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Sonja HärtleID
6*, Jim KaufmanID

1,2,7*

1 University of Cambridge, Department of Pathology, Cambridge, United Kingdom, 2 University of

Edinburgh, Institute for Immunology and Infection Research, Edinburgh, United Kingdom, 3 University of
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Abstract

Viral diseases pose major threats to humans and other animals, including the billions of

chickens that are an important food source as well as a public health concern due to zoo-

notic pathogens. Unlike humans and other typical mammals, the major histocompatibility

complex (MHC) of chickens can confer decisive resistance or susceptibility to many viral dis-

eases. An iconic example is Marek’s disease, caused by an oncogenic herpesvirus with

over 100 genes. Classical MHC class I and class II molecules present antigenic peptides to

T lymphocytes, and it has been hard to understand how such MHC molecules could be

involved in susceptibility to Marek’s disease, given the potential number of peptides from

over 100 genes. We used a new in vitro infection system and immunopeptidomics to deter-

mine peptide motifs for the 2 class II molecules expressed by the MHC haplotype B2, which

is known to confer resistance to Marek’s disease. Surprisingly, we found that the vast major-

ity of viral peptide epitopes presented by chicken class II molecules arise from only 4 viral

genes, nearly all having the peptide motif for BL2*02, the dominantly expressed class II mol-

ecule in chickens. We expressed BL2*02 linked to several Marek’s disease virus (MDV)

peptides and determined one X-ray crystal structure, showing how a single small amino acid

in the binding site causes a crinkle in the peptide, leading to a core binding peptide of 10

amino acids, compared to the 9 amino acids in all other reported class II molecules. The lim-

ited number of potential T cell epitopes from such a complex virus can explain the differential

MHC-determined resistance to MDV, but raises questions of mechanism and opportunities

for vaccine targets in this important food species, as well as providing a basis for under-

standing class II molecules in other species including humans.
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Introduction

The ongoing global pandemic of a coronavirus among humans highlights the enormous chal-

lenge of viral disease and the importance of the appropriate immune responses [1–3]. The clas-

sical class I and class II molecules of the major histocompatibility complex (MHC) play crucial

roles in resistance to infection and response to vaccines, binding peptides for presentation to

thymus-derived (T) lymphocytes of the adaptive immune system as well as natural killer (NK)

cells of the innate immune system [4,5]. The importance of the classical MHC molecules is

underscored by their high level of allelic polymorphism, which is mostly driven by molecular

arms races with infectious pathogens [5]. However, the MHC of humans and typical mammals

is an enormous and complex genetic region encoding a wide variety of molecules, with multi-

gene families encoding class I and class II molecules leading to strong genetic associations with

autoimmune disease but relatively weak associations with infectious diseases [4].

In contrast to humans and other typical mammals, the level of resistance to many infectious

pathogens in chickens can be strongly determined by the MHC (that is, the BF-BL region of

the B locus), at least in part because the chicken MHC is much simpler, with single dominantly

expressed class I and class II loci [6,7]. As a result of this simplicity, the phenotypes are much

clearer: either the dominantly expressed MHC allele finds a protective peptide to confer resis-

tance or not, leading to strong genetic associations that are easier to discover and dissect [7].

Moreover, the scale of viral challenges in the poultry industry has been clear for decades, with

many tens of billions of chickens each year beset by a wide variety of poultry viruses [6],

including the first described coronavirus [8]. On top of the economic importance, zoonotic

pathogens (including avian influenza) have been a continuing concern for public health [9,10].

Despite enormous efforts in biosecurity, vaccination, and genetic breeding, condemnation and

slaughter of huge numbers of infected chickens are relatively frequent [11].

