.

In this study, we examined the genetic profile of strains
formed by the parasexual mating process in C. albicans using
SNP and comparative genome hybridization (CGH) techni-
ques. We observed extensive shuffling of the parental

configurations of chromosomes by the parasexual cycle,
giving rise to many types of recombinant C. albicans progeny.
Many of the progeny strains are not true (euploid) diploids;
rather, they are aneuploid strains that are often trisomic for
one or more chromosomes. In addition, we provide the first
evidence that tetraploid strains experiencing chromosome
instability and subsequent chromosome loss also undergo
genetic recombination between homologous chromosomes.
We also report that genetic recombination in C. albicans

tetraploids was dependent on the presence of Spo11p, a
conserved protein that in other eukaryotes initiates meiotic
recombination by the introduction of double-strand breaks
(DSBs) into the DNA [17]. These results suggest that the
parasexual pathway in C. albicans has evolved as an alternative
pathway to meiosis for promoting a reduction in cell ploidy,
and furthermore, that at least one gene that normally
functions in meiotic recombination has been co-opted for
use in the parasexual mating cycle.

Results

A Strain for Studying the Parasexual Mating Cycle in C.
albicans
The parasexual cycle of C. albicans, as currently envisaged, is

shown in Figure 1A. Note that no meiotic program has been
observed in C. albicans, despite the presence of many genes in
the genome whose homologues function specifically in
meiosis in other fungi [18]. However, C. albicans strains have
been found to undergo a parasexual cycle; tetraploid strains
become genetically unstable when incubated on certain
laboratory media, losing chromosomes and generating
diploid (and aneuploid) progeny strains that are themselves
mating competent. The chromosome loss process is con-
certed, with loss of one or more chromosomes predisposing
the cell to lose additional chromosomes, and the diploid state
being the final product [16]. While tetraploids are stable when
grown on YPD medium at different temperatures, two culture
conditions were identified that induced genetic instability in
C. albicans: (i) growth of tetraploid strains on S. cerevisiae ‘‘pre-
sporulation’’ (pre-spo) medium at 37 8C, and (ii) growth of
tetraploid strains on medium containing L-sorbose at 30 8C.
The latter condition was previously shown to also induce
chromosome loss in diploid C. albicans strains [19]. More
specifically, diploid strains were unable to grow on L-sorbose
medium unless they first underwent loss of one copy of
Chromosome (Chr) 5, becoming monosomic for this chro-
mosome. In contrast, diploid strains were relatively stable
when grown on pre-spo medium, indicating that diploid and
tetraploid strains exhibit very different selective pressures
when cultured on this medium.
To monitor changes in ploidy in tetraploid strains of C.

albicans, we exploited a genetically marked tetraploid strain,
RBY18, containing markers on Chr 1 and 5. The strain was
constructed by mating a/Da and Da/a cell types, as shown in
Figure 1B [16]. Strain RBY18 is heterozygous for the GAL1
gene 1 on Chr 1, which is counterselectable. Strains carrying
wild-type GAL1 are unable to grow on medium containing 2-
deoxygalactose (2-DOG) as the carbon source, while deriva-
tive strains that have lost both copies of the GAL1 gene are
able to grow on 2-DOG medium [20]. In most cases, it is
expected that loss of GAL1 function in RBY18 will occur by
loss of both chromosomes carrying the GAL1 allele, although
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Author Summary

Candida albicans is an important human fungal pathogen that has
an unconventional sexual cycle. Efficient mating requires that
diploid cells of opposite mating type first switch from the more
common ‘‘white’’ phase to the ‘‘opaque’’ phase and then undergo
cell fusion. The resulting tetraploid strains can return to the diploid
state via a non-meiotic parasexual program of concerted chromo-
some loss. We used SNP and comparative genome hybridization to
analyze the progeny resulting from this parasexual cycle and found
a range of genetically diverse strains with altered phenotypes. In
addition, in a subset of these strains, genetic recombination was
found to have taken place between homologous chromosomes.
This recombination was dependent on Spo11, a conserved protein
required for the introduction of DNA double-strand breaks in the
chromosomes of eukaryotes that undergo conventional meiosis.
Thus, Spo11 is required for genetic recombination and the
generation of increased genetic diversity during the C. albicans
parasexual cycle.



GAL1 function also can be lost by mutation or genetic
recombination. The RBY18 tetraploid strain is also hetero-
zygous for all four MTL alleles on Chr 5: WTa, WTa, Da1/a2,
and Da1/a2, which are easily distinguishable using whole cell
PCR and oligonucleotides specific to each MTL allele [14].

Selection of Diploid Progeny after Parasexual

Chromosome Reduction

To generate progeny strains that have undergone the
parasexual mating cycle, the marked tetraploid strain RBY18
was induced to undergo chromosome loss on either pre-spo

or sorbose medium and gal1� strains were selected by growth
on 2-DOG medium. These 2-DOG resistant (DOGR) strains
were subsequently analyzed by PCR to confirm that loss of
MTL alleles on Chr 5 had accompanied loss of GAL1 alleles on
Chr 1, an indication that cells had undergone a reduction in
overall cell ploidy (unpublished data). PCR of the MTL loci
was also used to detect possible jackpot effects, where several
gal1� progeny might have been derived from a single cell
having undergone a chromosome loss event. Where possible,
progeny cells with different combinations ofMTL alleles were
used for subsequent analysis. Selected progeny strains were
grown in YPD medium at 30 8C and analyzed by flow
cytometry to determine the overall ploidy of each strain, as
shown in Figure 2. Flow cytometric analyses confirmed that
each strain was diploid, or close to diploid, in DNA content,
as judged by staining of the DNA with sytox green [9]. Seven
strains (P1 to P7) were derived from RBY18 by growth on pre-
spo medium, and six strains (S1 to S6) were derived from
RBY18 by growth on sorbose medium (Figure 2). Subtle
differences were observed in the flow cytometry DNA profiles
between isolates, where distinct peaks were evident repre-
senting non-replicated (G1 phase) and replicated (G2 phase)
DNA. In some strains the majority of the cells contained
replicated DNA (e.g., S5 and S6, Figure 2, panels N and O),
while others had an almost equal distribution of cells with
unreplicated and replicated DNA (e.g., P4, panel F). However,
there was no obvious correlation between DNA profiles
analyzed by flow cytometry and cell growth rates.
To further characterize the strains generated by parasexual

chromosome reduction, progeny were plated for single
colonies on rich (YPD) medium to examine colony growth.
After incubation at 30 8C for 7 d, colonies were compared for
overall size and morphology (Figure 3). A wide range of
phenotypes was observed, including smaller colony sizes
relative to diploid and tetraploid parental strains and altered
colony morphologies. Some of the isolates produced hyper-
filamentous morphologies, as evidenced by increased surface
wrinkling of the colonies (e.g., progeny strains P3, P4, and P6;
Figure 3, panels E, F, and H). Normally, C. albicans cells grow as
budding yeast, pseudohyphal, or true hyphal cells. Examina-
tion of cells from the wrinkled colonies by microscopy
confirmed that these colonies contained many filamentous
(pseudohyphal and true hyphal) cells, while the unwrinkled
colonies (including control strains) contained very few
filamentous cells (unpublished data). Some progeny strains
also exhibited reduced filamentation on medium that
normally induces hyphae formation (Spider medium and
serum-containing medium, KA and RJB, unpublished data).
Thus, the parasexual cycle of C. albicans can generate variant

strains with diverse colony morphologies. Changes in the
ability to undergo the yeast-hyphal transition have been
closely linked with the pathogenic potential of C. albicans
strains [21–24]. It is therefore likely that many of these variant
strains will exhibit reduced virulence in models of candidiasis;
but it is also possible that some of these isolates could have
increased fitness under particular selective conditions, leading
to improved colonization of defined in vivo niches in the host.

