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Abstract

AU : Pleaseconfirmthatallheadinglevelsarerepresentedcorrectly:Conserving and managing biodiversity in the face of ongoing global change requires suffi-

cient evidence to assess status and trends of species distributions. Here, we propose novel

indicators of biodiversity data coverage and sampling effectiveness and analyze national

trajectories in closing spatiotemporal knowledge gaps for terrestrial vertebrates (1950 to

2019). Despite a rapid rise in data coverage, particularly in the last 2 decades, strong geo-

graphic and taxonomic biases persist. For some taxa and regions, a tremendous growth in

records failed to directly translate into newfound knowledge due to a sharp decline in sam-

pling effectiveness. However, we found that a nation’s coverage was stronger for species

for which it holds greater stewardship. As countries under the post-2020 Global Biodiversity

Framework renew their commitments to an improved, rigorous biodiversity knowledge

base, our findings highlight opportunities for international collaboration to close critical infor-

mation gaps.

Introduction

Detection, understanding, and management of global biodiversity change and its manifold

consequences [1,2] in a rapidly transforming world rely on comprehensive evidence to estab-

lish baselines and assess changes. As discussions of the post-2020 Global Biodiversity Frame-

work of the Convention on Biological Diversity (CBD) enter their final stage, the availability of

data and metrics to assess progress toward agreed-upon targets has taken a central role [3–7].

The fundamental need for an improved and shared knowledge base of global biodiversity is

recognized in the proposed Target 19, which requires the availability of reliable information

on biodiversity status and trends [8].

Descriptions of species’ geographical ranges and their temporal dynamics are fundamental

biodiversity measures [9], as captured in the species distribution Essential Biodiversity
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Variable [10]. The status and trends of species’ geographic distributions are directly related to

species’ ecological relevance, population size, and extinction risk, and are thus central to the

conservation and management of species and their ecological functions [11–13]. Ambitions to

limit threats to species and ensure the integrity of ecosystems, which are central goals of the

post-2020 Global Biodiversity Framework under discussion [8], critically rely on effective doc-

umentation and monitoring of species distributions and changes over time [6,7,14].

Thanks to significant advances in data collection, mobilization, and aggregation [15–17],

publicly accessible occurrence data are growing rapidly [9,14,18], with over 1.6 billion occur-

rence records across sources and taxa available in the Global Biodiversity Information Facility

(GBIF). These data represent an increasing array of sources, including museum specimens,

field observations, acoustic and visual sensors, and citizen science efforts [19]. Digital plat-

forms such as Map of Life (MOL) have begun to integrate these data through models to bolster

a multitude of research and conservation applications [10,20].

Increases in data quantity alone, however, provide little information about overall progress

toward an effective spatial biodiversity knowledge base, as records may be highly redundant

and cover a limited set of species and regions [21]. Indeed, prior work has revealed significant

taxonomic and geographic gaps in the existing data [9,21–26] and highlighted the importance

of accounting for expected diversity and scale sensitivity in data coverage assessments

[19,21,27–29]. Scientists have identified a range of socioeconomic, linguistic, and ecological

drivers for gaps and biases in the current data and identified geographical access, availability of

local funding resources, and participation in data-sharing networks as key correlates of data

gaps [21,30].

The aforementioned gaps in knowledge highlight the importance of a more informed and

coordinated approach to developing an effective spatial biodiversity evidence base. Developing

such an evidence base requires metrics that allow changes in biodiversity data coverage over

time to inform decision-making. As political units responsible for coordination and stewards

of their biodiversity, nations hold the key to incentivizing an improved information base and

stand to gain the greatest benefits from broadly improved biodiversity information by enabling

monitoring and robust management decisions. For example, the activities of the Mexican

National Commission on Biodiversity (CONABIO), a permanent commission of the Mexican

federal government, have led to strongly increased biodiversity information in that country

that supports conservation decisions in the region [31]. Despite the urgent need to meet inter-

national targets and numerous documentations of growing data [32,33], published work has

yet to provide quantitative metrics to track nations’ progress in closing spatiotemporal biodi-

versity data gaps [27,34–36].