Marek’s disease (MD), caused by an oncogenic herpesvirus, was the first reported disease

for which the chicken MHC is known to determine resistance and susceptibility and remains

an enormous burden for the poultry industry, with continuing outbreaks despite routine vac-

cination [12–16]. Indeed, current vaccines control disease but not transmission, leading to

selection of more virulent strains, which in turn have required more efficacious vaccines

[17,18]. The virus responsible for MD (MDV), in common with other herpesviruses, has a rel-

atively large genome with over 100 genes and a complex life cycle, so it is possible that many

genes contribute to resistance at different stages of infection, tumor growth, and transmission

[14,16]. Several polymorphic genes located in the MHC have been proposed as candidates to

determine MD resistance, including the dominantly expressed classical class I gene (BF2), an

NK receptor gene (B-NK), a gene with some similarities to mammalian butyrophilins (BG1)

and the classical class II B genes (BLB1 and BLB2) [19–25]. In comparison to the MHC class I

system, very little attention has been focused on chicken class II genes and molecules [7,26].

Mammalian class II molecules have been intensively studied, so many structural and func-

tional features are known in detail [27–30]. The heterodimer is composed of an α and a β
chain, each with 2 extracellular domains: membrane proximal immunoglobulin C-like (Ig C)

domains (α2 and β2 domains) and membrane distal domains composed of 4 β-strands form-

ing a β-sheet surmounted by predominantly α-helical stretches (α1 and β1 domains). The

domain organization, including the features of secondary structure and location of intrado-

main disulfide bonds, is similar to class I molecules. The membrane distal domains together

form a peptide-binding superdomain, with a core sequence from the peptide binding across a

groove, the T cell receptor recognizing the top, and the dedicated chaperone DM interacting

with key residues on the side for loading of appropriate peptides. A glycosylation site near the

end of the α1 domain is likely to be involved in quality control during biosynthesis and peptide
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loading (as in class I [31]), while a loop in the β2 domain and part of the α2 domain bind the

CD4 coreceptor that contributes to T cell signaling (in the same place as CD8 interacts with

class I [30,32]).

As in human HLA-DR molecules, the chicken α-chain (encoded by the BLA gene) is nearly

monomorphic, with most residues on the top of the α1 domain identical with HLA-DRA

(although there is dimorphic position in the α-helix pointing up towards the T cells, and a four

amino acid insertion in one loop of the β-sheet) [33]. Virtually, all of the variation responsible

for allelic polymorphism and thus for different peptide-binding specificities in different

chicken class II molecules is located in the β1 domain of the β chain, encoded by either the

BLB1 or BLB2 gene [34,35].

Differential immune responses by classical MHC molecules have typically been understood

as MHC molecules either presenting a peptide that confers an effective immune response or

not. However, a major concern is how classical MHC molecules could confer susceptibility to

a virus such as MDV, since it is hard to imagine how a peptide conferring protection would

not be found among 100 viral molecules [19]. This conundrum is particularly an issue for class

II molecules for which the peptide motifs are relatively promiscuous compared to class I mole-

cules [28]. A significant barrier to examining this question has been the low frequency of cells

infected with MDV within chickens before tumors arise, even early during infection when

MDV replicates mainly in B cells [36].

In this report, we use a novel culture system for bursal B cells [37], followed by determina-

tion of the peptides bound to class II molecules by mass spectrometry (so-called immunopepti-

domics or MHC ligandomics [38,39]). We identify the peptides bound to class II molecules

from the well-characterized MHC haplotype B2 known to confer resistance to MD [13,40],

with and without infection by the very virulent MDV strain RB-1B (also known as RB1B [41])

and the live attenuated virus strain CVI988 (widely used as the Rispens vaccine [42]). We then

express the chicken class II molecule BL2�02 with several dominant pathogen peptides and

determine the structure of one such complex by X-ray crystallography, finding an unusual

molecular feature that might help explain the biology of resistance.

Results

Peptides from 2 class II molecules were found in bursal B cells from the B2

MHC haplotype

After 1 day in culture with and without infection, ex vivo bursal cells from the M11 chicken

line were harvested, MHC molecules were isolated from detergent lysates by affinity chroma-

tography, and the eluted peptides were analyzed by mass spectrometry. In experiments over 3

years, 1 uninfected sample, 2 samples infected with the live attenuated virus strain CVI988,

and 3 samples infected with the very virulent MDV strain RB1B were analyzed.