Genomic Profiling of Progeny Cells from the Parasexual
Cycle
SNP and CGH microarrays are powerful approaches for

examining genetic recombination and genome structure in C.

Figure 1. Analysis of the Parasexual Mating Cycle in C. albicans

(A) Overview of the mating cycle in C. albicans. White MTLa and MTLa
cells must switch to the opaque state to undergo mating and formation
of a mononuclear tetraploid a/a cell. A reduction in ploidy back to the
diploid (or near diploid) can occur by random chromosome loss.
(B) A scheme for selection of diploid progeny strains from tetraploids. A
tetraploid strain, RBY18, heterozygous for the GAL1 gene on Chromo-
some (Chr) 1 and for all four MTL alleles on Chr 5 was constructed by
mating MTLa and MTLa diploid strains, as shown. After induction of
chromosome instability, strains that had undergone a reduction in ploidy
were selected for by growth on 2-deoxygalactose (2-DOG) medium, as
only strains that have lost the GAL1 gene are able to grow on medium
containing 2-DOG. Progeny strains were subsequently analyzed by PCR
of the MTL locus and by flow cytometric analysis to confirm they were
diploid strains. Strains were then analyzed by SNP and CGH microarrays
to determine their genetic content.
doi:10.1371/journal.pbio.0060110.g001
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albicans [25–28]. SNP arrays were designed to exploit the
sequence diversity between chromosome homologues in the
diploid C. albicans genome. The genome-wide SNP arrays used
here included 152 SNPs, distributed across all eight chromo-
somes of C. albicans. As each SNP is specific for one of the
parental chromosome homologues, each homologue can be
distinguished in progeny from the parasexual mating cycle. In
addition, loss of heterozygosity (LOH) at SNPs on otherwise
heterozygous chromosomes can be used as a marker for
genetic recombination. Quantitative SNP analysis can also be

used to determine the relative copy number of each
homologue in a sample (see Materials and Methods).
CGH analysis provides a complementary approach to SNP

arrays for the determination of the copy number of each gene
on each chromosome in the sample. Labeled genomic DNA
from experimental samples (Cy3 labeled) and labeled DNA
from a reference diploid SC5314 strain (Cy5 labeled) were
hybridized to whole genome arrays containing .6,000 C.
albicans ORFs [27,28]. CGH data provides information on the
copy number of every chromosome, as well as indicating

Figure 2. Analysis of Progeny Strains from the Parasexual Mating Cycle by Flow Cytometry

Progeny strains derived from the tetraploid RBY18 were grown in liquid YPD medium, as described in Materials and Methods. Strains P1 to P7 (C–I) were
derived from growth of RBY18 on pre-spo medium, while strains S1 to S6 (J–O) were derived from growth of RBY18 on sorbose medium. In both cases,
progeny strains were found to be diploid, or near diploid, by flow cytometric analysis. For comparison, a parental diploid strain (A) and tetraploid strain
(B) were also analyzed by flow cytometry. The x-axis of each graph (Sytox) represents a linear scale of nuclear fluorescence, and the y-axis (Counts)
represents a linear scale of cell number.
doi:10.1371/journal.pbio.0060110.g002

Figure 3. Morphology of Progeny Strains from the Parasexual Mating Cycle

Progeny strains derived from the tetraploid RBY18 strain by growth on pre-spo medium (P1 to P7) or sorbose medium (S1 to S6) were analyzed on YPD
medium. Strains were grown at 30 8C for 7 d and photographed. Many strains exhibited a mutant morphology, including increased surface wrinkling of
the colonies indicative of increased hyphal cell formation. A control diploid strain (SC5314) and tetraploid strain (RBY18) are included for comparison.
doi:10.1371/journal.pbio.0060110.g003
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large-scale aneuploidies. In this study, we used both CGH and
SNP approaches to obtain a detailed picture of the products
of the C. albicans parasexual cycle following concerted
chromosome loss.

SNP and CGH arrays were first used to analyze RBY18 and

the diploid parental strains that had been used to construct
this tetraploid strain. SNP analysis confirmed that MTLa and
MTLa parental diploid strains were heterozygous for most of
the SNPs on the array, although in the parental MTLa strain
Chr 2 was homozygous for all markers (Table S4). CGH array
data confirmed that the parental strains were euploid
diploids and RBY18 was a euploid tetraploid, as they
contained two and four copies of each of the eight C. albicans
chromosomes, respectively.
We then analyzed 13 progeny strains produced by

concerted chromosome loss from RBY18 using SNP and
CGH arrays (see Figures 4 and S4, and Tables S1 and S4). Only
three of the 13 strains were true diploids (P2, P5, and P6). The
majority (10/13) of the progeny strains contained at least one
extra chromosome: four of the seven strains derived from
growth of the tetraploid on pre-spo medium were trisomic
for one to three chromosomes and all six strains derived from
growth on sorbose were also trisomic for up to three of the
eight C. albicans chromosomes (Figure 4). Thus, concerted
chromosome loss was often incomplete and did not imme-
diately result in true diploid strains.
Curiously, there was a strong bias towards trisomy of Chr 4

in the progeny strains; all strains carrying at least one
trisomic chromosome (four pre-spo-selected strains and all
sorbose-selected strains) were trisomic for Chr 4. Trisomies of
Chr R, 2, 5, 6, or 7 were also detected in at least one of the
progeny. As expected, Chr 1 was always present in the
disomic parental configuration (one copy of each homologue)
because selection of DOGR progeny requires that the strains
lose both Chr 1 homologues from the MTLa mating parent
(Figure 1B).

Genetic Recombination in the Parasexual Cycle of C.
albicans
The most striking feature of the progeny genetic profiles

was that three strains contained a number of short LOH
tracts (six or seven LOH tracts were observed in each strain),
evidence of multiple recombination events between homol-
ogous chromosomes. Isolates P1, S3, and S4 exhibited
recombination events that included LOH at SNPs on multiple
chromosomes (including Chr R, 1, 2, 4, 5, 6, and 7, see Figure
4). While selection on 2-DOG required inheritance of the
gal1D alleles on Chr 1, the LOH events detected here are
independent of the GAL1 locus. Moreover, these events did
not involve homozygosis of all of Chr 5, which might be
expected to occur in response to sorbose selection. Instead,
the recombination events we observed appear to be selection
independent. Overall, the appearance of multiple gene
conversion tracts within several strains, and the general
absence of gene conversion tracts in other strains, suggests
that some cells become generally competent for recombina-
tion at more than one locus, while other strains do not
undergo such recombination events at all.
In at least one example (Chr 2 in strain P1) one complete

chromosome arm (Chr 2L) became homozygous (Figure 4).
This recombination event may have arisen in one of two ways:
(i) A cross-over between chromosomes led to reciprocal
recombination between homologues, as commonly occurs
during meiosis in other fungi. In this case, the partner DNA
involved in the reciprocal exchange was lost during the
process of concerted chromosome loss. (ii) A break-induced
replication event occurred. In this case, a DSB in one

Figure 4. Schematic Summary of Genomic Profiles of Progeny Strains

Derived from Tetraploid Strains via the Parasexual Cycle

Progeny strains were analyzed by SNP and CGH whole-genome
microarrays to determine the copy number of each chromosome and
the configuration of chromosome homologues. Chromosome homo-
logues are indicated by blue and pink bars to represent ‘‘maternal’’ and
‘‘paternal’’ homologues, respectively. Genetic recombination events are
indicated by loss of heterogeneity between chromosome homologues.
In cases where the chromosome is trisomic, this is indicated by a bracket
to the right of the trisomic chromosome. P1 to P7 progeny strains were
derived from growth of the tetraploid RBY18 strain on pre-spo medium,
while S1 to S6 strains were derived from tetraploid growth on sorbose
medium. Detailed SNP and CGH array data is provided in Table S4 and
Figure S4.
doi:10.1371/journal.pbio.0060110.g004
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chromosome was repaired by DNA replication that copied
the template strand from the break near the centromere all
the way to the telomere in the homologous chromosome.
Break-induced replication is a non-reciprocal recombination
event and in S. cerevisiae is often restricted to repair of DNA
DSBs where only one end of the break shares homology with
the template [29].

