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Abstract

Phage therapy is a medical form of biological control of bacterial infections, one that uses

naturally occurring viruses, called bacteriophages or phages, as antibacterial agents. Pio-

neered over 100 years ago, phage therapy nonetheless is currently experiencing a resur-

gence in interest, with growing numbers of clinical case studies being published. This

renewed enthusiasm is due in large part to phage therapy holding promise for providing safe

and effective cures for bacterial infections that traditional antibiotics acting alone have been

unable to clear. This Essay introduces basic phage biology, provides an outline of the long

history of phage therapy, highlights some advantages of using phages as antibacterial

agents, and provides an overview of recent phage therapy clinical successes. Although

phage therapy has clear clinical potential, it faces biological, regulatory, and economic chal-

lenges to its further implementation and more mainstream acceptance.

Introduction

“The phenomenon of bacteriophagy, as carried out under optimal conditions in vitro, is spec-
tacular.” [1]

Science’s awareness of the bacteriophage (phage) phenomenon seems to have begun by around

1898 [2–4], although the idea was not well appreciated until Felix d’Hérelle’s seminal phage

paper of 1917 [5,6]. Although later it was suggested that d’Hérelle had in fact been scooped by

Frederick Twort in 1915 [7,8], then, as well as today, both Twort and d’Hérelle are recognized

as bacteriophage co-discoverers [9]. Prior to 1915, in addition to Gamaleya’s 1898 report, it is

possible that a number of additional researchers had also discovered phage-associated phe-

nomena, a list that notably should not include the much referenced Hankin, 1896 [10,11]. In
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any case, it appears to have been rapidly obvious to d’Hérelle that an entity capable of killing

bacteria—at the time a key defining characteristic of phages along with their smallness and

transmissibility—could have medical utility. Thus was born the concept of phage therapy [12],

the treatment of bacterial infections with viruses (phage virions) to eliminate or at least reduce

numbers of disease-causing bacteria [13,14], with 1921 being the year that a human phage

therapy study was first published [15].

Still, phage therapy does not currently serve as a standard of care in most countries. To

explore why that is so, this Essay begins by introducing basic bacteriophage biology, some of

the post-1921 history of phage therapy, and also multiple advantages associated with using

phages as antibacterial agents. We then turn to the growing catalog of recent clinical phage

therapy successes, discussing the general nature of these studies in particular, as well as impor-

tant future directions. Despite these successes, multiple obstacles to the further development,

acceptance, and approval of phage therapy continue to exist, which we differentiate into bio-

logical hurdles to contrast with those we dub instead as “societal.” Overall, although we high-

light the increasing potential for phages to serve as alternatives or adjuncts to antibiotic

therapy for bacterial diseases, we emphasize the remaining challenges to making this promis-

ing technology more clinically available. For a complementary recent review emphasizing mul-

tiple additional aspects of phage therapy not covered here, we point the reader to Strathdee

and colleagues [16].

Bacteriophages

“. . .le microbe antidysentérique est un bactériophage obligatoire.” [5]

Bacteriophages, first and foremost, are viruses of Bacteria, sharing the world with viruses of

Archaea and viruses of domain Eukarya. An alternative ecological categorization separates

those that infect primarily “macro”-organisms (animals, plants, macrofungi, and larger multi-

cellular algae) from those that infect microorganisms (bacteria, archaea, single-celled protists,

micro-fungi, and microscopic algae) [17,18]. For the latter, virus dissemination between indi-

vidual cells (e.g., between bacterial cells) and between whole organisms (also, e.g., between bac-

terial cells) are more or less the same thing. For the viruses of macro-organisms, especially

multicellular organisms, dissemination instead is within bodies, while transmission to new

individuals, including to other humans, typically is a somewhat distinct phenomenon [19]. In

the following section, we review some phage therapy–relevant aspects of phage biology.

Tailed phages

Phages recently have been differentiated into numerous taxa—particularly families and genera

but also subfamily ranks—as based on genomic similarities between isolates [20]. More tradi-

tionally, at least 10 distinct phage types have been distinguished on the basis of gross virion

morphologies [21,22]. These morphologies vary in terms of whether or not virions contain lip-

ids, have tails, or contain DNA or RNA genomes, as well as whether those genomes are single-

stranded or double-stranded. Smaller-genomed phages (under approximately 10 kb) generally

possess single-stranded nucleic acid (DNA or RNA), middle-sized genomed phages (also RNA

or DNA, but double stranded, and with genomes ranging in size from roughly 10 to 15 kb)

seem to typically have virions that contain lipids, while larger-genomed phages (generally

greater than 15 kb) appear to lack these lipids, have double-stranded DNA genomes, and pos-

sess tails [17,23,24]. It is tailed phages, members of virus order Caudovirales (to be replaced

with class Caudoviricetes; [20]), that represent most of the phages employed in therapy.
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The virion-productive life cycle of all tailed phages ends in lysis of the host bacterium, initi-

ating an extracellular search for new bacteria to infect [25] (Fig 1). This lysis breaches the bac-

terial cell envelope, thereby also metabolically destroying the phage-infected bacterium.

Alternatively, many phages can display lysogenic cycles [26,27], which are not virion produc-

tive but during which the phage genome, now called a “prophage,” nevertheless replicates

along with its bacterial host. Lysogenic cycles caused by tailed phages can eventually give rise

to lytic infections, hence the term, “lysogenic,” where “lysogenic” is considered to be a property

of lysogens (i.e., of bacteria harboring prophages). The phages capable of establishing lysogenic

cycles should be described as temperate [28].

Professionally lytic bacterial viruses

During lysogenic cycles, temperate phages protect their bacterial hosts from being lysed by

other, related phages. This type of protection is known as superinfection immunity [37,38].

Although infection of a bacterium by a temperate phage can, and often does, result immedi-

ately in a lytic cycle [39], these phages, at least in unmodified forms [40], are not generally

regarded as useful therapeutically. This typical absence from phage therapy use is due to both

their lysogenic cycles (temperate phages thereby not always killing the bacteria they success-

fully infect) and the noted superinfection immunity (preventing other phages from killing

those same bacteria). An additional factor is so-called lysogenic conversion [41], whereby

Fig 1. Phage lytic infection cycle. The phage infection cycle. This flows counterclockwise in the figure, starting from the upper left. (1) Phage attachment to

receptor molecules found on bacteria [29,30] is typically described as processes of virion adsorption [31,32] with uptake involving movement of the virion

genome from the phage virion into the bacterial cytoplasm. This can lead to the noted lysogenic cycles (main text) or, in some cases instead, pseudolysogeny

[33–35], but as shown, particularly for virulent phages, gives rise to lytic cycles. (2) Synthesis is of phage-specific macromolecules including RNA, DNA, and

proteins. Assembly is the process of generation of new virions from those macromolecules as resulting, ultimately, in (3) maturation of virions into adsorption

proficient entities. (4) The timing of liberation of virions generally is under phage genetic control [36], though for certain types of phages (not tailed and also

not shown), this release occurs chronically rather than lytically [25].

https://doi.org/10.1371/journal.pbio.3002119.g001
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many temperate phages encode bacterial virulence factors (e.g., those responsible for the intox-

ications associated with cholera, diphtheria, and Escherichia coliO157:H7) [42,43].