Several thousand peptides were identified for each infected sample, with between 36% and

84% of a particular sample shared with other samples (S1 Fig, S1–S6 Data). Since rare peptides

may not be sampled in repeated analyses, the high level of overlap between analyses gives con-

fidence that most abundant peptides detectable by this method were identified.

Overall, the sequences have the features typical of peptides bound by mammalian class II

molecules, including an enrichment of proline around position 2 (due to the cleavage prefer-

ence for aminopeptidases) and a broad distribution of length from 12 to more than 25, with a

peak around 16 to 17 amino acids (S2 Fig, S1–S6 Data). Initial analysis by Gibbs clustering

identified 2 nonamer (9mer) core motifs in all samples, but subsequent structural evidence

(detailed below) led to a reanalysis that showed one of these motifs to be a decamer (10mer)

(Fig 1A). The 2 motifs turn out to represent the B2 alleles of the 2 classical class II molecules in
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Fig 1. Analysis of thousands of peptides from infected B2 cells yield 2 peptide motifs but only a few peptides from MDV, most of which are derived from only 4

MDV genes, and with peptides from 3 genes binding BL2�02 molecules with high affinity. (A) Two peptide motifs are found for class II molecules from the MHC B2
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chickens, BL1�02 and BL2�02, encoded by a monomorphic HLA-DRA-like A gene (BLA) and

2 polymorphic classical class II B genes (BLB1 and BLB2). At the RNA level, BLB1 is poorly

expressed except in the intestine, while BLB2 is well expressed systemically [26]. However, the

peptide species from these ex vivo bursal B cells that contain the BL1 nonamer motif ranged

from 37% to 48% of the total containing BL1 and BL2 motifs in different samples (S1–S6

Data).

Four MDV genes gave rise to most of the pathogen peptides bound to class

II molecules from bursal B cells, with most bound to BL2 molecules

Out of the thousands of peptides characterized, the vast majority originated from chicken pro-

teins (S1–S6 Data), but 64 peptides originating from 17 MDV genes were identified (Fig 2, S1

Table). Many of these peptide species and/or epitopes are shared between the live attenuated

virus strain CVI988 and the very virulent MDV strain RB1B, with many other peptides unique

to CVI988 but none unique to RB1B (Fig 2). The infection rate was much higher for CVI988

than for RB1B in these in vitro cultures, which may have resulted in more class II molecules

being loaded with MDV peptides.

Most of the MDV peptides were found only in 1 sample and as only 1 species of peptide

(meaning that they are likely to be quite rare). However, overlapping peptides (hereafter called

species) corresponding to a single peptide epitope and/or multiple peptide epitopes were

found in several infected samples (meaning that they are likely to be abundant) for 4 MDV

proteins (Fig 1B, Fig 2, and S1 Table). Five peptide epitopes were found for glycoprotein H

(gH, encoded by the MDV034 gene), two of which had multiple species, of which one was

found in all 5 samples. The UL43 tegument protein (MDV056) had 1 peptide epitope with 16

species, some of which were found in 2 to 4 samples. For gI (MDV095), 1 peptide epitope was

found with 3 species, one of which was found in 4 samples. For gE (MDV096), 2 peptides were

found, one of which had 18 species, four of which were found in all 5 samples.

Most of these MDV peptide species had the decamer motif, including those from 3 of the 4

MDV proteins with abundant peptides. From the analysis by Gibbs clustering, 6 peptide spe-

cies from 4 epitopes fit the nonamer BLB1 motif, 50 species from 13 epitopes fit the decamer

BLB2 motif, 1 species from 1 epitope fits both motifs (and thus might actually contain 2 epi-

topes), and 7 species from 5 epitopes did not fit either motif (Fig 2).