Potential hotspots for recombination were identified in the
three strains that had undergone inter-homologue recombi-
nation. For example, SNPs HST3 and 2340/2493 on Chr 5
underwent LOH in P1, S3, and S4 recombinant strains.
Additional experiments are necessary to fully document
hotspots for recombination. However, our results indicate
that recombination events are not uniform across the C.
albicans genome during the parasexual cycle.

Does the C. albicans Genome Harbor Recessive Lethal
Alleles?

Natural isolates of C. albicans are diploid, and it has been
proposed that haploid forms cannot exist because of the
presence of recessive lethal alleles in the genome. Evidence
supporting this idea came from classical mitotic recombina-
tion studies [30,31]; however, no systematic investigation of
possible recessive lethal alleles in the C. albicans genome has
been reported. Using the present dataset, we can rule out the
presence of recessive lethal alleles on some chromosomes. For
example, it was already known that Chr 5 does not harbor
recessive lethal alleles: loss of either homologue can be
induced in diploid cells by growth on sorbose medium [19].
The SNP data presented here supports this finding, as both
AA and BB configurations of Chr 5 homologues were
observed in the progeny strains P2 and P6, respectively (this
nomenclature assigns the parental configuration of chromo-
some homologues as AB). Similarly, several other chromo-
somes did not carry recessive lethal alleles, as their
homologues could be lost during the parasexual cycle. Chr
R, 2, 3, 5, 6, and 7 were all found to be homozygous in at least
one independent isolate. However, only one homozygous

configuration was observed for each chromosome (either AA
or BB), leaving open the possibility that the other chromo-
some homologue carries recessive lethal alleles. We will revisit
the issue of recessive lethal alleles below.

The Role of Meiosis Genes in C. albicans
The C. albicans parasexual cycle provides an alternative

mechanism to meiosis for a reduction in cell ploidy. Although
no experimental evidence for a meiotic pathway in C. albicans
currently exists, the genome contains homologues of many
genes that function specifically in meiosis in the related yeast
S. cerevisiae [18]. Some of the meiosis genes from C. albicans
even complement for meiotic function in S. cerevisiae,
demonstrating they encode a conserved protein activity
[32]. It seems likely that either (i) C. albicans has a cryptic
meiotic program still to be discovered, or (ii) meiotic genes
have been adapted to other processes in C. albicans, perhaps
some in the parasexual pathway.
To address the latter possibility, we investigated the

potential role of the Spo11 protein in genetic recombination
during the parasexual cycle. In fungi such as S. cerevisiae and S.
pombe and in higher eukaryotes, Spo11p makes meiosis-
specific DSBs in DNA via a topoisomerase-like mechanism of
DNA cleavage [33,34]. C. albicans ORF19.11071 on Chr 2
encodes a potential homolog of S. cerevisiae SPO11 (http://www.
candidagenome.org). An alignment of this ORF with SPO11
genes from diverse species including S. pombe, S. cerevisiae,
Kluyveromyces lactis, and Drosophila reveals that several of the
critical conserved residues identified for DNA strand cleavage
are present in the C. albicans sequence (Figure S1). In
particular, the conserved active site tyrosine residue, required
for breakage of the DNA and formation of a phosphotyrosine
bond, is present in the C. albicans protein. Similarly, Glu-233
and Asp-288 residues that are required in S. cerevisiae Spo11p
for meiotic recombination [35] are conserved in the C. albicans
protein. ORF19.11071 is a homologue of the Spo11 family and
will therefore be referred to as C. albicans Spo11p in the rest
of this study. Attempts to complement S. cerevisiae Spo11
function with C. albicans Spo11p, as measured by rates of
meiotic recombination in return-to-growth experiments,
were unsuccessful (Table S2). This result is perhaps not
surprising as SPO11 sequences from diverged species are
poorly conserved outside of the core catalytic residues [36]
(Figure S1). It is also worth noting that meiotic proteins in
general are faster evolving than most cellular proteins [37,38],
an issue that is taken up again in the Discussion.
To investigate whether C. albicans Spo11p is expressed in

mitotically dividing cells, a Spo11-13myc fusion protein was
constructed in diploid C. albicans strains. Western blots show
that the Spo11-13myc protein was detectable in mitotic
extracts of diploid cells grown in YPD medium, although the
level of expression was relatively low (see comparison of
protein levels with that of the mitotic spindle protein Kar3-
13myc) (Figure 5). Thus, in C. albicans, the Spo11 protein is
expressed in mitotically dividing cells.

Genetic Recombination in the C. albicans Parasexual
Mating Cycle Is Dependent on Spo11 Function
The observation that C. albicans Spo11p is expressed during

mitotic growth is consistent with it having a function outside
of meiosis. To examine if C. albicans Spo11p is required for
genetic recombination in the parasexual mating cycle, we

Figure 5. Expression of C. albicans Spo11 Protein in Mitotic Cells

The expression of a Spo11–13 3 myc-tagged protein was analyzed by
western blotting. Lane 1 shows a control strain lacking the Spo11-13myc
fusion construct, while lane 2 shows expression of a Kar3-13myc protein
for comparison. Lanes 3–6 show extracts from four independently
transformed diploid strains with the Spo11-13myc construct (see
Materials and Methods).
doi:10.1371/journal.pbio.0060110.g005
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deleted all four copies of the SPO11 gene in genetically
marked tetraploid strains (RBY176/RBY177) that were heter-
ozygous for GAL1 on Chr 1. The strains were induced to
undergo concerted chromosome loss on pre-spo or sorbose
medium and were then exposed to 2-DOG to select for strains
that had lost both copies of GAL1. Eighteen DOGR colonies
were selected from tetraploid growth on pre-spo (eight
colonies) or sorbose (ten colonies) and subsequently analyzed
by flow cytometry to determine if they were diploid, or near
diploid, strains (Figure S2). Indeed, we detected diploid
Dspo11 progeny strains, indicating that Spo11p is not
necessary for the process of concerted chromosome loss in
tetraploid C. albicans strains. We next analyzed the colony
morphologies of the Dspo11 diploid progeny. As was seen with
progeny from wild-type tetraploids (Figure 4), many of the
Dspo11 progeny strains exhibited altered colony morpholo-
gies on YPD medium (Figure 6).