Even though many or even most viruses of archaea are also tailed [44], archaeal viruses gen-

erally are not described as phages [45]. Archaeal viruses have also been only minimally

explored for possible therapeutic uses [46], owing at least in part to the relative dearth of

archaea that are associated with disease [47–49]. Viruses of protists are also not described as

phages, although these viruses too have been proposed for possible therapeutic use [49–51]. By

contrast, the use of bacteriophages, and especially tailed bacteriophages, as therapeutic agents

has been extensive. This Essay thus focuses on the therapeutic use of bacterial viruses that are

most commonly tailed, at least ideally lack an ability to enter into lysogenic cycles (thereby

being described instead as strictly lytic, obligately lytic, or virulent), and that do not encode

bacterial virulence factors. Wild-type phages possessing these properties, particularly ones that

are unrelated to temperate phages, can be described as “professionally lytic” [28], and those are

the preferred phages for therapeutic use.

History and advantages of phage therapy

“Soon after Félix d’Hérelle discovered bacteriophages in association with diarrheal illnesses,
he speculated that phages were responsible for the usual recovery from such disease through
their antibacterial action in vivo.” [52]

Historically, the translation of phage therapy from the bench to the clinic has happened at a

rapid pace. This is in part because systems for testing new therapeutics were not as well devel-

oped 100 years ago as they are today. In addition, at that time, there were few alternative

approaches to responding to the great deal of morbidity and mortality associated with bacterial

infections [53]. It was therefore much easier to justify clinical phage therapies without prior,

detailed preclinical data. Confidence in phage utility was also likely fueled by a number of

apparently successful anecdotal results [54]. Furthermore, phage treatments seemed safe,

resulting in minimal downsides for their clinical use, as can be particularly true in modern

times with the use of purified phages for treatments [55–58]. Thus, in a pre-antibiotics world,

in which standard of care for treatment of bacterial infections was highly lacking in efficacy,

phages with their inherent antibacterial properties could supply a much needed hope. This

does not mean that phage therapy was extremely widely practiced in the 1920s and 1930s. Still,

there is ample evidence of their clinical use during this time, as a number of historical reviews

have documented [12,54,59–65]. See Fig 2 for a timeline of notable phage therapy-impacting

events.

Phases of phage therapy development and enzybiotics

We can consider the historical development of phage therapy in terms of phases or periods.

Especially in North America, we can distinguish these different phases into what Summers

[59] described as “Enthusiasm,” the 1920s through the early 1930s [66–68]; “Skepticism,” the

mid-1930s through the mid-1940s, culminating in the widespread introduction of antibiotics;

“Abandonment,” the mid-1940s through the mid-1990s [77]; and then “Recent interest,”

which began in the mid-1990s [64]. English language-published human studies during this

revival of interest number at least 100 [78,79], and indeed we are aware of roughly 50 that have

been published in just the 2020s. It is important to recognize, however, that phage therapy has

been continuously practiced for almost its entire history in different locations worldwide, such
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as in the Soviet Union and its successor republics [75,80], but also now for many decades par-

ticularly in Poland [71,80,81].

More recently, bacteriophage-derived antibacterial enzymes, also called “enzybiotics,” have

raised interest due to their typically rapid and unique modes of action along with their high

specificity [82,83]. They are proteinaceous—although unlike whole phages, they are lacking in

nucleic acids, thus simplifying their regulation—and, importantly, are often associated with a

low propensity for bacteria to develop resistance. Two classes of phage-derived enzymes are

commonly described: peptidoglycan hydrolases (also referred to as “lysins”), which degrade

the bacterial cell wall, and polysaccharide depolymerases, which break down bacterial surface-

associated polysaccharides. The latter’s targets can include bacterial capsules, slime layers, bio-

film matrix, and lipopolysaccharide (LPS) [82,84–86]. These phage-derived enzybiotics have

proven to be highly effective in animal models against gram-positive bacteria and, especially in

Fig 2. Milestones in phage science and phage therapy. Milestones in phage science and phage therapy. Abbreviations include GMP, good manufacturing

practice; IV, intravenous; JAMA, Journal of the American Medical Association. Early general references include [66–68] and [1,69]. Additional references used

to create the figure include from 1963 [70], 1987 [71], 2001 [72], 2008 [73], 2009 [74], 2012 [75], and 2021 [76]. Icon copyright attributions by first-use year (all

as obtained via thenounproject.com and presented parenthetically; superscripts are associated country abbreviations): 1896 (Studio 365 TH), 1889 (pongsakorn
TH), 1912 (Luiz Carvalho BR), 1919 (Sergey Demushkin RU), 1920 (Arafat Uddin BD), 1923 (Wuppdidu DE), 1929 (Irfan Setiawan ID), 1931 (Adrien Coquet FR),

1930s (Mourad Mokrane RU), 1939 (Soremba DE), 1940 (Cassandra Cappello CA), 1942 (Icon Lauk ID), 1940s (WEBTECHOPS LLP IN), 1963 (Adrien Coquet
FR), 1976 (Eko Purnomo ID), 1982 (One Pleasure ID), 2001 (Kelsey Armstrong US), 2006 (Nendra Wahyu Kuncoro ID), 2008 (Creative Stall), 2009 (Kamin

Ginkaew TH), 2018 (Kamin Ginkaew TH), 2019 (Wikimedia Commons), 2019 (Irfan Setiawan ID), 2020 (Wikimedia Commons), 2021 (Irfan Setiawan ID).

https://doi.org/10.1371/journal.pbio.3002119.g002
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modified forms in the case of lysins, also against gram-negative pathogens. Several clinical tri-

als have involved lysins [82].

Advantages of phage therapy

The inherently bactericidal nature of especially obligately lytic phages is not the only attribute

that makes phages useful as antibacterial therapeutic agents [87–89]. Curtright and Abedon

[90], e.g., attempted to differentiate the benefits of using phages to treat bacterial infections

into ones with greater or lesser utilities. Among greater utilities, in addition to their bacteri-

cidal nature, are the potential for phages to replicate to higher doses in situ (auto-dosing),

which can serve to counter processes of virion dilution and inactivation also in situ; the inher-

ently low toxicity of professionally lytic phages, resulting in phage therapy generally being a

safe approach to treating bacterial infections [56–58,91–93]; and a typical lack of cross-resis-

tance between phages and antibiotics, although there are exceptions to the latter [94–96].

Phages with novel antibacterial activities and low toxicities also tend to be easily discovered.

An additional advantage is that of limited phage impact on microbiomes, as well as the fact

that reductions in bacterial functionality (antagonistic pleiotropies) are often associated with

mutations to phage resistance; both of these latter utilities of phage therapy are briefly dis-

cussed in subsequent sections. Given the usefulness of phages as bacterial agents that stem

from these numerous advantages, not only have phages been employed to treat bacterial infec-

tions for more than a century, but phages are increasingly being used clinically especially to

treat antibiotic resistant or tolerant infections.

Recent phage therapy accomplishments

“The excitement about the prospects of phage therapy (PT) has been growing worldwide,
fueled by the recent reports of its successful application in severe cases of bacterial infections.”
[13]

A rise in phage therapy clinical reports is noticeable starting from 2018. This represents a land-

mark year for the growing implementation of modern phage therapy (“recent interest”),

resulting in important new English language evidence of clinical phage therapy efficacy.

Numerically, while only 2 clinical reports were published in 2015, 1 in 2016, and 5 in 2017, this

rises to 13 in 2018, 16 in 2019, and 11 in 2020 [78]. Our as-yet less formal counts in 2021 and

2022 further indicate that these numbers have risen again to approximately 20 each.

Many of these newer, clinical phage therapy reports have been case studies or case series

conducted as compassionate treatments [91,97,98]. These thereby lack negative treatment con-

trol populations and have been deemed as possessing “low-to-moderate quality, with high risk

of bias and large heterogeneity” [99]. Experts still agree, however, that these studies can sup-

port claims of phage therapy safety [56–58,91,93], with this safety having been demonstrated

even in populations of critically ill patients with severe sepsis and septic shock [56,100,101].