Here, we provide 2 national indicators in support of the global assessment, monitoring, and

decision-support around annual trends in spatiotemporal biodiversity information. These

metrics are integrated within a flexible, updatable analytical framework. Specifically, we pres-

ent and globally implement the MOL Species Status Information Index (SSII), which was

developed under the auspices of the GEO Biodiversity Observation Network [37] (https://mol.

org/indicators/coverage) in support of IPBES reporting (https://ipbes.net/core-indicators) and

global assessment processes [8], as well as the Species Sampling Effectiveness Index (SSEI). We

use the indicator framework to compare global and national trends in spatiotemporal biodi-

versity knowledge since 1950 for over 31,000 terrestrial vertebrate species and over 450 million

verified and taxonomically harmonized occurrence records at the level of species, nations, and

the globe. We provide a first global assessment for trends in data coverage and sampling effec-

tiveness for terrestrial vertebrates as well as infrastructure to continuously track these indices

into the future at MOL (https://mol.org/indicators/coverage).
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The SSII quantifies spatiotemporal biodiversity data coverage for a particular grid resolu-

tion and species geographic range expectation (Fig 1A). The Global SSII tracks the proportion

of expected range cells with records, either for a single species or averaged across multiple spe-

cies (Fig 1B). The National SSII is calculated using the same method as the Global SSII but is

restricted to the range cells inside a particular country (Fig 1B). Steward’s SSII follows the

National SSII calculation but additionally applies a species-level weight to account for different

national stewardships of species (Fig 1B). Nations’ varying responsibilities are determined by

the portion of a species’ global range they hold (e.g., 1 for country endemics; see Fig 1A for

illustration and Text A in S1 File for formal description). For a given species, SSII quantifies

the proportion of the range with data but not how effectively these data are distributed across

the proportion of the range it covers. We characterize sampling effectiveness by relating the

realized spatial distribution of records to the ideal uniform distribution based on Shannon’s

entropy (Fig 1C, Text A in S1 File) normalized to vary between 0 and 1, a metric we call the

SSEI. The SSEI is similar to other information theoretic evenness metrics, such as Pielou’s

index of species evenness, which is also based on normalized entropy [38]. SSEI has the same

properties as SSII and can be calculated at the species, national, or global level and additionally

can be adjusted by national stewardship for species.

We illustrate the SSII and SSEI for the years 2000 to 2019 for the jaguar (Panthera onca)

and collared peccary (Pecari tajacu), 2 widely distributed species with heterogeneous sampling

(Fig 2, Table A in S1 File). The number of records collected annually for the peccary was sub-

stantially higher than for the jaguar, ranging from 2- to 10-fold higher data collection (Fig 2A–

2C). Subsequently, Global SSII was consistently higher for the peccary than the jaguar, but the

difference in values was narrower than the difference in data collection would suggest

(Fig 2D).

Such results suggest a much lower sampling effectiveness, as indexed by the SSEI, for the

peccary compared to the jaguar, indicating that many peccary records were concentrated in

the same regions. SSII improved markedly for the peccary in recent years, reaching 0.03 (i.e.,

3% global range cells with annual records). This increase was associated with increasing SSEI,

as the number of records collected were only slightly elevated (Fig 2E). National and Steward’s

SSII calculated for these 2 species was highest in Costa Rica and lowest in Brazil (Fig 2F,

Table B in S1 File). National SSEI was generally highest in Brazil and lowest in Colombia

(Fig 2G).