Soluble BL2 molecules from the B2 haplotype were expressed in insect cells using Baculo-

virus, with the peptide attached via a linker to the BLB2 chain [it should be noted that, in con-

trast to previous reports [34,43,44], the N-terminal positions of the BLA and BLB chains are

likely identical to those of HLA-DR (S3 Fig)]. Confirming the assignments based on motifs, 3

peptide species with decamer motifs linked to BL2�02 molecules were successfully expressed,

and the complexes had high thermal stabilities (Fig 1C). However, the one peptide with a

haplotype, one of which is a decamer. Peptide motifs were determined by Gibbs clustering: upper panel with default length set to 9mer, lower panel with default length

set to 10mer. These motifs were determined using the CVI988 2020 experiment but are representative of all datasets, alone or taken together. (B) Only 4 MDV proteins

give rise to most pathogen peptide epitopes and their various peptide species bound to class II molecules from infected chicken bursal B cells in culture. Thin horizontal

line indicates MDV genome of roughly 180 kB, with relevant MDV genes indicated by black boxes labeled with the number of the gene (for instance, MDV022) and

with arrowheads indicating class II-bound peptides, above the line for genes and peptides oriented from left to right and below the line for right to left. Each vertical

stack of arrowheads indicates a single T cell epitope with multiple peptide species (with the protein name next to the stack), each arrowhead colored according to the

number of experimental samples in which the peptide species was found (blue, 1; green, 2; yellow, 3; orange, 4; red, 5). (C) MDV peptides with decamer motifs were

expressed with BL2�02 molecules from insect cells, and the expressed peptide-MHC molecules had high thermal stability. Thermal denaturation curves for BL2�02

molecules expressed with GVLFYMPTSHVQQMTF from gH with melting temperature 69˚C, QIESLSLNGVPNIFLSTKA from gE with 75˚C, and

SSEVLTSIGKPAQFIFA from UL43 tegument protein with 78˚C; the peptide TPSDVIEKELMEKLKKK from gI with a nonamer motif did not express. Motifs in the

peptide sequences are underlined. The underlying data for this figure can be found in Fig 2, S1 Table, and S1–S6 Data. gE, glycoprotein E;gH, glycoprotein H; gI,

glycoprotein I; MDV, Marek’s disease virus; MHC, major histocompatibility complex; UL43, unique long gene 43.

https://doi.org/10.1371/journal.pbio.3001057.g001
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Fig 2. Peptides from class II molecules of bursal B cells infected in vitro. Proteins and peptides in order of the genomic

sequence; blue, green indicate multiple species from same peptide epitope; soluble BL linked with BLB2: �expressed, ��not

expressed; peptide species found in particular experiment indicated by 1.

https://doi.org/10.1371/journal.pbio.3001057.g002
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nonamer motif that was tested did not produce a soluble complex with BL2�02 and therefore

is likely to have been bound to a BL1�02 molecule on chicken bursal B cells.

The overall structure of a chicken class II molecule is similar to those of

mammals

Of the 4 soluble BL2�02 molecules linked to MDV peptides that were expressed, the one with a

peptide from gE formed crystals that diffracted to sufficiently high resolution to determine a

structure (Fig 3A–3C , S2 Table). As this work was being written up for publication, a paper

was published with the crystal structure of a ribosomal peptide in complex with a soluble BL2

molecule from B19 [44], an MHC haplotype known to confer susceptibility to MD [13,45].

Overall, the structure of BL2�02 is extremely similar to BL2�19 and to the iconic mamma-

lian class II molecule HLA-DR1 (Fig 3D and 3E), with root mean square deviations for Cα
atoms of 0.684 and 0.878 Å, respectively (S3 Table). Most of the key residues found in mam-

malian class II molecules are identical in these 3 structures and found in nearly identical con-

formations, including those involved in domain folding (disulfide bonds and glycosylation

site) and in interdomain, DM, and CD4 interactions (Fig 3E, S4 Fig, and S4 Table). However,

both chicken molecules have a four amino acid extension to the first loop and second β-strand

of the BLA α chain compared to HLA-DR1 (Fig 3D; [33,44]).