Nevertheless, it is important to keep in mind that the primary objective of compassionate treat-

ments is to provide therapeutic benefits to individual patients rather than to evaluate the effi-

cacy of the treatment itself. It has been argued also that successful phage therapy case reports

and series, and of course also successful clinical efficacy trials, can be viewed in a positive light

supporting an observance of phage therapy anti-infection effectiveness [102].

Bearing in mind these limitations, as well as the small sample sizes of these studies—a

majority are single case reports and only a few are case series—and also the nature of the stud-

ies (i.e., uncontrolled trials), we discuss below representative reports of clinical improvements
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during and after use of phage therapy, highlighting in Fig 3 recent studies that particularly sug-

gest a likely clinical efficacy of phage therapy. This topic has been extensively reviewed in

recent papers [16,78,91,103], but key aspects that we consider here further are the first use of

genetically engineered (GMO-like) phages to treat infections, implementation of systematic

analyses of phage treatments, and the rise of personalized phage therapy along with more stan-

dardized monitoring in this era of precision medicine.

Fig 3. Recent clinical phage therapy accomplishments. Targets of recent phage therapy trials and case studies include Achromobacter xylosoxidans,
Acinetobacter baumannii, Enterococcus faecalis, Escherichia coli, Klebsiella pneumoniae,Mycobacterium abscessus,Mycobacteroides chelonae, Pseudomonas
aeruginosa, Staphylococcus aureus, and Streptococcus mitis. Abbreviations include GMP, good manufacturing practice; MDR, multidrug resistant; MRSA,

methicillin-resistant S. aureus. References used to create the figure: [40,56,104–124]. See also [78] for a more complete list of modern phage therapy clinical

studies showing evidence of phage-mediated efficacy. Icon attributions can be found in the legend to Fig 2, corresponding respectively to years 1915 and

2019 (in combination), 2009, and 2018.

https://doi.org/10.1371/journal.pbio.3002119.g003
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Rise of personalized phage therapy and standardized monitoring

The concept of personalized or bespoke phage therapy may be viewed as “a paradigm shift in

the development and application of infectious disease therapeutics” [125]. Indeed, a majority

of clinical studies have described the use of carefully selected and precisely targeted phages

that have been incorporated into treatments on a patient-by-patient basis. Known as “magis-

tral phage” [126] (or magistral phages; [127]), a new, pragmatic regulatory framework is being

pioneered by a multidisciplinary phage task force in Belgium (the Coordination group for Bac-

teriophage therapy Leuven or CBL) made up of phage scientists, pharmacists, and clinicians,

and which importantly has been supported by knowledgeable authorities (e.g., the Federal

Agency for Medicines and Health Products in Belgium). Collection of patient and scientific

data in standardized manners, further expansion of phage banks (collections of potential ther-

apeutic phages), and optimization of phage therapy protocols are the main concepts endorsed

in the study protocol, called PHAGEFORCE [128], which many other countries in Europe and

beyond have started to follow [129].

Excellent consensus documents have also recently emerged from Europe [128] and the

United States of America [130] that address the need to standardize and monitor phage treat-

ments in order to better understand phage therapy, especially within this context of personal-

ized phage therapy. A similar level of standardization was recommended by Australian

Infectious Diseases physicians in an informal survey and is reflected in the international efforts

to set up a phage therapy patient database (known as “International Phagistry”) for centralized

tracking of patient cases as well as standardized, unbiased reporting to ensure optimal treat-

ments (personal communication, S. McCallin, L. Leitner, et al.). This has resulted in a more

consistent approach to treatment and monitoring of phage therapy, acknowledging differences

in targeted etiologies and routes of phage administration, but focusing on process, safety, and

monitoring [129].

While important hurdles remain to be addressed, the current use of phage therapy and still

somewhat informal but improving evidence of its efficacy suggest that phage therapy likely

will be introduced to the mainstream especially as a personalized medicine. Employing the

abovementioned standardized and multidisciplinary approaches will help identify and address

major scientific and treatment hurdles for furthering the acceptance of phage therapy in the

context of personalized medicine, but also help to improve the design of randomized con-

trolled trials.

Genetic engineering of therapeutic phages

Engineering can enhance the therapeutic potential of bacteriophages [76,131–133]. This can

be achieved directly through alteration of host range (e.g., via homologous recombination or

mutagenesis of tail fiber genes) [134–136], modification of the phage infection (e.g., via dele-

tion or deactivation of genes required for lysogenic cycles) [137,138], or modification of the

phage capsid (e.g., via selection of phages capable of remaining in the circulatory system for

longer times) [139,140]. Phages can also be modified to enhance the antibacterial activity of

conventional antibiotics, such as by engineering into them an ability to produce quorum sens-

ing–interfering factors [141] or the noted biofilm-matrix degrading enzymes [142]. Since the

inception of molecular biology, these and a number of other methods have been developed to

engineer phages, approaches that have been recently reviewed in a phage therapy context [16].

A breakthrough study by Dedrick and colleagues [40], in 2019, described the first published

clinical application of genetically modified phages to treat a clinically disseminated infection

caused by the notoriously antibiotic-resistantMycobacterium abscessus. For this case study, 1

naturally obligately lytic phage (phage Muddy) and 2 temperate phages (BP and ZoeJ) were

PLOS BIOLOGY

PLOS Biology | https://doi.org/10.1371/journal.pbio.3002119 May 23, 2023 8 / 34

https://doi.org/10.1371/journal.pbio.3002119


identified that could effectively kill the clinical isolate, starting from a library of over 1,800

phages. To generate a therapeutic cocktail, the authors employed a Bacteriophage Recombineer-

ing of Electroporated DNA (BRED) technique [143] to remove lysogenization modules from

the 2 temperate phages. The subsequent phage therapy course of 7 months, which included

both topical and intravenous administration of the adapted phage cocktail, was reported to be

well tolerated and resulted in significant clinical improvement. A further narrative of the case

can be found here: [144]. This study was then followed by a case series involving the phage treat-

ment of 20 additional patients, also including use of genetically engineered phages, further dem-

onstrating both their safety and effectiveness as antimycobacterial agents [122].

It thus has only been in the past few years that genetically engineered phages have been

employed clinically to treat bacterial infections, targeting only a single bacterial genus (Myco-
bacterium) and used for compassionate care (also see discussion in [76]). Carefully designed

and controlled clinical trials are therefore still needed to give definitive answers on the poten-

tial for phage genetic engineering to improve therapies, as is also the case with traditional

phage therapy involving natural phages. Phage engineering promises to generate therapeutics

with unique properties, however, thereby offering alternative treatment approaches in the

management of difficult-to-treat bacterial infections along with a potential for stronger patent

protection (below).

Systematic analyses of clinical studies

While the safety of phage therapy has been demonstrated in more than 50 studies conducted

since 2000 [58], systematic analyses of clinical and microbiological phage treatments are rela-

tively scarce. Most published clinical phage treatments have involved patients treated on com-

passionate grounds, which restricts the collection and systematic analysis of scientific data.

Moreover, the limited sizes and heterogeneity of reported studies (e.g., diverse pathologies, use

of different single phages or instead phage cocktails, and different administrations protocols)

makes it almost impossible to conduct robust meta-analyses. Nonetheless, 2 recent systematic

analyses have been conducted reporting favorable clinical and microbiological outcomes

attributed to adjunctive phage therapy in at least 60% of treated patients [56,122].