Global and national trends in data coverage and sampling effectiveness

Biodiversity data collection has rapidly proliferated, particularly over the last 2 decades (Fig

3A). However, the proliferation of species records and their translation into biodiversity

knowledge has played out along substantially different trajectories among taxa. For example,

bird species consistently had the largest number of records, with approximately 1,000-fold

greater number of records collected annually and 3-fold greater percentage of expected species

recorded compared to other terrestrial vertebrates (Fig 3B). Yet, SSII for birds only exceeded

the 3 other groups after 1980 but has since shown near-linear growth in taxon-wide SSII (Fig

3C). Although data collection in terms of number of records for mammal species consistently

outpaced that for amphibians and reptiles, data coverage for mammals was lowest in recent

years (Fig 3C). Coincident with this rapid rise in data collection and coverage for birds species,

however, was a rapid decline in sampling effectiveness (Fig 3D–3F).

Biodiversity knowledge continued to be highly geographically biased over the previous

decade (2010 to 2019), with the most complete data coverage found primarily within the

United States, Europe, South Africa, and Australia (Fig 4A). Globally, only approximately half
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Fig 1. SSII and SSEI metrics of biodiversity data coverage and effectiveness. The metrics are illustrated for 2 hypothetical species with

geographic range delineated by binary (e.g., expert range) maps and are assessed for an example 110-km equal-area grid. (a) National

stewardship of species is calculated based on the relative portion of species’ ranges falling inside a country. (b) At the species level, the

SSII is given as the proportion of cells expected occupied with records in a given year. In this hypothetical example, coverage is 0.83 and

0.67 for species where 5 out of 6 and 2 out 3 expected grid cells have data. Steward’s SSII adjusts this coverage by their respective national

stewardship (0.83 and 0.2). Species-level SSII can be aggregated to the national level via 2 formulations. National SSII for a given

taxonomic group takes the mean coverage across all species expected in a country (0.75). Steward’s SSII adjusts the mean coverage across

species by their respective national stewardship (0.8). (c) SSEI compares the entropy of the realized distribution of records to that of the

ideal distribution (see Text A in S1 File), where uneven sampling (lower SSEI) is considered less effective than more even sampling

(higher SSEI). National SSEI takes the mean across all species expected in a country. (d) Glossary of relevant terms. Artwork from
plylopics.org (see Text A in S1 File). GBIFAU : AbbreviationlistshavebeencompiledforthoseusedinFigs1 � 5:Pleaseverifythatallentriesarecorrect:, Global Biodiversity Information Facility; MOL, Map of Life; SSEI, Species Sampling

Effectiveness Index; SSII, Species Status Information Index.

https://doi.org/10.1371/journal.pbio.3001336.g001
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of nations (42%) showed increasing, significant trends (p< 0.01) in coverage averaged across

taxa over the previous decade (Fig 4B). For those nations showing increases, trends are driven

primarily by the rapid increase in avian distribution data (Fig 4C, Fig A and Table C in S1

File). Nearly half of nations (47%) showed significantly increasing data coverage for birds,

whereas less than 20% of nations had increasing trends for other taxa (Fig 4C). This suggests

that despite increasing data availability for all taxa, a majority of nations are not making prog-

ress in closing information gaps for mammals, amphibians, and reptiles.

Interestingly, several world regions that historically most comprehensively sampled the full

suite of local species across their geographic ranges are no longer continuing along increasing

trajectories (Fig 4B). For example, Western Europe, South Africa, and Australia appear to have

slowed in their coverage progress (i.e., SSII across taxa), possibly reflecting challenges in the

continued mobilization of existing datasets or a lack of impetus to engage in new initiatives

[39]. However, we anticipate that even under constant effort, nations’ coverage may asymptote

as marginal gains become more challenging to achieve. Therefore, asymptoting trajectories in

data coverage may suggest that nations are operating at maximum capacity. Thus, nations

with slowing trends may best contribute to CBD goals by partially shifting their investments in

national biodiversity data creation toward supporting targeted data mobilization and capacity-

building in nations that have so far lagged behind through direct partnerships [40]. By con-

trast, much of Asia, South America, and Western and Northern Africa had increasing coverage

over the previous decade from initially low values, suggesting encouraging information pros-

pects if trends continue (Fig 4B). Our results underscore the importance of regionally targeted

capacity-building and data mobilization initiatives that support regions with historically lim-

ited data coverage. Such efforts currently underway include GBIF’s Biodiversity Information

Fund for Asia and Biodiversity Information for Development program focused in sub-Saharan

Africa, the Caribbean, and the Pacific.