Genomic profiles of the Dspo11 diploid progeny (along with
the parental diploid and tetraploid strains) were generated
using SNP and CGH microarrays (see Figure 7, as well as
Tables S5 and S6, and Figures S1 and S4). One of the diploid
parents (RBY79, MTLa parent) was initially homozygous for
Chr 2, and the other parent (RBY77, MTLa parent) carried a
long tract of LOH on Chr 2 (Figure 7). This is reflected in the
patterns of Chr 2 inheritance in the diploid progeny which
either received only one type of Chr 2 homologue (Ps2, Ps3,
Ps4, Ps5, Ps6, Ss1, Ss2, Ss3, Ss4, Ss8, and Ss10) or received two
homologues that only differ near the Chr 2R telomere (Ps1,
Ps7, Ps8, Ss5, Ss6, Ss7, and Ss9). Similarly, one of the gal1D Chr
1 homologues in the parental MTLa strain had undergone
LOH of a single SNP near the telomere of Chr 1L and this
LOH tract was retained in all of the progeny.

As in the wild-type (SPO11þ) progeny that were close to
diploid, a majority (11/18) of the strains carried at least one
and up to three trisomies, and Chr 4 was often one of the
trisomic chromosomes (5/11 strains). Other chromosomes
that became trisomic were Chr R, Chr 1, Chr 2, Chr 5, Chr 6,

and Chr 7. The only chromosome that did not become
trisomic in these strains or in the wild-type diploid progeny
strains was Chr 3. Concerted chromosome loss did result in
homozygosis of Chr R in nine strains (and trisomy in one
strain) with the same homologue always being retained (the
blue-colored ‘‘A’’ homologue in Figure 7). Interestingly, while
no trisomies of Chr 3 were found, Chr 3 underwent LOH in
ten strains, with seven of them retaining homologue B
(colored pink) and three retaining the A homologue (Figure
7).
The most striking feature of the Dspo11 progeny strains was

that they did not undergo any detectable genetic recombi-
nation events. No single LOH events (gene conversion events)
or chromosome crossing over events (long-range LOH) events
were observed (although we note that if reciprocal recombi-
nation events occurred, in which both recombinant chromo-
somes were retained, these would not be detected by SNP
analysis). In contrast, progeny derived from SPO11þ strains
exhibited multiple recombination events in three out of 13
strains (Figure 4), a difference that is statistically significant (p
, 0.05). Taken together, the SNP and CGH experiments
indicate that genetic recombination takes place in wild-type
cells during the parasexual mating cycle, generating recombi-
nant C. albicans strains. These recombination events are
dependent on Spo11p, a conserved protein that normally acts
specifically in meiosis in a wide range of eukaryotes. We
suggest that Spo11p function has been adapted in C. albicans
for mediating genetic recombination in the alternative
parasexual mating cycle.

Analysis of the Pattern of Concerted Chromosome Loss
during the Parasexual Cycle
The Spo11 experiment more than doubled the data on

chromosome loss from C. albicans tetraploids, and we used this
expanded dataset to re-evaluate patterns of chromosome loss
during the parasexual cycle. We pooled genomic profiling
data for all 31 progeny strains derived from tetraploids by

Figure 6. Morphology of Diploid Progeny Strains Derived from the Dspo11 Tetraploid Strain

Progeny strains were grown on YPD medium at 30 8C for 7 d and colonies photographed. Progeny strains Ps1 to Ps8 were derived from growth of the
Dspo11 tetraploid strain on pre-spo medium, while strains Ss1 to Ss10 were derived from growth on sorbose medium. A control diploid strain (SC5314)
and tetraploid strain (RBY176) are shown for comparison.
doi:10.1371/journal.pbio.0060110.g006
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concerted chromosome loss (13 from wild-type SPO11þ

tetraploids and 18 from Dspo11 tetraploids) (Table 1). We
determined, for each chromosome in each strain, whether
they existed as the parental configuration of homologues
(AB), a homozygous configuration (AA or BB), or a trisomic
configuration (AAB or ABB). We excluded Chr 1 from this
analysis, as selection for the loss of the GAL1 gene required
the AB configuration be retained for Chr 1 in all isolates (see
Figure 1B).

While the number of strains analyzed in this study is
relatively small, several trends are apparent. First, if two of
the four copies of each chromosome in tetraploid strains
were lost with equal probability, it would be expected that
67% of chromosomes would consist of AB homologues, while
33% of chromosomes would exhibit either AA or BB
configurations. Isolates selected from pre-spo medium con-

tained a chromosomal distribution very close to this, with
72% of disomic chromosomes being AB homologues, and
28% of chromosomes being AA or BB homologues. In
contrast, isolates derived from sorbose medium were biased
towards a homozygous chromosome configuration (45% were
AA or BB with only 55% exhibiting the AB configuration).
Sorbose-selected strains were also more likely to contain
trisomic chromosomes than were strains selected on pre-spo
medium. Trisomic chromosomes were present for 24.3% of
chromosomes selected on sorbose medium, while only 12.4%
of chromosomes were trisomic in isolates selected on pre-spo
medium. Both of these differences between pre-spo and
sorbose media were significant (p , 0.05) and provide
evidence that strains undergoing chromosome loss on these
media either experience different patterns of chromosome
loss or different selective pressures.

Figure 7. Schematic Summary of Genomic Profiles of Progeny Diploid Strains Derived from the Dspo11 Tetraploid Strain via the Parasexual Cycle

Progeny strains were analyzed by SNP and CGH microarrays to determine the genetic content of each strain. As described in the legend to Figure 4,
chromosome homologues are indicated by blue and pink bars to represent ‘‘maternal’’ and ‘‘paternal’’ homologues, respectively. In cases where a
chromosome is trisomic, this is indicated by a bracket to the right of the chromosome. Ps1 to Ps8 progeny strains were derived from growth of the
Dspo11 tetraploid (RBY176 or RBY177) on pre-spo medium, while Ss1 to Ss10 strains were derived from Dspo11 tetraploid growth on sorbose medium.
Detailed SNP and CGH array data are provided in Tables S5 and S6 and Figure S4.
doi:10.1371/journal.pbio.0060110.g007
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Previous studies have also observed differences between
pre-spo and sorbose medium in that diploid C. albicans strains
were stable on pre-spo medium but exhibited chromosome
instability (particularly that of Chr 5 but also of other
chromosomes) on sorbose medium [16,19,39]. One possibility
for the higher fraction of homozygous AA/BB chromosomes
in tetraploids exposed to sorbose medium is that these
conditions generate monosomic chromosomes that then
undergo re-duplication to form homozygous disomic chro-
mosomes. At least for Chr 5, this possibility was ruled out by
PCR typing of MTL alleles on this chromosome, as all four
MTL alleles in the tetraploid are distinct (MTLa, MTLa,
MTLDa, MTLDa; Figure 1B). PCR analysis revealed that
strains that were homozygous for Chr 5 by SNP analysis
always contained two distinct MTL alleles, indicating that
monosomy and reduplication had not occurred (unpublished
data). These experiments demonstrate that, at least for
tetraploid strains, the formation of viable progeny on sorbose
medium does not require monosomy of Chr 5 at any stage.