In 2020, a study conducted as a single-arm, noncomparative trial explored the safety and tol-

erability of phage therapy in 13 severely ill patients with S. aureus bacteremias, including infec-

tive endocarditis [56]. A systematic analysis was conducted of bacterial and phage kinetics in

the blood as well as inflammatory responses. In addition, the microbiological outcomes were

assessed via comparative whole-genome sequencing analysis of bacterial isolates collected

before introduction of phage therapy, as well as any isolates retrieved during phage therapy, to

ensure that no phage resistance developed in vivo. To our knowledge, this study was the first of

its kind to provide a comprehensive and multimodal assessment (including clinical, microbio-

logical, and immunological assessments) of critically ill patients undergoing phage treatment.

In 2022, a case series involving 20 patients with non-tuberculosisMycobacterium infections

reported safety and tolerability of phage therapy, using the noted natural and genetically modified

phages [122]. The authors conducted microbiological and immunological monitoring of patients,

and, although the study was conducted on compassionate basis, it provided valuable insight that

should serve as a fundament for design of future randomized controlled trials in the field.

Continuing challenges for phage therapy

“Notwithstanding the extensive need, interest, experience and reported successes of phage ther-
apy, typical western approaches to biomedical research and implementation are poorly
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adapted to motivate, regulate or assess such nonstandard approaches to antibacterial ther-
apy.” [145]

Phages not only offer numerous advantages as antibacterial therapies but also, despite their

ongoing and increasing use for treating bacterial infections for which antibiotics are not or no

longer useful, present a number of challenges to their increased application. These challenges

include issues of limitations to phage host ranges and thereby spectra of activity, the potential

for development of bacterial resistance to phages, possible negative impacts of antibiotics on

phage functionality, treatment phage-mediated transduction of bacterial DNA, interactions

with the immune system, regulatory issues, unusual pharmacology, insufficient awareness of

phages as therapeutic antibacterial agents, and the potential for phage therapy skepticism

(Fig 4). We differentiate these concerns into biological or instead societal challenges. Addi-

tional complications include those related to manufacturing and storage of therapeutic phages,

but we refer readers instead to [146,147] for discussion of those issues.

Fig 4. Challenges to more widespread adoption of phage therapy. At the top are issues that are more biological in their character, whereas at the bottom are

issues that are more societally imposed impediments to greater phage therapy implementation. Not shown but associated with the latter are difficulties that

physicians can face in simply obtaining treatment phages in countries where phage therapy is not already a standard of care.

https://doi.org/10.1371/journal.pbio.3002119.g004
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Biological challenges

Although obligately lytic phages are inherently bactericidal, that does not mean that their exis-

tence as potential antibacterial agents is without limitations. Many of these issues, along with

phage-induced bacterial lysis, are aspects of the pharmacodynamics of phage therapy, particu-

larly treatment-phage impact on bacteria but also their effect on treated bodies [148]. Though

presented as ongoing challenges to the implementation of phage therapy, these biological

issues are not necessarily inevitably negatively impactful on the potential for successful treat-

ments, particularly given prior knowledge of their existence.

Host range limitations. The host ranges of phages tend to be relatively narrow, typically

consisting of only a subset of strains within a single bacterial species [149,150]. Indeed, an

often stated benefit of phage therapy is the resulting somewhat narrow spectrum of activity,

particularly compared to most commercially available antibiotics. This is because treatment

phages have a reduced potential to give rise to adverse effects due to an only minimal negative

impact on beneficial, nontarget commensal bacteria [111,151–154]. Disadvantages, neverthe-

less, can come with this limited phage spectrum of activity, and these are at least 2-fold. First, it

makes it more challenging to treat bacterial infections empirically when using phages com-

pared with broader-spectrum antibiotics. Second, it means that greater numbers of unique

phage products need to be developed overall, i.e., at a minimum one for every bacterial species

to be targeted.

A partial answer at least to the first concern (limitations on empirical treatment), but in

some cases to the second as well (at least 1 formulation per bacterial species targeted), is the

development of what are known as phage cocktails [155–157]. Cocktails are preparations that

possess multiple phage types, ideally including phages with different host ranges. If the species

of a to-be-treated bacterial infection has been determined, then it is possible to use cocktails,

which specifically target that bacterial species. Alternatively, phage cocktails that target specific

disease types rather than just individual bacterial species can be used and have been particu-

larly in countries of the former Soviet Union, such as those for wound-associated infections (a

pyophage cocktail) or gastrointestinal infections (an intestiphage cocktail) [61,158–160]. These

tend to consist of multiple phages each targeting an individual bacterial species, and this is

rather than individual phages instead targeting multiple bacterial species. Rather than mixing

different wild-type phages to generate phage cocktails, it is possible instead to modify the host

ranges of existing phage isolates either by phage evolution [161], also known as phage training

[162], or via genetic engineering.

Bacterial resistance to phages. It is the nature of genetic entities to evolve, if they can, in

response to environmental conditions. This is abundantly true in response to chemotherapies,

whether what is being treated is abnormal cell growth within bodies or bacterial populations

being exposed to antibiotics. The same is true for bacteria and phages [163]. We can differenti-

ate resistance to phages or chemotherapies into that which is acquired and that which is inher-

ent in a given bacterial species. Acquired resistance can, in turn, be differentiated into that

which comes to stably dominate bacterial population prior to exposure to an antagonist and

that which instead comes to prominence only once exposure has begun, with the latter of inter-

est here especially when resulting from treatment-mediated selective pressures [148]. To both

antibiotics and phages, we can distinguish also between resistance acquired horizontally, espe-

cially in the course of bacterial acquisition of mobile genetic elements [164,165], and that which

is acquired mutationally, i.e., as resulting in modification of bacterial molecules required by

phages to successfully infect [166]. Furthermore, and also true for antibiotics, we can split bacte-

rial mechanisms that interfere with therapies into those that arise in otherwise-sensitive bacteria

only phenotypically (forms of tolerance) and those that arise genetically (resistance) [167].
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Mutations to phage resistance, in particular, can result in antagonistic pleiotropies (trade-

offs) [167]. These, generally speaking, are phenotypes that are associated with individual alleles

that, on the one hand, provide benefits to their carrier, such as that of phage resistance by bac-

teria, but, on the other hand, result in a cost to their carriers. Such bacterial functional trade-

offs may be particularly prevalent following phage therapies because phages can benefit by tar-

geting bacterial molecules that are difficult for bacteria to do without. Examples of negative

phenotypes associated with phage-selected antagonistic pleiotropies can include reduced bac-

terial growth rates, decreased bacterial virulence, or increased bacterial sensitivity to antibiotics

[168–172]. Phage-resistant bacterial pathogens may, as a consequence, become diminished in

their ability to continue to cause infections. See, too, the related concept of “Directing phage-

resistance evolution” [173].

Limitations to phage host ranges are a corollary of phage resistance, and both can be

addressed by the use of phage cocktails. This usually is accomplished by combining phages

with complementary host ranges to increase empirical coverage for a single targeted bacterial

species. Application of novel combinations of antibiotics can also be justified toward increas-

ing empirical coverage [174]. The generally lower toxicities of phages, however, should enable

the routine use of novel phage combinations to treat patients, not just when addressing medi-

cal crises, i.e., while employing untested combinations of antibiotics to treat patients should be

attempted only under more desperate circumstances, given that untried combinations of

drugs can give rise to unexpected side effects, there exist few similar barriers to employing new

combinations of especially professionally lytic phages in phage cocktails. Indeed, there exists

little expectation that novel phage–phage interactions will result in substantial or even neces-

sarily any anti-patient toxicities.