Despite the astounding accumulation of biodiversity records, not all data have translated to

new knowledge of species distributions [41]. While potentially useful for other ecological

applications, sampling effectiveness of biodiversity data as indexed by the SSEI varied consid-

erably among nations over the previous decade, with lowest effectiveness typically within

Fig 2. Species and national example patterns and trends. SSII and SSEI trends illustrated for 2 species, the jaguar (Panthera
onca) and collared peccary (Pecari tajacu). (a, b) The expected occupied cells are shown in dark gray, and total number of

records collected 2010–2019 in color. (c–e) Species-level time series of the total number of records (c), Global SSII for the

whole species range (i.e., all countries with expected range) (d), and Global SSEI (e) across their expected range. (f, g)

Resulting National and Steward’s SSII (f) and SSEI (g) for 4 countries. Photographs fromWikimedia (see Text A in S1 File).
National boundaries from gadm.org. Numerical values available in Tables A and B in S1 File. The data underlying this figure
may be found in https://mol.org/indicators/coverage and https://github.com/MapofLife/biodiversity-data-gaps. SSEI, Species

Sampling Effectiveness Index; SSII, Species Status Information Index.

https://doi.org/10.1371/journal.pbio.3001336.g002
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Western Europe, North America, and Australia (Fig 4D). National trends in effectiveness also

appear to be largely driven by the trends in sampling effectiveness for bird species, which has

declined rapidly over the past 2 decades, constraining the direct conversion of the immense

accumulation of data into data coverage (Fig 4E and 4F).

Differences and trade-offs in data coverage and effectiveness among taxa appear to be

largely driven by the way in which data are collected for different taxonomic groups. As of

2016, nearly all records for birds in GBIF (>90%) came from direct observations, as opposed

to museum specimens that constituted the primary source of records for amphibians, reptiles,

and, to a lesser degree, mammals [26]. However, these differences in sources are likely to nar-

row as citizen scientist programs not restricted to birds continue to grow in popularity (e.g.,

iNaturalist). SSII for birds did not surpass that for other classes until the 1980s, despite having

an order of magnitude greater number of records. Further, for the same number of records,

birds had the lowest SSII among terrestrial vertebrates and appear to only have achieved the

highest SSII through sheer volume of records, as opposed to strategic sampling (Fig 3D).

Although data coverage for birds increased throughout much of the 20th century, the launch

of citizen science platforms such as eBird [42] in the early 2000s undoubtedly played a large

Fig 3. Global trends data coverage and sampling effectiveness across 4 terrestrial vertebrate groups. (a–c) Trends in total annual record counts (a), percentage of

expected species recorded (b), and the Global SSII (c). Global SSII is based on data coverage across species’ ranges without consideration of national boundaries.

Alternatively, Global SSII for a species is the sum of Steward’s SSII across the nations where it is expected to occur. (d) Relationship between annual total record counts and

Global SSII. (e) Trends in Global SSEI. (f) Relationship between percentage of expected species recorded and Global SSEI. (c, e) Lines and shading represent means and

95% confidence intervals across species within classes. (d, f) Relationships are shown over the past 70 years (1950–2019). Colors in a–f indicate birds (blue), mammals

(orange), amphibians (purple), and reptiles (green). Artwork from phylopics.org (see Text A in S1 File). The data underlying this figure may be found in https://mol.org/
indicators/coverage and https://github.com/MapofLife/biodiversity-data-gaps. SSEI, Species Sampling Effectiveness Index; SSII, Species Status Information Index.

https://doi.org/10.1371/journal.pbio.3001336.g003
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role in the expeditious increase in coverage [19]. However, this onslaught of observations has

not been maximally leveraged to enhance the global biodiversity information base, as seen in

the coincident decline in avian sampling effectiveness (Fig 3E).