Trisomy was more common in strains derived from sorbose
medium than pre-spo medium and could be due either to
chromosome loss of one homologue from tetraploids or to re-
duplication of one chromosome homologue in a disomic
strain. Curiously, at least in a subset of cases, trisomy was a
result of reduplication of one chromosome homologue in
sorbose-derived strains. For example, three strains, S5, Ss1,
and Ss9, were shown to be trisomic for Chr 5 by SNP analysis
and yet each strain contained only two types of MTL allele by
PCR genotyping. This indicates that trisomy of Chr 5 arose by
re-duplication of one homologue of Chr 5 in a disomic strain.
In addition, one isolate (strain Ss2 derived from sorbose
medium) was trisomic for Chr 1, but was clearly gal1� by PCR

(lacked the GAL1 ORF) and was also 2-DOG resistant. Thus,
where trisomies can be distinguished in sorbose-derived
strains, they were due to re-duplication of chromosome
homologues for Chr 1 and Chr 5. In contrast, strain Ps8
derived from pre-spo medium was trisomic for Chr 5 and also
tri-allelic at the MTL locus, indicating that trisomy occurred
via loss of one homologue of Chr 5 and not chromosome re-
duplication. Overall, our results suggest that growth of
tetraploids on sorbose medium may apply more selective
pressure to the cells than growth on pre-spo medium, causing
them to produce progeny with increased trisomies by
chromosome re-duplication and more bias in the distribution
of whole chromosome LOH events.
A further conclusion from our analysis is that every

chromosome (excluding Chr 1 because of the selection for
gal1D/D) can exist in a homozygous form. Because of the
limited number of strains analyzed, we only detected one
homozygous configuration (either the AA or BB configu-
ration) for most chromosomes, however both Chr 3 and Chr 5
were found in both the AA and BB configurations. This
implies that Chr 3, like Chr 5, does not contain recessive
lethal alleles on either chromosome homologue. One possible
caveat to this conclusion is that undetected recombination
events may have repaired recessive lethal alleles on these
chromosome homologues. However, this seems unlikely given
that the Dspo11 progeny produced a significant number of
strains that were homozygous for both homologues of Chr 3;
seven progeny were homozygous for the B homologue and
three were homozygous for the A homologue.
We detected trisomies for all chromosomes except Chr 3 in

at least one progeny strain. This suggests that one or more
genes on Chr 3 may not be well tolerated at higher than

Table 1. Summary of Genotypes in Progeny Strains Derived from the Parasexual Mating Cycle

Strain Chromosome Configuration Pre-Spo Sorbose Pre-Spo þ Sorbose

Wild-type (SPO11þ) (13 strains) AA or BB 10 14 24

AB 32 14 46

Trisomic 7 14 21

% AB (expect 67%) 76% 50% 66%

% AA or BB (expect 34%) 24% 50% 34%

% Trisomic 14.3% 33.3% 23.1%

spo11� strains (18 strains) AA or BB 16 25 36

AB 34 34 68

Trisomic 6 14 20

% AB 68% 58% 65%

% AA or BB 32% 42% 35%

% Trisomic 10.7% 19.2% 16.1%

Combined wild-type (SPO11þ) and spo11� strain data AA or BB 26 39a 60

AB 66 48a 114

Trisomic 13b 28b 41

% AB 72% 55%a 65%

% AA or BB 28% 45%a 35%

% Trisomic 12.4%b 24.3%b 19.1%

The table compares the chromosome configuration for progeny strains derived from pre-spo medium and sorbose medium and also compares progeny derived from wild-type (SPO11þ)
tetraploid strains and Dspo11 tetraploid strains. Numbers shown represent total number of individual chromosomes pooled from all strains, but do not include Chr 1, which was selected
to be in the parental configuration in all progeny strains. Chromosome homologue configurations are noted as heterozygous AB pairs (parental configuration) or as homozygous pairs (AA
or BB). Trisomic chromosomes were AAB or ABB. A Chi-square test was used to determine if the distribution of homozygous versus heterozygous chromosomes differed significantly from
that expected by random segregation from the tetraploid (expect 67% heterozygous, 33% homozygous chromosomes).
aOne population that did differ significantly was the progeny strains derived from sorbose medium.
bA two-sided z-test was also used to demonstrate that the distribution of trisomies differed significantly between strains derived from pre-spo and sorbose medium.
doi:10.1371/journal.pbio.0060110.t001
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euploid copy number under these conditions. Recent studies
in S. cerevisiae have shown that increased copy numbers of
certain chromosomes can be lethal, as haploid cells disomic
for Chromosome VI were inviable [40]. However, at least in
the majority of cases, C. albicans strains trisomic for one or
more chromosomes were viable and produced apparently
stable karyotypes.

Finally, a comparison of the growth rates of the progeny
strains from the parasexual cycle was revealing. While most of
the euploid progeny grew at rates very similar to that of a
control diploid strain, aneuploid strains grew at increasingly
slower rates as the number of trisomic chromosomes
increased (Figure S3). Thus, euploid progeny grew on average
7.4% slower than a control SC5314 strain, while strains
containing one trisomic chromosome grew 9.5% slower,
strains containing two trisomies 16.3% slower, and strains
with three trisomies 23.4% slower. Thus, as the number of
additional chromosomes increased, so, in general, did the
doubling time of the cell. In S. cerevisiae a similar observation
has been made, where aneuploid chromosomes (disomies in
haploids or trisomies in diploids) were found to cause a
proliferative disadvantage, and this disadvantage generally
increased as the number of extra chromosomes increased
[40,41]. Aneuploidy therefore appears to confer a prolifer-
ative disadvantage in multiple yeast species.

Discussion

Most sexually reproducing organisms use meiosis to reduce
the chromosome number of the cell and to generate genetic
diversity through recombination, typically for the formation
of recombinant haploid progeny from diploid precursors. In
C. albicans, a meiotic program has not been identified, despite
an intact mating apparatus and the presence of many genes
in the genome that function specifically in meiosis in related
fungal species [18]. However, an alternative pathway has been
described that through chromosome loss can complete a
parasexual cycle. In contrast to the precision of the meiotic
process, the parasexual pathway utilizes random, yet con-
certed, chromosome loss for the formation of diploid
progeny from tetraploid cells [16]. In this paper, we used
both SNP and CGH microarray analyses to reveal that the
parasexual pathway generates highly divergent strains by
three distinct mechanisms: (i) shuffling of whole chromo-
somes, leading to new combinations of homologues; (ii)
formation of aneuploid strains, usually trisomic for one or
more intact chromosomes; and (iii) accumulation of multiple
recombination events between homologous chromosomes, in
a process that is dependent on the conserved meiosis protein,
Spo11p.

The parasexual process of concerted chromosome loss in C.
albicans was previously suspected of yielding new combina-
tions of homologues by random segregation of parental
chromosomes [16,42]. Our work now confirms this idea.
Strains from the parasexual cycle also often contained
aneuploid chromosomes, as would be expected if the
chromosome reduction process was not completed or if
strains obtained a selective advantage from the presence of a
particular aneuploidy (as suggested by the prevalence of Chr
4 trisomies in this study). Prior to the discovery of mating in
C. albicans, classical experiments demonstrated that tetra-
ploids could be formed by fusion of spheroplasted diploid

cells [43,44], and that chromosome instability could be
induced in these tetraploid cells by artificial means (e.g., heat
shock, drug selection) [45,46]. The products of chromosome
loss were also cells with a diploid, or close to diploid, DNA
content, indicating that random segregation of chromosomes
can occur in tetraploids generated either by mating or by
fusion of spheroplasted cells.
Much less expected was our discovery that some strains