To employ phage cocktails to limit bacterial capacities to evolve resistance, it is generally

necessary to include within cocktails not just multiple phage types possessing complementary

host ranges but also more than 1 phage host range type that is able to infect the targeted bacte-

rial strain, and for which bacterial mutation to cross-resistance to both (or more) cotargeting

phages is of low probability. In other words, to reduce the potential for bacteria to evolve resis-

tance to phages by employing phage cocktails, it is necessary that cocktails possess a sufficient

“depth” of antibacterial activity [155], with a depth of 1 being a single phage isolate within a

cocktail able to kill a targeted bacterium, a depth of 2 being 2 phage isolates within a cocktail

able to independently target, thereby with minimal cross resistance, that same bacterium, and

so on. This is either in addition to or instead of phage cocktails possessing substantial overall

breadth of host ranges (broader spectrum of activity), i.e., as is needed to better assure at least

the initial success of empirical treatments rather than necessarily also inhibition of bacterial

evolution of phage resistance [155].

Interactions with antibiotics. As antibiotics represent the standard of care for treatment

of bacterial infections, it is inevitable that phage therapies will often be undertaken as antibiotic

cotherapies [78]. As is the case for antimicrobial treatments generally, we can expect the inter-

actions between phages and antibiotics to range from antagonistic to additive to synergistic.

Antibiotic antagonism of phages especially may be expected, as antibiotics often interfere with

bacterial processes required for phage infection success [175–179]. In addition, the fact that

antibiotics can reduce bacterial numbers on their own will contribute to a reduced potential

for phages to amplify themselves in situ [180]. It is unknown, however, to what extent this in

vitro–demonstrated antagonism actually impacts clinical treatments.

Alternatively, combining antibiotic and phage treatments can increase overall effectiveness.

In order of increasing effectiveness, this can variously be described as involving facilitating,

additive, or synergistic interactions [181]. These are, respectively, some but less than additive

increases in the elimination of targeted bacteria relative to each agent acting alone (facilitative),
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each agent impacting bacteria independently of the other’s actions (additive), and greater than

additive bacteria killing (synergism). Synergistic interactions between phages and antibiotics,

especially at subinhibitory antibiotic concentrations, can also result in what is described as a

phage-antibiotic synergy (PAS) [32,147,179,182,183]. With PAS, the presence of such low anti-

biotic doses actually enhances certain aspects of phage infection, contrasting the noted poten-

tial for higher, inhibitory doses of antibiotics to antagonistically interfere with phage

infections.

We can also differentiate whether phages in combination with antibiotics are more effective

at simply clearing susceptible bacteria in the near term or, instead, are more effective at inter-

fering with the evolution of phage or antibiotic resistance over longer time frames. Near-term

improvements could be associated with PAS but can also result from simply additive interac-

tions, as well as the noted facilitation. Longer term, the typical lack of cross-resistance to

phages and antibiotics should increase the number of bacterial mutations required to achieve

full resistance to a combined treatment [184,185]. This is the usual goal of combination treat-

ments [174,186–189] including the employing of phage cocktails possessing greater-than-1

depths of activity. Alternatively, acquisition of phage resistance can result in bacteria becoming

susceptible once more to antibiotic effects (resensitization) [106,170,190,191]. Notwithstand-

ing both the inevitability and potential utilities of combining phages with antibiotics, the

resulting pharmacodynamics, particularly when treating using bacteria-inhibiting doses of

specific antibiotics along with specific phages, remain substantially understudied.

Transduction. Transduction is phage virion-mediated movement of non-phage DNA

between bacteria [192]. It is possibly problematic during phage treatments owing to the potential

for phages to transport bacterial virulence factor genes between different bacterial strains. This

includes transporting antibiotic-resistance genes as well as bacterial pathogenicity islands and

bacterial plasmids [193–196]. Transduction, however, is a distinct phenomenon from lysogenic

conversion [197], since transduction involves accidental and short-term virion packaging of bac-

terial DNA, compared with long-term carriage of bacteria-like genes by wild-type temperate

phages (lysogenic conversion). There are 3 basic contexts in the course of phage therapy where

transduction could be problematic: movement of DNA from the bacteria used to propagate thera-

peutic phages in vitro for subsequent therapeutic use; movement of DNA from nontarget bacteria

to therapeutically targeted bacteria; and movement of DNA from targeted bacteria to nontargeted

bacteria. The first of these can be avoided by employing bacteria for phage propagation that lack

relevant virulence factor genes. The second and third can be reduced in likelihood by employing

therapeutic phages that possess sufficiently narrow host ranges.

It is also possible to simply avoid using phages that are capable of transducing bacterial

DNA, i.e., by not using so-called “transducing phages.” The latter include temperate phages,

with their ability to move small numbers of bacterial genes in what is known as specialized

transduction (though, again, this is not equivalent to lysogenic conversion). Of probably

greater relevance to phage therapy is avoidance of phages that package their DNA using pac
sites and headful genome packaging, both in combination with phages not substantially

degrading the DNA of their host bacterium in the course of lytic cycles [198]. Phages possess-

ing these latter properties can act as generalized transducing phages, i.e., phages that are able

to solely package bacterial DNA up to approximately a phage genome size in length and then

transfer that DNA to new bacteria.

Of the biological challenges facing phage therapy, the potential for transduction neverthe-

less is often considered a lesser concern [199]. This is because transduction is a natural process

that happens independently of any therapeutic introduction of phages and is often associated

with temperate phages that tend to be avoided for phage therapy independently of any trans-

ducing phage status. Also, an otherwise untreated bacterial infection would be of much greater

PLOS BIOLOGY

PLOS Biology | https://doi.org/10.1371/journal.pbio.3002119 May 23, 2023 13 / 34

https://doi.org/10.1371/journal.pbio.3002119


immediate negative impact. Thus, as noted by Ry Young [200], “Unless you’re completely

compulsive, it doesn’t make a whole lot of sense to me to worry about transduction.”

Immunology. In clinical settings, phage–bacteria dynamics develop in conjunction with

pressure from the mammalian host immune system, and this has often been stated as a substan-

tial concern regarding the clinical implementation of phage therapy. In particular, there are

concerns that a patient’s immune status will influence the effectiveness of phage therapies, but

also that phage–immune system interactions might be harmful to patients. Alternatively is the

concept of “immunophage synergy,” as presented by Roach and colleagues [168], where both

neutrophils and phages were necessary for resolution of acute pulmonary infection in mice.

Phages also have immunomodulatory properties, impacting the function of major populations

of immune cells that contribute to both innate and adaptive responses [201]. This includes,

among other responses, cytokine production (different from LPS-induced cytokine profiles)

[202], phagocytosis [203], the respiratory burst of phagocytic cells [204], and production of anti-

bodies against non-phage antigens [201]. Phages are also a part of the normal human micro-

biome [205], with some phage virions adhering to mucosal surfaces and thereby potentially

serving as a non-host–delivered layer of immunity [206–208]. Thus, the role of the immune sys-

tem in phage therapy appears to be multilayered and, indeed, in practice, is likely to be less of a

challenge to phage therapy success but instead an important contributor to that success.

Phages can be found, in particular, in the human gastrointestinal tract, including, e.g., those

infecting Firmicutes, Bacteroidetes, Proteobacteria, and Actinobacteria [207,209,210]. Phages

thus represent core components of stable gut microbiomes, and they are consequently immu-

nologically well tolerated by the body. Consistently, in a recent case series conducted at the

Phage Therapy Unit at the Hirszfeld Institute in Poland, a majority of patients did not show

noticeably higher levels of anti-phage antibodies in their sera during oral and local phage cock-

tail treatment of methicillin-resistant S. aureus infections [211]. Even if the humoral immune

response was greater, anti-phage antibody production did not seem to give rise to unsatisfac-

tory clinical results. The intensity of the anti-phage humoral response, however, may vary

depending on phage type, its inherent immunogenicity, and the purity of a phage preparation

[12,212]. Phage dosage, timing of treatments, routes of administration, and the immune status

of a patient also may contribute to the impact of anti-phage humoral immunity on phage ther-

apy success [201,213,214]. Nevertheless, it is important to be aware that anti-phage antibody

production does not necessarily mean phage inactivation [201] as it also depends on antibody

titers and specificity. One can also consider selection or engineering of phages that will be

more resistant to antibody-related inactivation [76,202].

