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problems due to confounding: Are family-

based designs the answer?
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Genome-wide association studies (GWASs) can be affected by con-
founding. Family-based GWAS uses random, within-family genetic
variation to avoid this. A study in PLOS Biology details how differ-
ent sources of confounding affect GWAS and whether family-based
designs offer a solution.

Since the advent of large-scale, genome-wide genotype data, one study design has dominated

human genetics: the genome-wide association study (GWAS). A GWAS scans across the

genome for loci that are associated with a phenotype. However, GWASs are susceptible to con-

founding due to gene–environment correlation (environmental confounding) and correla-

tions with other genetic variants across the genome (genetic confounding). Although GWASs

use techniques including principal component analysis (PCA) to adjust for population struc-

ture, this often fails to eliminate all confounding [1–3]. The confounding present in GWAS

has caused issues in downstream applications, including: estimation of heritability and genetic

correlation [4,5], estimation of disease causes using mendelian randomization [6], and infer-

ences of natural selection [2]. Family-based GWAS (FGWAS) has been proposed as a solution

to confounding because genotypes of offspring are randomly assigned given the genotypes of

the parents, generating a natural experiment. Recent FGWASs have demonstrated confound-

ing in GWASs of several phenotypes [7,8], including educational attainment, cognitive ability,

height, smoking, and age when first giving birth. In this issue of PLOS Biology, Veller and

Coop [9] perform a comprehensive evaluation of how different phenomena can lead to bias in

GWAS and FGWAS, finding that FGWAS is free from all environmental confounding and

almost all genetic confounding.

Typically, GWASs analyze one focal variant at a time, so GWAS associations include the

direct genetic effects (DGEs, causal effects of alleles in an individual on that individual) of the

focal variant and variants that are correlated with the focal variant (i.e., in linkage disequilib-

rium or LD). Variants that are physically close (on the same chromosome) to the focal variant

tend to be in strong LD as they tend to be inherited from the same parental haplotype without

recombination. This makes it hard to pinpoint the causal variant, leading to the problem of

fine-mapping. Since this occurs even under random-mating, it’s not typically thought of as
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genetic confounding even though it leads to genotype–phenotype association for non-causal

variants. Furthermore, many methods are designed to work with this type of local LD that

always affects GWAS.

However, phenomena other than DGEs of the focal and nearby variants can contribute to

the genotype–phenotype associations picked up by GWAS [3] (Fig 1): indirect genetic effects

(IGEs, effects of alleles in an individual on another individual mediated through the environ-

ment) from relatives (e.g., parents or siblings) contribute to genotype–phenotype associations

and cannot—in general—be removed without data on first-degree relatives of the GWAS sam-

ple. Although IGEs are a form of gene–environment correlation, they do not require the popu-

lation to be structured. When there is population structure, this can lead to correlations

between alleles and other environment factors (called population stratification, an example of

environmental confounding). For example, two reproductively isolated populations could

Fig 1. Sources of genotype–phenotype association. The family on the left has a higher frequency of the A allele and is

taller than the family on the right. This could lead to a GWAS finding that the A allele is associated with increased

height. However, several distinct phenomena could contribute to the GWAS association. If the A allele exerts a

different effect on the bodies of those carrying it compared to the T allele, leading to increased height, this would

contribute to genotype–phenotype association and be an example of a DGE. However, if the A allele was inherited

from a parent, the A allele could have affected the offspring’s height through another pathway: by affecting the parent’s

phenotype (e.g., nurturing behavior) and thereby affecting the offspring’s height through the environment, an example

of an IGE. IGEs can be considered as confounding factors when the goal is estimation of DGEs—implicitly the goal of

most GWASs. However, genotype–phenotype associations can occur at loci without any causal influence on the

phenotype due to population stratification, which occurs when there is a correlation between allele frequencies and

environments across genetically distinct subpopulations. For example, the family on the left could be from a

subpopulation with abundant calories and a high frequency of the A allele, whereas the family on the right could be

from a subpopulation with insufficient calories and a low frequency of the A allele; this could generate a spurious

association between the A allele and increased height. Another source of confounding is assortative mating, which

results in correlation between mates’ phenotypes, and therefore between the causal alleles in the mother and the father,

irrespective of their physical positions, inducing genetic confounding between the focal A allele and all other causal

alleles in the genome. Family-based GWAS (FGWAS) exploits the randomization of genetic material during meiosis to

remove confounding from estimates of DGEs.

https://doi.org/10.1371/journal.pbio.3002568.g001
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have different rates of skin cancer due to living at different latitudes: this could lead to a spuri-

ous associations (in the overall population) between alleles that are at different frequencies in

these two populations and skin cancer risk. While some forms of population structure can be

corrected for using PCA and other methods, subtle forms of stratification are difficult to detect

and remove from GWAS [1].