undergoing the parasexual cycle underwent genetic recombi-
nation between homologous chromosomes. Even more
surprising, these strains underwent recombination events at
multiple different chromosomal loci. The observation that
recombination was extensive in some strains but absent in
others, may indicate that strains can exist in two alternative
states; those that are primed to undergo genetic recombina-
tion during the parasexual cycle and those that are not. We
note that it is unlikely that these recombinant strains were
formed by a subset of tetraploids undergoing meiosis, as all
three recombinants were aneuploid, being trisomic for at
least one chromosome. In contrast, meiosis would be
expected to produce primarily true diploid (euploid) strains
without chromosomal aneuploidies. Genetic recombination
is integral to meiosis in most fungi, where accurate
segregation of chromosomes at the first meiotic division
requires recombination between homologous chromosomes
(for recent reviews see [17,47,48]). Meiotic recombination is
initiated by the formation of DNA DSBs catalyzed by Spo11p,
generating covalent protein-DNA intermediates that are
subsequently processed by enzymes including homologs of
bacterial RecA [49,50]. Meiotic recombination can lead either
to the reciprocal exchange of DNA flanking the DSB
(crossover events) or to events in which no exchange of the
flanking DNA takes place (gene conversion or non-crossover
events). However, at least in S. cerevisiae, Spo11 has not been
observed to influence rates of mitotic recombination (C.
Giroux, personal communication).
Recombination in strains undergoing the parasexual path-

way in C. albicans was less frequent than that expected from a
classical meiotic pathway. Significantly, however, deletion of
C. albicans Spo11 function eliminated all recombination
during the parasexual mating cycle (Figure 7 and Tables S5
and S6). This result suggests that C. albicans Spo11p is integral
to the generation of genetic diversity during the parasexual
cycle, and thereby enhances the degree of variability in the
strains produced. In addition, in the absence of evidence for a
functional meiosis in C. albicans, our findings suggest a role for
the conservation of one meiotic gene in this organism. We
propose that the Spo11 protein, which functions specifically
in meiosis in other organisms, has been re-programmed in C.
albicans to function during the parasexual pathway. Future
experiments will determine if other meiosis-specific proteins
function in the alternative parasexual process in C. albicans.
We cannot rule out, however, the possibility that meiotic
proteins have been retained to function in a cryptic meiotic
pathway that remains to be discovered.
In S. cerevisiae, Spo11 functions together with a number of

accessory proteins to introduce meiotic DSBs, including Ski8,
Mer2, Mei4, Rec102, Rec104, and Rec114 [17]. However, with
the exception of Ski8, homologues of these accessory factors
are not recognizable in the C. albicans genome [18]. This may
be due, at least in part, to the fact that many of the proteins
involved in meiotic recombination are faster evolving than
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most other cellular proteins [37,38]. The limited conservation
of meiotic factors may also account for the observation that
C. albicans Spo11p did not complement an S. cerevisiae spo11
mutant for meiotic recombination. In fact, cross-comple-
mentation of Spo11p function between any two species has
yet to be successfully demonstrated (S. Keeney, personal
communication). Even in S. pombe, where a number of genes
involved in meiotic DSB formation have been identified, most
of these genes share either very limited or no sequence
homology with genes in S. cerevisiae or any other organism.
Thus, many of the proteins involved in DSB formation appear
to have significantly diverged from one another. In addition,
it appears that different biochemical functions are utilized in
different organisms to initiate the formation of DSBs [17].
Clearly, it will be of significant interest to identify co-factors
that act with Spo11 to mediate recombination during the
parasexual cycle of C. albicans.

Phenotypic Analysis of Parasexual Progeny Strains
The products of the C. albicans parasexual cycle were

diploid and aneuploid progeny that exhibited altered colony
morphology phenotypes. In particular, many strains had an
increased tendency to form hyphal filaments on solid
medium, evident either by increased surface wrinkling of
the colony or by increased peripheral filamentation at the
edge of the colony. Since the yeast-hyphal transition is closely
associated with virulence of C. albicans strains, it is likely that
many of these progeny strains will show altered virulence in
animal models of candidiasis. Several of the progeny strains
exhibited growth defects relative to control diploid strains, to
control tetraploid strains, and to other diploid progeny. In
some cases this was likely due to chromosomal aneuploidies,
as many of these strains carried extra copies of up to three of
the eight chromosomes of C. albicans. Indeed, being trisomic
for two or three chromosomes increased cell doubling times
by 16% and 23%, respectively, over a diploid control strain.
Recent studies in S. cerevisiae have found that aneuploidy due
to the presence of one or more additional chromosomes
resulted in compromised growth rates [40]. Aneuploidy of
large chromosomes or of multiple chromosomes correlated
with the most significant cell cycle delays in S. cerevisiae [40].
We observed the same phenomenon in C. albicans strains, that
the more aneuploid chromosomes a strain carries, the greater
the proliferative disadavantage.

Compromised growth was also observed in a subset of
euploid progeny from the parasexual mating cycle. In
general, it appeared that LOH on 1–2 chromosomes did not
typically compromise growth rates, but that LOH across
multiple chromosomes did (e.g., strains Ps7 and Ss10). In
these cases, it is likely that LOH at multiple genes led to the
reduced fitness of these strains. Consistent with this idea,
most clinical isolates, including the SC5314 strain whose
genome was sequenced, show extensive heterozygosity.
Previous studies have shown that allelic differences between
C. albicans genes from different chromosome homologues can
result in altered protein expression and altered protein
function [51–54]. In addition, a recent study analyzed Chr 5
heterozygosity in multiple clinical isolates and found that
LOH at multiple genes along Chr 5 reduced the virulence of
strains in a model of systemic candidiasis [55]. Our work is
also consistent with the idea that heterozygosity of multiple
chromosomes provides C. albicans strains with a fitness

advantage, at least for growth on laboratory media. Taken
together, these results indicate that being heterozygous for
genes on multiple chromosomes can improve both the fitness
of mitotically dividing cells in vitro and the virulence of
strains in vivo. However, the parasexual cycle (including the
recombination events described in this paper) generates a
great deal of genetic diversity, and it seems likely that
conditions exist where strains that show reduced fitness in the
laboratory have a selective advantage elsewhere.

Sexual Versus Asexual Reproduction
Recent work has revealed that C. albicans, like other

prevalent human fungal pathogens such as Cryptococcus
neoformans and Aspergillus fumigatus, has access to a sexual
mating program, but that under most conditions it prop-
agates primarily in an asexual manner [56–58]. Recent studies
in the model yeast S. cerevisiae found that both asexual and
sexual modes of reproduction can be advantageous under the
right experimental conditions. Under constant environmen-
tal conditions, the asexual mode of propagation was favored,
but under stressful conditions the sexual strain had the
competitive advantage [59,60]. In the case of C. albicans
strains, population genetics on clinical isolates first suggested
that the predominant mode of reproduction was clonal, with
only limited evidence for genetic recombination between
strains [61–64]. A recent study, however, found evidence for a
high frequency of recombination events amongst clinical
isolates, consistent with C. albicans strains undergoing sexual
or parasexual recombination in their natural environment
[13]. These studies are also consistent with the results
presented here: the parasexual mating cycle can generate
variant genotypes, including a subset of strains that have
undergone extensive genetic recombination between chro-
mosomes.
For C. albicans, the parasexual mechanism may provide two