An additional issue during phage therapy is that treatment of gram-negative pathogen

infections with high phage dosages may lead to a synchronized lysis of large numbers of bacte-

rial hosts along with concomitant release of endotoxin. This triggers inflammation, typically

via Toll-like receptor 4 pathways, as well as fever and may cause local pain [120]. Nevertheless,

this LPS release does not necessarily exceed the amounts generated in the course of antibiotic

treatments [215], and a septic shock syndrome following phage treatment of these pathogens

has not been reported. Indeed, it is often observed in studies that phage treatments are associ-

ated with no more than minor adverse effects, if any at all. Thus, concerns that have been

expressed over the potential for the immune system to interfere with phage therapy efficacy

appear to have been somewhat exaggerated.

Societal challenges

Widespread implementation of nonstandard treatments by physicians requires not just evi-

dence of efficacy but also regulatory approval, successful marketing, and a willingness of those
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involved to undertake such treatments. In this section, we consider these additional, societal

challenges to broader adoption of phage therapy, especially by Western medicine.

Regulatory issues. In the former Soviet Union, phages were mass produced for therapy

and have long been available, even over the counter [61,216], with the first phage therapy trials

there dating back to the 1920s [217]. Elsewhere, phage therapy has been available almost only

for “compassionate use” [91,97,98] (i.e., when need is great and all else has failed) and particu-

larly for treatment of pan-drug-resistant infections or otherwise following antibiotic treatment

failures (i.e., with phages serving as salvage therapies). Despite the recent progress in many

aspects of the development of phage therapy, the introduction of phages into the clinic still

faces major obstacles [147,218,219], and this is particularly from unresolved regulatory ques-

tions [220].

To move forward, either current regulations will need substantial modification or new legis-

lation will need to be proposed to cover aspects of phage therapy that differ from those of tradi-

tional antibiotics. Regulations, in particular, need to accommodate phage genetic malleability

(their potential to evolve), their narrow host range, and their unusual pharmacological proper-

ties. Both US and European regulatory authorities at least agree, however, that therapeutic

phages should be classified as biological therapies [221], requiring compliance with fairly well-

defined legislative, manufacturing, and production frameworks. Many experts, including regu-

latory authorities such as the US Food and Drug Administration (FDA), also agree that evi-

dence of phage therapy efficacy from controlled clinical trials, of which there so far have been

only a very limited number, are essential to accelerate development of regulatory frameworks.

Because existing regulations have been developed for industry-scale production of medi-

cines, they are less well suited to the more personalized approaches of phage therapy [147].

Insufficient flexibility and exemptions within these frameworks, e.g., to allow for the introduc-

tion or substitution of new phages into approved preparations in response to resistance devel-

opment, has had a chilling effect on market uptake and the otherwise widespread application

of phages in therapies [222]. In Europe, authorities are making an effort to streamline the use

of personalized phage therapies, with many countries following Belgium’s pioneering

approach of regulated magistral phage preparations tailored in a context of compassionate

care for specific infection and patient cases [147,223]. Well prior to those efforts, the Hirszfeld

Institute in Wrocław, Poland, has had a many decades-long history of involvement in person-

alized phage therapy as too has been the case in and around the Eliava Institute in Tbilisi,

Georgia [80,81].

Unique pharmacology. An important component of successful regulatory approval of

drugs is a robust characterization of their associated pharmacology. Study of the pharmacology

of phages has been somewhat neglected, however, owing to how long historically phages have

been used to treat bacterial infections, which largely has predated the development of modern

pharmacological study, and also, arguably, due to the relative safety of phage use as antibacte-

rial agents, which have made concerns over potential toxicities somewhat moot [148]. In addi-

tion, study of the pharmacology of antibacterial agents has largely been developed from a

perspective of use of antibiotics. Thus, the challenge of the uniqueness of phage use as antibac-

terial agents can be viewed as somewhat of a societal construct, i.e., had antibacterial pharma-

cology as a science been developed based primarily on the properties of phages rather than

those of antibiotics, then it presumably would be antibiotic pharmacology that is “unique,” rel-

ative to phages, rather than that of phages relative to antibiotics. This section thus provides an

overview of phage therapy pharmacology and does so particularly from a perspective of how

phage therapy pharmacology differs from that of antibiotics. Overall, the challenge in this case

is to provide both regulatory agencies and physicians with detailed analyses of phage pharma-

cokinetics (PK) during treatments.
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Pharmacology can be considered, in particular, along the traditional divisions of PK and

pharmacodynamics (PD), and this is true for phage therapy pharmacology as well

[147,224,225]. PK refers to mechanisms that influence drug distribution to target tissues,

including to the vicinity of targeted bacteria, particularly to result in drug concentrations that

are adequate to achieve effects [226]. Those effects are described by the PD component of

pharmacology, with the most relevant PD effect being antibacterial activity. It is phage therapy

PK that can differ somewhat from that of other pharmaceuticals, while primary phage therapy

PD are conceptually similar to other antibacterial agents in terms of the effect of killing bacte-

ria. We therefore focus here especially on the unusual PK of phage therapy.

A drug’s PK can be broadly defined by a handful of key identifiers. These include area

under the curve (in situ concentration as a function of time) divided by minimum inhibitory

concentration (AUC/MIC), maximum drug in situ concentration also divided by MIC (Cmax/

MIC), and the fraction of time between dosings over which in situ drug concentrations exceed

MIC (abbreviated as t>MIC). These key PK identifiers, however, have not been as well defined

for phages as they have been for antibiotics. This is, at least in part, because although multiple

groups have used checkerboard-type assays to describe phage MICs [191,227–229], there,

nonetheless, is no standard method for defining phage MICs and nor has there been robust in

vivo validation [55].

Difficulties in defining phage therapy PK as well as MICs stem largely from the potential

for phages to proliferate during treatments. Compounding this complication, the extent of this

in situ phage proliferation will tend to vary with phage properties (particularly as impacting

the productivity of their infections), the properties of targeted bacteria, and the properties of

the treated infection itself (perfusions, immune factors, adjunct antibiotic effects, etc.).

Another confounding variable is the noted PAS [147,179,182,183], where especially sub-MIC

concentrations of certain antibiotics can boost phage production. Moreover, titers of phage

particles relative to concentrations of targeted bacterial cells may greatly impact PK parame-

ters, particularly with these phage concentrations varying nonlinearly over time in response to

that ratio [230]. Also relevant is that achieving initial phage concentrations in a range of 108 to

109 per ml (thereby presumably requiring less in situ phage proliferation) may be useful

toward achieving treatment success [55,56,58,225] and that phages can take multiple hours to

reach maximum concentrations, such as in the blood, with that timing varying with different

routes of administration.

Especially when phage proliferation is less influential, then AUC and thereby phage therapy

PK should be more similar to that of traditional pharmaceuticals. This should be seen particu-

larly with so-called passive treatments [224,231,232] where dosed phage concentrations alone

—like dosed antibiotic concentrations alone—should be high enough to kill a majority of tar-

geted bacteria, assuming adequate bioavailability and distribution. An additional issue, rele-

vant perhaps especially to the continuation of bacterial killing once numbers of phage

proliferation-supporting bacteria have substantially declined in concentrations, is that phage

counts, like antibiotic concentrations, will tend to decrease over hours following dosing [233–

236]. The rates of phage elimination of dosed phages from the body (as another important PK

identifier, defined in terms of half-life or t1/2) also may vary with routes of phage administra-

tion [226,237].