Nonlocal genetic confounding—including across chromosomes—can result from nonran-

dom mating, including population structure, natural selection, and assortative mating. Assor-

tative mating leads to correlations between mates’ phenotypes and therefore between the trait

increasing alleles in the mother and the father, irrespective of their physical positions [10].

Over multiple generations of assortative mating, alleles that have the same direction of effect

become positively correlated both within haplotypes from the same parent and across haplo-

types from different parents. GWAS will therefore overestimate the DGE of a causal variant

for a trait affected by (positive) assortative mating because it picks up part of the effect of all

other causal variants, including rare variants and variants on other chromosomes [10]. The

picture is further complicated by the fact that humans do not assort on a single phenotype, but

on multiple dimensions involving multiple phenotypes simultaneously, inducing correlations

across genetic variants affecting different traits [5].

A potential solution to the confounding that can affect GWAS is to instead perform

FGWAS, which uses within-family genotype variation to estimate DGEs. Within-family varia-

tion is generated by random segregations of chromosomes during meiosis, which are indepen-

dent of environment; thus, FGWAS eliminates confounding due to gene–environment

correlation (including IGEs from parents and population stratification).

However, exactly how genetic confounding affects FGWAS had not been thoroughly inves-

tigated until the work of Veller and Coop [9]. Because chromosomes segregate independently

during meiosis, genetic confounding from variants on different chromosomes does not affect

FGWAS. Within-chromosome, FGWAS still has to contend with the fine-mapping problem

due to a lack of recombination between nearby variants. What was not clear until Veller and

Coop’s study was how FGWAS is affected by genetic confounding due to variants on the same

chromosome but not in the same local region (LD block) as the focal variant. They examine

theoretically and in simulations how both GWAS and FGWAS are affected by assortative mat-

ing, population structure (including due to phenotype-based migration), admixture, and natu-

ral selection (in the form of stabilizing selection). They find that all the sources of genetic

confounding can lead to substantial bias in GWAS, but that the confounding in FGWAS is

generally minimal. This is because the human genome is split over 23 chromosomes, implying

that most pairs of loci are on different chromosomes. If traits are affected by many causal vari-

ants spread across the genome, then there is much less potential for genetic confounding due

to correlations between variants on the same chromosome than due to all genome-wide vari-

ants. Since FGWAS eliminates the influence of cross-chromosome correlations, the vast

majority of genetic confounding is eliminated. However, Veller and Coop show that a small

amount of (nonlocal, but within chromosome) genetic confounding can remain under certain

scenarios.

Veller and Coop also give warnings about interpreting coefficients on parental genotypes as

estimates of IGEs—as they are affected by both genetic and environmental confounding—and

on interpreting the results of within-family polygenic prediction analyses. Polygenic predictors

(called polygenic scores or PGSs) are weighted sums of genotypes, with weights typically

derived from GWAS. Within-family association between a PGS and phenotype can only be

due to DGEs (and IGEs between siblings if using a sibling design [7]) but can be misinter-

preted when there is assortative mating on multiple traits. This could lead to a PGS for one

trait predicting another trait within-family, despite there being no shared causal variants. This
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can occur because the PGS for one trait could give nonzero weight to variants that are causal for

the other trait due to correlations between variants for both traits induced by assortative mating.

This concern would be practically eliminated for within-family associations with PGSs derived

from FGWAS, but these are currently far less powerful than PGS derived from GWAS [8].

GWAS has successfully discovered thousands of trait–variant associations, given biological

insights, guided drug target discovery, and enabled creation of powerful polygenic predictors.

However, GWAS is susceptible to confounding that can lead to biases and erroneous conclu-

sions in downstream analyses. FGWAS presents a principled solution by using the natural

experiment of mendelian segregation during meiosis to remove confounding. Veller and Coop

examine FGWAS and find that it removes all environmental confounding and almost all

genetic confounding. Future studies should examine the consequences of the phenomena

investigated by Veller and Coop on downstream applications of both GWAS and FGWAS

(e.g., estimating genetic correlations and natural selection). While FGWAS has favorable prop-

erties compared to GWAS, it requires samples with genotyped first-degree relatives, which

limits the sample size compared to GWAS: existing FGWASs have effective sample sizes in the

tens of thousands [7,8], compared to millions for many GWASs. Even with comparable sample

sizes, FGWAS is less powerful than GWAS because it only uses within-family genetic variation.

Furthermore, issues not examined by Veller and Coop may lead to bias in FGWAS, such as

nonrandom sampling of offspring with respect to heritable phenotypes. We should therefore

consider building family-based sampling (ideally representative of the population) into the

design of future biobanks to enable powerful and robust FGWAS and other family-based

methodologies.
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