The accelerated pace of data coverage for birds compared to other vertebrate groups points

to the tremendous role that non-museum–based data collection can play in closing knowledge

gaps [43–45]. However, the rapid decline in sampling effectiveness we found for bird species,

coincident with the growth in citizen science platforms, suggests that these data have not col-

lected to optimally support closing knowledge gaps. While the contributions of citizen science

have been invaluable, expanding the impact of citizen science initiatives for information

growth will likely benefit from initiatives and guidance addressing the most effective and com-

plementary contributions (i.e., addresses undersampled species or regions) [46,47]. The rap-

idly changing landscape of citizen science initiatives will need to be complemented by further

supporting and growing coordinated programs through international organizations or gov-

ernment agencies that ensure improved data coverage. Citizen science platforms could shift

incentives from numbers of records collected or species identified to the value of records con-

tributed. Quantifying and identifying particularly important data contributions through prod-

ucts such as the SSII and SSEI, which can be updated and delivered through the MOL

infrastructure, can support naturalists and initiatives to fill key geographic and taxonomic

gaps.

Fig 4. National patterns and trends in spatial biodiversity data coverage and sampling effectiveness. (a, d) Mean Steward’s SSII (a) and National SSEI (d) over the previous

decade (2010–2019) averaged across terrestrial vertebrates; the relationship between data coverage and sampling effectiveness is shown as inset. (b, e) Change rate in Steward’s

SSII (b) and National SSEI (e) over the previous decade. Maximum values for each color bin are labeled below each map. (c, f) Percentage of nations with no significant

(p< 0.01) trends (beige) and significant decreasing (blue) or increasing (red) trends in Steward’s SSII (c) and SSEI (f) over the previous decade for birds, mammals,

amphibians, and reptiles. Artwork from phylopics.org (see Text A in S1 File). National boundaries from gadm.org. The data underlying this figure may be found in https://mol.org/
indicators/coverage and https://github.com/MapofLife/biodiversity-data-gaps. SSEI, Species Sampling Effectiveness Index; SSII, Species Status Information Index.

https://doi.org/10.1371/journal.pbio.3001336.g004
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Typologies of national monitoring efforts

National biodiversity monitoring is influenced by a myriad of social, political, economic, and

geographic factors [21,22,30,48,49]. We categorized nations into the following 4 main types

based on Steward’s SSII status and trends over the previous decade: (1) coverage less than the

global mean with no or decreasing trend (2010 to 2019) (42% of nations); (2) coverage less

than the global mean with an increasing trend (24%); (3) coverage greater than the global

mean with no or decreasing trend (17%); and (4) coverage greater than the global mean with

an increasing trend (17%) (Fig 5A). We highlight national trajectory examples from each

group (Fig 5B). Status and trends in Steward’s SSII differed strongly among continents

(Fig 5C).

Biodiversity data coverage within Mexico has followed a strong, and increasing, trajectory

in both the 20th and 21st centuries. Despite lower coverage through periods of the 20th cen-

tury, South Africa has had similarly strong and increasing data coverage over the previous

decade. Many nations that had historically limited data coverage showed recent increases in

coverage, for example, Brazil. These trajectories in data coverage may be due to political deci-

sions and national infrastructure, which supports biodiversity data collection and mobiliza-

tion. For example, the establishment of a national biodiversity program (CONABIO) [31] and

large-scale atlasing efforts, such as the Southern African Bird Atlas Project [50,51].

Through their national commitment to the CBD targets to decrease species extinctions,

nations are asked to monitor the species for which they hold greatest responsibility, or, in the

case of endemic species, full responsibility. By comparing National and Steward’s SSII, we

found that a majority of nations (50%) preferentially survey species for which they hold a high

proportion of the global ranges (Fig B in S1 File). This may reflect a tendency for endemic bio-

diversity to confer special cultural importance and for societal interests to influence research

agendas [49] or simply reflect the preferences of citizen scientists aiming to boost their life

lists. Selective monitoring based on nations’ stewardship of species may beneficially promote

conservation agendas within nations that have primary control of habitats that species rely on.