significant benefits over a conventional sexual pathway. First,
the parasexual mechanism is imprecise, generating many
aneuploid strains as well as euploid progeny strains. Common
aneuploidies included diploid strains harboring trisomic
chromosomes, and this karyotypic variation led to greater
genetic and phenotypic diversity in the progeny population.
Consistent with this observation, changes in chromosome
copy number have previously been linked to phenotypic
changes in C. albicans, including increased resistance to
antifungal azoles [28,65]. Thus, karyotypic variation appears
to be an important mechanism utilized by C. albicans to
regulate physiologically important genes [66]. In S. cerevisiae,
aneuploid strains are similarly at a competitive disadvantage
with euploid strains, unless there is a strong selective pressure
that favors growth of the aneuploid form [40,67,68]. A second
potential benefit of the parasexual cycle is that it bypasses the
process of sporulation common to the sexual cycle of most
ascomycetes. Ascospores are thought to be highly antigenic,
and, given that C. albicans strains normally exist as commen-
sals within warm-blooded hosts, the absence of spore
formation may facilitate the generation of genetic diversity
without compromising cell survival [56].
In summary, the parasexual cycle in C. albicans provides an

alternative to a sexual reproductive cycle. Concerted chromo-
some loss reduces the ploidy of the cell from tetraploid to
approximately diploid, generating recombinant progeny
strains with variant phenotypes. Genetic recombination
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between homologous chromosomes, dependent on the Spo11
protein, takes place during these reductive mitotic divisions,
further contributing to genetic diversity. We propose that at
least some of the meiotic recombination machinery has been
re-programmed to function in parasexual recombination in C.
albicans. Finally, we note that as C. albicans thrives only in warm-
blooded animals, the parasexual cycle provides a number of
potential advantages over a conventional sexual cycle.

Materials and Methods

Strains and media. Standard laboratory media were prepared as
previously described [69]. Construction of the genetically marked
tetraploid strain, RBY18, was previously described [16]. A tetraploid
Dspo11 strain was constructed by first deleting the SPO11 gene in the
diploid strains RBY16 and CHY477 [16]. Both copies of SPO11 were
sequentially disrupted using a modified Ura blaster method [70,71]. A
SPO11 gene disruption construct was made by PCR amplifying the
HisG-URA3-HisG cassette using oligonucleotides SPO11 KO-59 and
SPO11 KO-39 from plasmid pDDB57 (see Figure S5) [71]. Hetero-
zygous strains were then constructed by replacing SPO11 coding
sequences with the URA3 selectable marker flanked by HisG repeats.
Uraþ strains that were deleted for one copy of SPO11 were grown on
nonselective medium and subsequently plated on SCD medium
containing 5-fluoroorotic acid (5-FOA) and uridine medium to select
for loss of the URA3 gene [70]. The HisG-URA3-HisG cassette was then
used to delete the second copy of the SPO11 gene. The construction
of Dspo11 mutants was confirmed using PCR to check both 59 and 39
junctions following integration of the Ura blaster cassette and also to
confirm the loss of the SPO11 ORF following the second round of
transformation. Deletion of SPO11 in the diploid strains RBY16 and
CHY477 generated strains RBY77 and RBY79, respectively. The
diploid strains were mated as previously described [16] to form the
tetraploid Dspo11 strains RBY176 and RBY177.

To follow expression of the Spo11 protein the gene sequence was
fused to that encoding a 13 3 myc epitope tag. The Spo11 gene and
promoter were first amplified by PCR using oligonucleotides
Spo11(myc) for, 59-cccaatatgaagcactaaactc-39 and Spo11(myc) rev,
59-ggcgcgcccggggatccgtttcgtatagctagccgttcc-39. The amplified se-
quence was then digested with HindIII and SmaI enzymes and
ligated into a pMYC-HIS1 vector. The resulting plasmid contains the
SPO11 gene sequence fused to 13 copies of the myc epitope. The
plasmid was then linearized by digestion with BstBI and used to
transform strain RBY1118 (a diploid a-type mating strain) to
generate CAY126. RBY1118 itself was derived from a/a strain
SNY87 [72] by growth on sorbose medium to select for a and a
derivatives, as previously described [19]. PCR was used to confirm
that the vector had inserted at the endogenous SPO11 allele. To
induce chromosome instability in tetraploid strains, the SPO11þ

tetraploid strain RBY18, or Dspo11 tetraploid strains RBY176/177,
were incubated on S. cerevisiae pre-sporulation (pre-spo) medium
(0.8% yeast extract, 0.3% peptone, 10% dextrose, and 2% agar) at
37 8C for 10 d. Alternatively, tetraploid strains were incubated on L-
sorbose medium (0.7% yeast nitrogen base (without amino acids), 2%
L-sorbose, and 2% agar) at 30 8C for 10 d. Following incubation, cells
that had undergone loss of Chromosome 1 and become gal1� were
selected by growth on 2-deoxygalactose (2-DOG) medium for 2 d, as
previously described [16]. 2-DOGþ colonies were patched onto YPD
and subsequently frozen (in a 1:1 solution of 50% glycerol and YPD).
Subsequent culturing of progeny strains was kept to a minimum (less
than 1 wk).

We have not attempted to reintegrate SPO11 for three major
reasons. First, the phenotype being tested is subtle; RBY18 (SPO11þ)
tetraploid strains exhibited recombination events in three out of 13
progeny, while Dspo11 mutants exhibited no observable recombina-
tion events. Second, because we are studying a phenomenon in
tetraploid strains, it is not clear how many copies of the SPO11 gene
would need to be reintegrated into the tetraploid to generate a
significant difference from the mutant. And third, reconstituted
strains often exhibit a range of complementation efficiencies, with
multiple strains having to be analyzed to confirm restoration of the
wild-type phenotype.

PCR and flow cytometric analysis of strains. PCR analysis of the
MTL alleles was used as an indicator of the copy number of Chr 5 in
each sample. PCR primers unique to MTLa1, MTLa1, Da1, and Da2
were used to distinguish MTL alleles in tetraploid cells and progeny

cells derived from tetraploids. The oligonucleotides used for MTL
analysis have been previously described [14].

To generate cells for flow cytometric analysis, test strains were
grown in YPD medium at 30 8C and harvested when the OD was
between 1 and 2. Samples were then prepared for analysis as
previously described [16].

SNP and CGH microarrays. Previously, we described the develop-
ment of a SNP microarray to determine genotypes at 123 SNP loci
across the genome of C. albicans (Forche et al., unpublished data.). For
this study the microarray was expanded to include an additional 29
SNP loci, giving a total of 152 (Table S3). Fifteen of the 29 new SNP
loci were adapted fromWu et al. [73] (Table S3). Since clinical isolates
were used by Wu and co-workers and not derivatives of strain SC5314
(the SNP microarray is based on SNPs from SC5314), the presence of
reported SNPs was confirmed by sequencing, as described previously
[25]. New primer pairs were developed to allow for the amplification
of small PCR products suitable for SNP microarray analysis. Design of
allele-specific oligonucleotides, probe generation, slide preparation/
hybridization, data analysis, and sequence confirmation of LOH
events were conducted as described elsewhere ([26]; Forche et al.,
unpublished data). CGH that has been adapted for C. albicans was
carried out as described previously [27].

Statistical analysis. A two-tailed t test was performed to indicate if
changes in karyotype were statistically significant. A p-value of , 0.05
in the two-tailed t test was interpreted as a significant difference,
while p-values .¼ 0.05 were insignificant.