BL2 from B2 illustrates a new mode of peptide binding for MHC class II

molecules

The way in which peptides bind to mammalian class II molecules has been studied in detail,

showing that a nonamer core binds as a polyproline II helix, with main chain atoms forming

hydrogen bonds (H-bonds) with the MHC molecule and with 3 or 4 side chains binding into

pockets that determine the specificity of different MHC alleles [27,28]. Typically, the bound pep-

tides extend outwards from the N- and C-terminals of the core, permitted by an arginine found

in all class II molecules and in the classical class I molecules of nonmammalian vertebrates and

with these flanking regions sometimes assuming stable structures that can be recognized by T

cells [27,46–48]. In fact, the P10 side chain of a peptide with a nonamer core has been reported

[49] in one structure to bind onto a polymorphic shelf outside of the groove (S5 Fig).

In stark contrast to all reported mammalian class II structures and to BL2�19, the BL2�02 has

a decamer core, with the structure showing side chains at peptide positions P1, P4, P5, P8, and

P10 of the core binding into pockets, so that the peptides that were first analyzed with a nonamer

motif were reanalyzed for this peptide motif (Figs 3A and 4A and 4B); the decamer sequence pre-

dicted by Gibbs clustering corresponds to the core sequence found in the structure. Compared to

mammals and to BL2�19, the peptide in BL2�02 shifts the residues pointing up from the core

towards the T cell from the typical P2, P3, P4, or P5 and P8 to P2, P3, P6, and P9, shifting register

at P4 (Fig 4B). The class II residues that form H-bonds with the main chain atoms of the peptide

were originally described for HLA-DR1 [27] and are identical in chickens (except for chicken

Nα80 and Qβ57 which are R and D in humans, and Iβ71 in BL2�02 which is R in the other 2

structures), but again BL2�02 shifts register at P4, with subsequent interactions occurring 1 pep-

tide position after HLA-DR1 and BL2�19 (Fig 4D). However, current analyses of such bonding

are more refined, with some residues interacting through water molecules and other polymorphic

residues contributing to main chain peptide interactions (S6–S8 Figs).

The conformation of the peptide bound to BL2�02 shows a polyproline II helix as in mam-

mals but deviates downwards just at P4 and then returns to the helical conformation (Fig 4C).

Comparing the peptides from the side view confirms that it is peptide position P4 that is

located lower in the groove than in other reported class II peptides (Figs 3D and 4B, 4E, and
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4F). This “crinkle” in the peptide is due to a single BLB residue Serβ78 in BL2�02 that leads to

a deeper pocket compared to Pheβ78 from BL2�19 and Tyrβ78 from HLA-DRB1, and which

pulls P4 downwards and pulls the main chain register towards the N-terminus of the peptide,

resulting in the decamer core (Fig 4B and 4E). Comparison of the contacts around P4 shows

that this relatively small residue Serβ78 accommodates the peptide in the conformation

adopted in BL2�02, while larger residues Tyrβ78 in HLA-DR1 and Pheβ78 in BL2�19 would

conflict (Fig 4F).

Discussion

The chicken MHC can determine life or death after infection from certain economically

important pathogens, of which MDV is an iconic example. Infection of bursal B cells in culture

allowed us to determine the peptides bound to class II molecules, the peptide motifs of the 2

class II molecules encoded by the B2 haplotype, the MDV genes that give rise to the pathogen

peptides that are potential T cell epitopes, and an unexpected mode of peptide binding to the

dominantly expressed class II molecule of this haplotype.

The size distribution, raggedy ends, enrichment of proline in the N-terminal flanking

region, and multiple amino acids for anchor positions of the peptides bound to the class II

molecules of the chicken MHC B2 haplotype are similar to mammalian class II molecules, but

there were surprises with the motifs. The BL1�02 molecule (composed of BLA α chain and

BLB1�02 β chain) has a motif with large aliphatic residues at P1 and aromatic and large ali-

phatic residues at P9, but only a slight enrichment for basic amino acids in between and with-

out any obvious anchor residue preferences. The BL2�02 molecule (BLA α chain and BLB2�02

β chain), which is the dominantly expressed class II molecule in most tissues [26], has an

unprecedented decamer core motif, with large aliphatic residues at P1 and P4, small and even

acidic residues at P5, and large hydrophobic residues at P10.