With this goal in mind, our analysis highlights when nations fall behind on sampling species

Fig 5. Typologies of nations’ data coverage and trends. (a) Mean values and change rates in Steward’s SSII over the previous decade (2010–2019). Horizontal

dashed line represents the global mean of Steward’s SSII. Left panels show nations with no significant or decreasing trends in coverage. Right panels show

nations with significant (p< 0.01) increasing trends in coverage. We categorized nations into the following 4 main types based on Steward’s SSII status and

trends over the previous decade: (1) coverage less than the global mean with no or decreasing trend (2010–2019) (42% of nations); (2) coverage less than the

global mean with an increasing trend (24%); (3) coverage greater than the global mean with no or decreasing trend (17%); and (4) coverage greater than the

global mean with an increasing trend (17%). (b) Example time series for nations within each type. (c) National assignment to quadrants. Bar plot shows

percentages of nations within each quadrant. National boundaries from gadm.org. The data underlying this figure may be found in https://mol.org/indicators/
coverage and https://github.com/MapofLife/biodiversity-data-gaps. SSII, Species Status Information Index.

https://doi.org/10.1371/journal.pbio.3001336.g005
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for which they have high stewardship and thus play a particularly large role in species’ conser-

vation (e.g., Indonesia and Costa Rica).

Future directions for tracking global biodiversity knowledge

We recognize the limitations of SSII, or any single metric of biodiversity data coverage, to

address the range of research and monitoring needs. Our formulation assumes a specific set of

taxonomic, spatial, and temporal units and places a burden on nations with particularly high

diversity or large national areas to achieve high scores. Furthermore, the annual time units and

a relatively coarse grid for the SSII patterns presented here are insensitive to spatiotemporally

dense data that could reveal seasonal dynamics and additional insights offered by repeat sam-

ples (e.g., in occupancy modeling frameworks) [52]. Similarly, by penalizing uneven sampling,

the SSEI ignores applications that require repeat sampling. In its current form, the SSII also

does not account for coverage in environmental space (e.g., as relevant for model-based infer-

ence and Essential Biodiversity Variable production) [10]. Further, because the SSII is cur-

rently based on static representations of species ranges, it does not capture range dynamics,

such as in new invasions or range shifts [9]. This could be addressed through timely updates of

range expectations or other invasion-specific information [53]. Dynamically tracking species

distributions will be particularly important in cases where species ranges shift across national

boundaries, resulting in new monitoring responsibilities. Our methodology and analysis infra-

structure is capable of flexibly accommodating different spatial resolutions (Fig C and Text A

in S1 File) as more precise information on species’ ranges becomes available (e.g., through spe-

cies distribution modeling) for a broader range of taxa.

A group of alternative approaches to quantify sampling completeness rely on parametric or

nonparametric richness estimates based on extrapolation of assemblage species accumulation

curves [27,34–36]. These approaches provide an important complementary contribution espe-

cially for extremely undersampled or underdescribed taxa where globally comprehensive spe-

cies range expectations, which are necessary for SSII calculation, remain unavailable.

However, richness estimates from extrapolation approaches can vary dramatically with the

specific methodology used and structure of input data. As such, there are competing recom-

mendations for their development and use [54–56]. The SSII avoids potential pitfalls and the

limited transparency of extrapolation approaches by relating record collection directly to best-

possible species-level expectations. Therefore, the SSII allows for decision support at the spe-

cies level, which is not possible with extrapolation approaches. While this study is limited in

scope to terrestrial vertebrates, the framework is easily extended to address other taxonomic

groups and realms with ongoing, comprehensive distribution mapping efforts, such as plants

and certain marine and invertebrate groups [18,57]. The SSII offers an effective initial charac-

terization of biodiversity information at the species, national, and global scales, with the poten-

tial to extend the metric to account for different spatiotemporal grains (Fig C in S1 File), taxa,

and data types.