The stage that an infection is treated is another significant factor affecting phage therapy

PK. Biofilm-resident bacteria, which are often found later during chronic bacterial infections

[54], can be in less active growth states and vary in their virulence [238], potentially affecting

their tolerance of phage treatments [167]. In addition, bacterial stationary phases can often be

antagonistic to productive phage lytic infections [34,239–241] as too can inhibitory concentra-

tions of antibiotics. It also can be difficult to extrapolate from the in vitro activity of any
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antibacterial agent, including bacteriophages, to clinical outcomes, since host factors including

infection sites and types are both major treatment–outcome determinants but will tend to dif-

fer from patient to patient. Thus, phages can fail to resolve an infection caused by a pathogen

even if those phages appear to be powerfully active in vitro. Phage therapies, nonetheless, may

be more promising than antibiotics in some cases in the treatment of biofilms

[54,106,242,243].

While phage therapy PK can be somewhat more difficult to define than those of antibiotics,

the in situ phage proliferation underlying much of that difficulty, i.e., phage auto-dosing, is

likely also a particular advantage of phage therapy. Nevertheless, to achieve consistently effec-

tive phage treatments, routes and dosages of phage administration must be evaluated and stan-

dardized to each specific phage–host-infectious disease combination [226,244,245]. Given the

diversity of phages that are or could be available for phage therapy use, however, achieving

such evaluation and standardization on a phage-by-phage basis could represent a daunting

impediment to robust phage therapy clinical implementation.

Societal awareness of phage therapy. Trust in phages and phage therapy remains strong

in former Soviet Union republics, particularly Georgia and Russia [62,216]. In the Western

world, in contrast, appreciation of phage therapy has only gained momentum in recent years,

with a growing number of cases highlighting efficacy in treating various multidrug-resistant

infections. These range from lung infections in patients with cystic fibrosis (CF) [40] to treat-

ment of urinary tract infections [246] to resolution of the most severe infections [247], includ-

ing phage use as treatments for gram-positive sepsis and septic shock [56]. Although most of

this evidence is anecdotal, reports of phage therapy accomplishments have led to increased

media coverage of phage therapy, fueling interest in this new therapeutic alternative among

the public. Though sadly not representing a phage therapy success, the story of Mallory Smith

—a young patient with CF who died of a pan-drug-resistant lung infection prior to the initia-

tion of phage treatment [248]—in particular, has raised awareness of the importance of phage

therapy as a potential treatment option in this vulnerable population.

There has been a corresponding increase in funding for phage research and initiation of a

number of controlled clinical trials in the field [78,93,103,130,144,147,249]. With cautious

optimism, pioneers of modern phage therapy are establishing national and international initia-

tives where basic scientists and clinicians can work jointly to professionalize phage therapy

(Table 1) by using well-defined and standardized treatment approaches [129], thereby adding

to the work of somewhat more established phage therapy units and centers (particularly those

of Georgia and Poland). The ultimate aim of such initiatives is to better align this therapeutic

option with the priorities of main funding and regulatory bodies, clinics and pharmacopeia,

and, finally, of patients themselves. Alternatively, for a list of phage therapy as well as simply

phage-based commercial entities, see Phage Companies.

Physicians appear to be playing less of a role in driving the resurgence of interest in phage

therapy. A survey from 2019 conducted in the largest Belgian hospital and biggest phage ther-

apy center in Western Europe (Queen Astrid Military Hospital) indicated that more than 70%

of phage therapy requests came from patients themselves or their family members and only

one-third or so from treating physicians [272]. This was attributed to a lack of inclusion of

phage therapy in medical school curricula or, as one clinician explained [273], “Colleagues

don’t know phages rather than are opposed to them,” and phage therapy otherwise is often

regarded by physicians as an “inaccessible possibility.” Thus, awareness of phages as potential

treatments of bacterial infections certainly is growing but is not nearly universal.

Phage therapy skepticism. A somewhat unique challenge to the use of phages as antibac-

terial agents is a combination of their long history and insufficiently well-documented efficacy.

The former allowed for the initial “enthusiasm” for phage use. Particularly, their ability to
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target bacteria but not our own tissues (selective toxicity) was at the time (in the 1920s and

1930s) without peer among readily available medicaments. This, however, also provided little

incentive to study the clinical use of phages rigorously. In addition, many successful anecdotal

case studies were poorly documented, and it is thought that many treatment failures were a con-

sequence of poorly formulated or applied therapies. Phage therapy’s early challenges to rigor-

ously establish itself also stemmed from a dearth of well-controlled clinical trials (although with

some exceptions; [102,217]) in combination with the potential for many of the bacterial infec-

tions being treated to spontaneously resolve [66–68]; notably, today, we have a similar issue as

many phage-treated infections are also being treated with antibiotics, which, in principle, can

lead to infection resolution that is independent of phage action [78]. In any case, insufficiencies

in scientific rigor appears to have allowed for a growth in “skepticism” over the therapeutic

potential of phage therapy, a skepticism that lead to a Western “abandonment” that lasted for

roughly 50 years. See chapter 3 of Kuchment [274] for a narration of these events.

Together, these issues seem to have resulted in long-standing cultural impediments to

phage therapy implementation [275]. Skepticism and, ultimately, Western abandonment of

phage therapy are not thought to have been driven primarily by public perception, however,

but rather by the actions of physicians or, rather, by their inaction. Importantly, it is not as

Table 1. Modern phage therapy centers, groups, and initiatives.

Name Country/

Region

Reference

Phage Australia Australia [250]

Monash Phage Foundry* (Monash University) Australia [251]

START Phage WA* Australia [252]

The Adelaide Phage Therapy Centre Australia [253]

Coordination group for Bacteriophage therapy Leuven (CBL) Belgium [254]

Queen Astrid Military Hospital Belgium [255]

Farncombe Phage (McMaster University) Canada [256]

Phages for Human Applications Group Europe (P.H.A.G.E.) Europe [257]

“Phage Therapy Unit in Finland” (University of Helsinki) Finland [258]

Reference Center for Complex Osteo-Articular Infections France [259]

Eliava Consortium Georgia [260]

National Center for Phage Therapy Germany [261]

Vitalis Phage Therapy India [262]

The Israeli Phage Therapy Bank Israel [263]

Phage Therapy Unit of the Medical Centre of the Institute of Immunology and

Experimental Therapy PAS

Poland [264]

phageSuisse Switzerland [265]

Centre for Phage Research (University of Leicester) United

Kingdom

[266]

UK Phage Therapy United

Kingdom

[267]

Center for Innovative Phage Applications and Therapeutics (University of California

San Diego)

United States [268]

Center for Phage Biology and Therapy at Yale United States [269]

Center for Phage Technology (Texas A&M University) United States [270]

Tailored Antibacterials and Innovative Laboratories for Phage (F) Research (Baylor

University)

United States [271]

*Partnering with the national Phage Australia.

https://doi.org/10.1371/journal.pbio.3002119.t001
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though phage therapy was ever implemented widely in most countries even when enthusiasm

was strongest, thus allowing for small shifts in what relatively few physicians were practicing to

drive substantial declines in phage therapeutic use. The same cannot be said for the use of anti-

biotics, which were widely adopted once they had become available in sufficient quantities

[276]. The decline in enthusiasm for phage therapy was not the case everywhere, and this, at

least in part, was because the use of antibiotics was not as well implemented everywhere, e.g.,

in the former Soviet Union [102]. The abandonment of phages by Western medicine was

driven, however, not just by the ubiquity of antibiotics but also by the fact that broadly targeted

antibiotics are simply easier to use than narrowly specific phages as antibacterial treatments.