It was also a surprise to find that, in this in vitro infection of chicken bursal B cells, only 4

MDV genes gave rise to 77% (49/64) of the class II-bound peptide species from the pathogen

and 39% (9/23) of all the potential T cell epitopes identified. In fact, epitopes from these 4

MDV genes were found in many of the samples, whereas the most peptides were detected in

only 1 sample and are likely to be very rare, so the impact of the epitopes from the 4 MDV

genes will be much larger than the numbers suggest. The 4 genes all encode structural proteins

present in the virion, 3 surface glycoproteins, and 1 polytopic tegument protein (S1 Table), but

these genes are also expressed early after infection of B cells [50]. There are many other pro-

teins present in the virion, and many other proteins expressed early after infection [14,16], so

why these 4 proteins are the source of most presented peptides is not at all clear yet.

This dominance of just a few class II epitopes from a few MDV proteins stands in contrast

to other human and mouse herpesviruses, for which polyclonal (and in some cases

Fig 3. The structure of the chicken BL2�02 molecule with peptide QIESLSLNGVPNIFLSTKA from gE is very

similar to the BL2�19 molecule and the human HLA-DR1�01 molecule. (A) Two side views of BL2�02 with peptide

in ribbons; α chain and peptide, slate blue; β chain, deep salmon red. (B) Two side views of BL2�02 with peptide as

solvent-accessible surface calculated by APBS electrostatics (positive charge, blue; negative charge, red). (C) Top view

and side view (through β1 domain omitted for clarity) of BL2�02 in ribbons and peptide in stick as a composite omit

(2Fo-Fc) map contoured at 1 Å in blue chicken wire. (D) Top view of Cα backbone of class II molecule with peptides

superimposed, α1 domain above and β1 domain below. Left panel: BL2�02, slate blue; DR1�01, grey; dotted circle

indicates loop with four amino acid insert in chicken class II molecules. Right panel: BL2�02, slate blue; BL2�19, grey

with peptide in yellow. (E) Top view of a portion of the class II molecules superimposed in ribbons, α1 domain above

and β1 domain below, with key residues [Wα47(43), Eα59(55), Fβ89(89)] in sticks to show differences (including 310

to α-helix) upon DM binding. Left panel: BL2�02, slate blue; DR1�01, grey. Right panel: DR1�01 (PDB accession

4X5W), white; DR1�01 in DM co-crystal (4GBX), green; red arrows indicate major structural movements. The

underlying data for this figure can be found in PDB file 6T3Y.

https://doi.org/10.1371/journal.pbio.3001057.g003
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Fig 4. Although similar in overall structure to other class II molecules, BL2�02 binds peptides with a decamer

motif due to Serβ78. (A–C) Top panels, BL2�02 (PDB accession 6T3Y); middle panels, BL2�19 (6KVM); bottom

panels, DR1�01 (1DLH). (A) Top view of solvent-accessible surface of class II molecules calculated by APBS

electrostatics (positive charge, blue; negative charge, red) with P1, P9, and P10 pockets indicated and with peptides in

sticks. (B) Side view of peptide in sticks with amino acids indicated and with pockets as surfaces with P1, P9, and P10

pockets indicated, and with length between Cα of P1 and P9 or P10 shown (blue asterisks indicate that the side chains

are not resolved). (C) Edge-on view of peptide Cα backbone, with arrow indicating departure of P4 in BL2�02 from the

polyproline II helix. (D) Schematic of H-bonds interacting with peptide main chain atoms (cut-off of 3.2 Å) originally
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polyfunctional) CD4+ T cell responses to many codominant epitopes have been reported, with

multiple epitopes within some proteins [51–53]. The situation may also be true for vaccina

virus [54,55], another virus with a similarly large DNA genome. However, this finding of few

class II epitopes for MDV could fit with the existence of chicken MHC haplotypes that confer

susceptibility, which would be difficult to explain with a larger number of T cell epitopes.