Conclusions

The framework and indicators presented here offer a quantitative and comparable characteri-

zation of species, national, and global trajectories in closing biodiversity information gaps. The

need for more comprehensive quantitative and standardized biodiversity information to sup-

port policy and action not only underpins improved Essential Biodiversity Variables [10] but

is also recognized as critically needed in recent assessments of IPBES and the post-2020 Global

Biodiversity Framework. Our findings suggest that trends in data coverage fundamentally dif-

fer by taxa and region and highlight the need to complement and reassess biodiversity
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sampling strategies to most effectively translate data collection into biodiversity knowledge

useful for management and decision-making.

Supporting information

S1 File. Text A. Methods, Supplementary Text, and Supplementary Acknowledgments to sup-

port main text. Fig A. National patterns in data collection, coverage, and sampling effec-

tiveness (2010–2019). (a) Change rates in Steward’s SSII and National SSEI. Dashed lines

represent zero slopes. (b, c) Relationship and mismatch between Steward’s SSII and total spa-

tiotemporal records collected nationally (b) and the percentage of expected species nationally

recorded (c). (d) Relationship between the percentage of expected species nationally recorded

and mean National SSEI. The data underlying this figure may be found in https://mol.org/
indicators/coverage and https://github.com/MapofLife/biodiversity-data-gaps. Fig B. National

stewardship in data coverage. (a) National and Steward’s SSII over the previous decade

(2010–2019). Points are colored by the percent difference between National and Steward’s

SSII. Dashed line represents the 1:1 line between variables. (b) Relative stewardship of nations,

as estimated by percent difference, over the previous decade. Color scale matches that in panel

(a). National boundaries from gadm.org. The data underlying this figure may be found in
https://mol.org/indicators/coverage and https://github.com/MapofLife/biodiversity-data-gaps .

Fig C. Empirical demonstration of the effects of spatial resolution on the SSII and SSEI. (a,

b) Thresholded species distribution model output (Ellis-Soto and colleagues, 2021) rescaled to

3 spatial resolutions (110, 55, and 27.5 km) for 2 hummingbird species, (a) the Glowing puffleg

(Eriocnemis vestita) and (b) White-sided hillstar (Oreotrochilus leucopleurus). Grid cells are

colored by the number of records collected between 2000–2019. (c) Annual SSII (solid lines)

and SSEI (dashed lines) computed at 3 spatial resolutions. (d–i) Comparison of SSII (d–f) and

SSEI (g–i) values among spatial resolutions (d, g: 100 vs. 55 km; e, h: 55 vs. 27.5 km; f, i: 110

vs. 27.5 km). Gray shading shows 95% confidence interval. Colored text displays slope esti-

mates and 95% confidence intervals for each species (blue: Eriocnemis vestita; green: Oreotro-
chilus leucopleurus). The data underlying this figure may be found in https://mol.org/indicators/
coverage and https://github.com/MapofLife/biodiversity-data-gaps. Fig D. Theoretical exam-

ples of the Species Sampling Effectiveness Index (SSEI). Each line corresponds to theoretical

cases with different levels of evenness of the distribution of biodiversity records for an ideal-

ized species with the same range size. In these examples, the proportion of the sampled range

with a single record vs. alternate values (1, 2, 10, 100, and 1,000) is adjusted from 0 to 1. SSEI is

highest in cases with uniform or near-uniform sampling (i.e., all grid cells either contain 1 or 2

records). SSEI is lowest in cases with highly uneven sampling (i.e., a mixture of grid cells with

either a single record or 100–1,000 records). These examples also highlight that SSEI is identi-

cal in the cases where redundant sampling is uniform (i.e., values are the same if all cells have a