Today, we can also add economic impediments as obstacles to broader phage therapy accep-

tance by Western medicine.

Patentability. Further complicating the broader implementation of phage therapy are

economic uncertainties associated with phage therapy development. While biotech companies

often succeed in translating basic research into profitable clinical applications [219], invest-

ment into phage therapy nonetheless raises many concerns, not least of which is the limited

patentability of phages, along with unmodified enzybiotics [277], as “natural phenomena” or

“product[s] of nature” [278]. US patents covering the use of natural phages in therapy never-

theless have been granted [279], many of them claiming that specific phage cocktails are essen-

tial to reduce the risk of resistance development by targeted bacteria [280]. Such patents are

considered fragile, however, and thereby will not necessarily provide robust commercial pro-

tection [218]. Genetically engineered phages with enhanced antibacterial activity by contrast

may be more easily protected [221] and thereby could serve as a safer focus for government

and private investors [281–283].

Naturally occurring, i.e., not genetically engineered phages, by contrast are overwhelmingly

what have been used in the development as well as clinical implementation of phage therapies.

But without robust patentability, there is less financial incentive to invest in the kind of vigor-

ous research necessary to overcome phage therapy skepticism, particularly including the fund-

ing of clinical trials, and also toward financing phage therapy commercial development more

broadly. The fragile patentability of naturally occurring phages for phage therapy thus may

represent the greatest societal challenge to phage therapy and, indeed, challenge to phage ther-

apy generally in those many countries where phages are not yet regulatorily approved as anti-

bacterial treatments. We return to yet further considerations of phage therapy economic issues

in the following, final section of this Essay.

Translating phage therapy to the clinic

"Although more translational research is needed before the clinical implementation of phage
therapy is feasible, phages may be pivotal in safeguarding the overall health of humans in the
near future." [284]

There is a wealth of preclinical as well as more basic science-derived data supporting the potential

for phage therapy use clinically. At the other extreme, various phage therapy centers and initia-

tives (Table 1), companies, and established research groups are actively involved in developing

and testing phage collections and treating people. Occupying something of a middle ground are

physicians who do not, on their own, have access to phages, or at least easy access, but who are

able to link up with centers, companies, or research groups to obtain those phages. Initiatives

such as Phage Directory facilitate connections between phage suppliers, such as from academic

research laboratories, with possible phage clinical users, i.e., doctors [285].

PLOS BIOLOGY

PLOS Biology | https://doi.org/10.1371/journal.pbio.3002119 May 23, 2023 19 / 34

https://www.phagedirectory.org/
https://doi.org/10.1371/journal.pbio.3002119


Overall, then, there are 4 general routes to human phage therapy. The first is administration

without clinical supervision, which is possible in places where phages are available over the

counter, particularly Georgia and Russia [286]. The second is use by physicians or equivalent

caregivers in locations where phages have been approved for use clinically (e.g., also Georgia

and Russia). Here, phage therapy was regulatorily approved and translated into the clinic

many decades ago. The need for practicing phage therapists to demonstrate efficacy in formal

and very expensive clinical trials, therefore, is less pressing. The third approach, and one that

currently receives the most attention, is within the context of dire need, i.e., involving compas-

sionate use as well as, typically, personalized medicine. This approach lends itself less well to

providing proof of efficacy as controls are difficult to establish and combination of phage treat-

ments with use of standard-of-care antibiotics is usual [78]. In this context, phage therapy typi-

cally is sought for the toughest of bacterial infection cases as salvage therapies. This potential

for phages to successfully treat bacterial infections for which antibiotics have been less effec-

tive, however, provides a possible niche for both phage therapy use and phage therapy testing.

Lastly are clinical trials, which are necessarily limited in scope and expensive to run, but

which are essential for the explicit proof of phage safety and efficacy that regulators, prescrib-

ers, and consumers need. To date, a handful of phage therapy clinical trials have been pub-

lished in English language journals (for English language access instead to especially the

Russian and Georgian literatures, see [75]). Though modern phage therapy clinical trials

started out with much promise, especially with the Phase I/II trial reported by Wright and col-

leagues [74], at best subsequent trials seem to have met with only mixed results [287,288] and

otherwise face many challenges [55], though this may change as increased public funding for

phage therapy clinical has become available [144]. In particular, phages are most likely to be

tested under circumstances where antibiotics have already been attempted as the first option

but otherwise may be found to be superior to antibiotic treatments in only a limited number of

circumstances. Nevertheless, there is great potential to choose phages as alternatives to unac-

ceptably toxic antibiotics [289] or to reduce problematic antibiotic impacts on microbiomes

[111,151–154].

A final and nontrivial problem is the reduced commercial enthusiasm to bring new antibac-

terial agents of any kind from the laboratory to the clinic. There is a general expectation that

antibacterial agents will not only be used for only short periods of time (i.e., from the point of

infection presentation to the point of infection cure) but will be relatively inexpensive during

that ideally somewhat brief use [290]. Together, these economic obstacles represent significant

disincentives not just to phage therapy translation to the clinic but also to the introduction of

new antibiotics more generally. Added to this, but more specific to phages, is the noted issue of

the uncertainty of intellectual property security of naturally occurring biological agents. How-

ever, to the extent that it may be proven in the course of modern clinical trials that phage treat-

ments are able to cure bacterial infections when conventional treatments have failed and/or

that we become serious as a society, or at least as subsets of society, to protect our micro-

biomes, then clinical phage therapies may yet rise again, not just in a few select locales but also

around the world. Indeed, as a final word, we both suggest and agree that phage therapy might

be viewed as a third major intervention for treating infectious diseases after vaccines and anti-

biotics [250] and are buoyed by phage therapy’s recent clinical successes (Fig 3) and growth in

use despite numerous existing challenges.
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13. Górski A, Międzybrodzki R, Borysowski J. Phage Therapy: A Practical Approach. Cham. Switzerland:

Springer Nature Switzerland AG.

14. Harper DR, Abedon ST, Burrowes BH, McConville ML. Bacteriophages: Biology, Technology, Ther-

apy. Springer Nature Switzerland AG.
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201. Górski A, Międzybrodzki R, Borysowski J, Dąbrowska K, Wierzbicki P, Ohams M, et al. Phage as a

modulator of immune responses: practical implications for phage therapy. Adv Virus Res. 2012

83:41–71. https://doi.org/10.1016/B978-0-12-394438-2.00002-5 PMID: 22748808

202. Dąbrowska K, Miernikiewicz P, Piotrowicz A, Hodyra K, Owczarek B, Lecion D, et al. Immunogenicity

studies of proteins forming the T4 phage head surface. J Virol. 2014; 88(21):12551–12557. https://doi.

org/10.1128/JVI.02043-14 PMID: 25142581

203. Weber-Dąbrowska B, Zimecki M, Mulczyk M, Górski A. Effect of phage therapy on the turnover and

function of peripheral neutrophils. FEMS Immunol Med Microbiol. 2002; 34(2):135–138. https://doi.

org/10.1111/j.1574-695X.2002.tb00614.x PMID: 12381464

204. Przerwa A, Zimecki M, Switala-Jelen K, Dąbrowska K, Krawczyk E, Luczak M, et al. Effects of bacteri-

ophages on free radical production and phagocytic functions. Med Microbiol Immunol. 2006; 195:143–

150. https://doi.org/10.1007/s00430-006-0011-4 PMID: 16447074
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