Western blotting. Cultures of strains CAY126 (Spo11-13myc),
RSY84 (Kar3-13myc), and the untagged RBY1118 strain were grown
to logarithmic phase in YPD medium at 30 8C and cells harvested.
Whole-cell extracts from these strains were prepared by resuspending
cell pellets in lysis buffer (10 mM Tris-HCl [pH 7.5], 50 mM NaCl, 1
mM dithiothreitol) containing protease inhibitors (pepstatin A,
leupeptin, phenylmethyl sulfonyl chloride, and aprotinin) and lysis
achieved by bead beating for 12–15 cycles (30 s vortexing following by
30–60 s on ice). An aliquot from each sample was separated by SDS-
PAGE and analyzed by western blotting. The myc-tagged proteins
were detected using an anti-myc antibody at 1/2,000 dilution (4a6
antibody; Millipore) followed by an anti-mouse HRP (horseradish
peroxidase)-conjugated antibody at 1/1,000 dilution (Jackson Labo-
ratories). Antibody binding was visualized using the SuperSignal West
Pico Chemiluminescent Substrate (Pierce) and exposure to auto-
radiography film.

Supporting Information

Figure S1. Alignment of C. albicans Spo11 with Conserved Spo11
Proteins from Other Species

C. albicans Spo11 (product of ORF19.11071) was aligned with other
fungal Spo11 sequences from S. pombe, S. cerevisiae, and K. lactis, as well
as with the Drosophila Spo11 protein. The active site tyrosine residue
is highlighted in yellow, with other highly conserved regions
highlighted in blue.

Found at doi:10.1371/journal.pbio.0060110.sg001 (53 KB PPT).

Figure S2. Flow Cytometric Analysis of Progeny Diploid Strains
Derived from Dspo11 Tetraploids via the Parasexual Cycle

As a control, a parental diploid strain (A) and the tetraploid RBY18
strain (B) were analyzed by flow cytometry for comparison. The x-axis
of each graph (Sytox) represents a linear scale of nuclear fluores-
cence, and the y-axis (Counts) represents a linear scale of cell number.

Found at doi:10.1371/journal.pbio.0060110.sg002 (32.9 MB TIF).

Figure S3. Growth Rates of Progeny Strains fromWild-Type (SPO11þ)
and Dspo11 Tetraploid Strains

(A) Doubling times (DT) of each of the progeny strains during
exponential growth in YPD medium at 30 8C (min).
(B) Graph indicates the correlation between increased numbers of
aneuploid (trisomic) chromosomes and increased cell doubling times.
(C) Increased cell doubling times of progeny strains is dependent on
the number of extra chromosomes they contain (over the normal
diploid complement). The progeny strains were compared to SC5314,
an a/a diploid control strain. The standard error is shown for the
averaged data. Growth rates for progeny containing two or three
trisomic chromosomes (þ2 Chr or þ3 Chr, respectively) differed
significantly from euploid diploid strains (p , 0.005), using a t-test
(two sample assuming equal variances).

Found at doi:10.1371/journal.pbio.0060110.sg003 (70 KB DOC).

PLoS Biology | www.plosbiology.org May 2008 | Volume 6 | Issue 5 | e1101095

Parasexual Recombination in C. albicans



Figure S4. CGH Analysis of Progeny Strains Derived from Wild-Type
(SPO11þ) and Dspo11 Tetraploid Strains

Plots of each chromosome are shown with the y-axes representing
gene copy number calculated from log 2 values. Abbreviations are
CSE4, centromeric DNA; MRS, major repeat sequence; transp.,
transposon; CARE-2, the CARE-2 repetitive element; telom., telo-
meric sequences.

Found at doi:10.1371/journal.pbio.0060110.sg004 (3.86 MB PPT).

Figure S5. Oligonucleotides Used to Amplify the SPO11 Gene
Disruption Construct

Found at doi:10.1371/journal.pbio.0060110.sg005 (12 KB PDF).

Table S1. Comparison of CGH and SNP Data

Table shows large chromosomal changes indicated by CGH and SNP
analysis. These changes include chromosomal aneuploidies (trisomic
chromosomes; 33) and LOH events (whole chromosomes or partial
chromosomes). This table shows the high correlation between
identification of trisomic chromosomes by CGH and SNP techniques.

Found at doi:10.1371/journal.pbio.0060110.st001 (23 KB XLS).

Table S2. Complementation of Spo11 Function in S. cerevisiae Meiotic
Recombination

SKY10 (Dspo11) was transformed with ARS/CEN plasmids carrying the
indicated SPO11 alleles. Intragenic recombination was measured as
the HISþ prototroph frequency (frequency3 103 per viable cell) after
8 h at 30 8C in SPM medium [35]. Each value is the mean 6 standard
deviation of at least four experimental samples. The premeiotic
prototroph frequencies have not been subtracted.

Found at doi:10.1371/journal.pbio.0060110.st002 (25 KB DOC).

Table S3. Additional SNPs Used in This Study

29 additional SNPs were included in this study as listed. Each SNP
has a unique identifier number (151–179) and a descriptive name
(e.g., ERG7/1). The chromosomal location of each SNP in the Contig
19 database (http://www.candidagenome.org) is listed. The chromo-
some position is indicated by both the chromosome number and the
Sfi fragment on which the SNP is found (e.g., 2U indicates the Sfi
fragment U on Chromosome 2). For more details on the physical
map of C. albicans go to http://albicansmap.ahc.umn.edu. Note that
some SNPs are located on the same PCR product (e.g., SNPs 152, 153,
and 154 are all located on the same PCR product on Chromosome 2).

Found at doi:10.1371/journal.pbio.0060110.st003 (26 KB XLS).

Table S4. SNP Data for Progeny Strains Derived from the Wild-Type
(SPO11þ) Tetraploid Strain (RBY18)

Table shows SNP data for parental diploids (DIP), tetraploid RBY18
strain (TET), and 13 progeny (PR) strains. Strains P1 to P7 were
derived from pre-spo medium, while strains S1 to S6 were derived
from sorbose medium. Homozygous loci are indicated by red text (AA

configuration) or pink text (BB configuration). Trisomic loci are
indicated by green text (AAB configuration) or blue text (ABB
configuration). Black text indicates the locus is heterozygous (AB
configuration). NaN; data not applicable.

Found at doi:10.1371/journal.pbio.0060110.st004 (67 KB XLS).

Table S5. SNP Data for Progeny Strains Derived from Dspo11
Tetraploids Grown on Pre-Spo Medium

Table shows SNP data for parental diploids (DIP), tetraploid strains
(RBY176/177; TET), and eight progeny (PR) strains. Strains Ps1 to Ps8
were derived from Dspo11 tetraploids grown on pre-spo medium.
Homozygous loci are indicated by red text (AA configuration) or pink
text (BB configuration). Trisomic loci are indicated by green text
(AAB configuration) or blue text (ABB configuration). Black text
indicates the locus is heterozygous. NaN; data not applicable.

Found at doi:10.1371/journal.pbio.0060110.st005 (222 KB XLS).

Table S6. SNP Data for Progeny Strains Derived from Dspo11
Tetraploids Grown on Sorbose Medium

Table shows SNP data for parental diploids (DIP), tetraploid strains
(RBY176/177; TET), and ten progeny (PR) strains. Strains Ss1 to Ss10
were derived from Dspo11 tetraploids grown on sorbose medium.
Homozygous loci are indicated by red text (AA configuration) or pink
text (BB configuration). Trisomic loci are indicated by green text
(AAB configuration) or blue text (ABB configuration). Black text
indicates the locus is heterozygous. NaN; data not applicable.

Found at doi:10.1371/journal.pbio.0060110.st006 (66 KB XLS).
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