1, 10, or 1,000 records). Additionally, SSEI approaches the maximum value when only a small

minority of cells contain more than a single record (i.e., the proportion of cells with a single

record>90%). Table A. Species example coverage and sampling effectiveness values. Values

presented for the jaguar (Panthera onca) and collared peccary (Pecari tajacu) as demonstrated

in Fig 2C–2E. The data underlying this table may be found in https://mol.org/indicators/
coverage and https://github.com/MapofLife/biodiversity-data-gaps. Table B. National example

data coverage and sampling effectiveness values. Values presented for the jaguar (Panthera
onca) and collared peccary (Pecari tajacu) as demonstrated in Fig 2F and 2G. The data underly-
ing this table may be found in https://mol.org/indicators/coverage and https://github.com/
MapofLife/biodiversity-data-gaps. Table C. National data coverage and sampling effective-

ness values over the previous decade (2010–2019). ISO3 codes and mean values for National
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and Steward’s SSII and SSEI for nations. The data underlying this table may be found in https://
mol.org/indicators/coverage and https://github.com/MapofLife/biodiversity-data-gaps.
(PDF)
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18. Bruelheide H, Dengler J, Jiménez-Alfaro B, Purschke O, Hennekens SM, Chytrý M, et al. sPlot–A new

tool for global vegetation analyses. J Veg Sci. 2019; 30(2):161–86.

19. Amano T, Lamming JDL, Sutherland WJ. Spatial Gaps in Global Biodiversity Information and the Role

of Citizen Science. Bioscience. 2016 May 1; 66(5):393–400.

20. Jetz W, McPherson JM, Guralnick RP. Integrating biodiversity distribution knowledge: toward a global

map of life. Trends Ecol Evol. 2012 Mar 1; 27(3):151–9. https://doi.org/10.1016/j.tree.2011.09.007

PMID: 22019413

21. Meyer C, Kreft H, Guralnick R, Jetz W. Global priorities for an effective information basis of biodiversity

distributions. Nat Commun. 2015 Sep 8; 6(1):8221. https://doi.org/10.1038/ncomms9221 PMID:

26348291

22. Boakes EH, McGowan PJK, Fuller RA, Chang-qing D, Clark NE, O’Connor K, et al. Distorted Views of

Biodiversity: Spatial and Temporal Bias in Species Occurrence Data. PLoS Biol. 2010 Jun 1; 8(6):

e1000385. https://doi.org/10.1371/journal.pbio.1000385 PMID: 20532234

23. Feeley KJ, Stroud JT, Perez TM. Most ‘global’ reviews of species’ responses to climate change are not

truly global. Divers Distrib. 2017; 23(3):231–4.

24. Lenoir J, Svenning J-C. Climate-related range shifts–a global multidimensional synthesis and new

research directions. Ecography. 2015; 38(1):15–28.

25. Meyer C, Jetz W, Guralnick RP, Fritz SA, Kreft H. Range geometry and socio-economics dominate spe-

cies-level biases in occurrence information. Glob Ecol Biogeogr. 2016; 25(10):1181–93.

26. Troudet J, Grandcolas P, Blin A, Vignes-Lebbe R, Legendre F. Taxonomic bias in biodiversity data and

societal preferences. Sci Rep. 2017 Aug 22; 7(1):9132. https://doi.org/10.1038/s41598-017-09084-6

PMID: 28831097

27. Mora C, Tittensor DP, Myers RA. The completeness of taxonomic inventories for describing the global

diversity and distribution of marine fishes. Proc R Soc B Biol Sci. 2008 Jan 22; 275(1631):149–55.

https://doi.org/10.1098/rspb.2007.1315 PMID: 17999950

28. Sorte FAL, Somveille M. Survey completeness of a global citizen-science database of bird occurrence.

Ecography. 2020; 43(1):34–43.

29. Troia MJ, McManamay RA. Filling in the GAPS: evaluating completeness and coverage of open-access

biodiversity databases in the United States. Ecol Evol. 2016; 6(14):4654–69. https://doi.org/10.1002/

ece3.2225 PMID: 27547303
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