The overall structure of the chicken class II molecule is similar to that of mammals, which

is perhaps not such a surprise given the high level of sequence identity, particularly in the BLA

α chain [33]. Almost all the key features and residues involved in interactions with DM, CD4,

and peptides are conserved. However, the details of the peptide binding to BL2�02 were unex-

pected, all deriving from a single amino acid polymorphism in the BLB2�02 β chain. The small

MHC residue Serβ78 leads to a pocket which pulls in the side chain from peptide position P4,

resulting in a crinkle in the peptide unlike the completely flat peptide in a polyproline II helix

as is normally found. This crinkle pulls the C-terminus of the peptide towards the N-terminus,

resulting in a shift of 1 peptide position along for the main chain interactions, the anchor resi-

dues (P1, P4, P5, P8, and P10) and the side chains pointing up towards the T cell (P2, P3, P6,

and P9). It has long been known that differences in the size of a single class II side chain can

have strong effects on which peptides are bound and thus on the subsequent functional effects,

as in the example of the Val-Ile dimorphism of β89 in HLA-DRB1 [56].

The MHC haplotype B2 is known to confer resistance to MD (as well as other common poultry

pathogens [7]). As mentioned above, a structure was very recently reported for a chicken class II

molecule from B19 [44], a haplotype that is known to confer susceptibility to MD [13,45]. This

B19 molecule has a nonamer peptide motif, which opens the possibility that the length of core

peptide might contribute to differences in resistance to MD. However, the chicken MHC (the

BF-BL region) has low rates of recombination [57–59], meaning that a number of genes are inher-

ited as haplotypes. Thus, much more work is required to determine whether class II molecules are

important as suggested [23–25], along with the classical class I genes (BF1 and BF2), the NK recep-

tor/ligand pair (BNK and Blec), and the butyrophilin homolog (BG1) which all have been pro-

posed as candidates to explain the strong genetic associations with infectious pathogens [19–22].

No matter what the contribution of chicken class II molecules to differential resistance to

MDV infection, the design and results of this study open the possibility of understanding T

cell epitopes to generate improved vaccines for MDV as well as other economically important

and zoonotic poultry pathogens [6,8–11,17,18]. Moreover, the results from this relatively sim-

ple system for chicken MHC haplotypes have relevance for human viral disease, given the class

I molecules encoded by individual loci in mammals may function like the dominantly

expressed class I molecule of chickens [7].

Methods

MDV infection of bursal B cells in culture

Viruses. MDV reporter viruses expressing the green fluorescent protein (GFP) under the

control of the herpes simplex virus 1 (HSV-1) thymidine kinase promotor were generated

described for DR1�01 (solid lines) compared to BL2�19 (dashed lines) and BL2�02 (dotted lines); additional

interactions subsequently found are shown in S6–S8 Figs). (E) Ribbon representation of class II molecule with

superimposing peptide Cα backbones for BL2�02 (slate blue), BL2�19 (yellow), and DR1�01 (grey) showing top view

(α1 domain above, β1 domain below) and side view (α1 domain shown, β1 domain removed for clarity), and with

arrow indicating departure of P4 in BL2�02 from the polyproline II helix. (F) Close-up view of class II molecules in

ribbons with peptide Cα backbones, and with the side chains for residues around pocket 4 and peptide P4 as sticks,

superimposing BL2�02 (slate blue) with BL2�19 (grey with yellow peptide) in left hand panel and with DR1�01 (grey)

in right hand panel. The underlying data for this figure can be found in PDB file 6T3Y.

https://doi.org/10.1371/journal.pbio.3001057.g004
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based on the very virulent RB-1B field strain (GenBank accession number EF523390) and the

vaccine strain CVI988 (DQ530348). GFP was inserted into the bacterial artificial chromosome

(BAC) backbone replacing the Eco-gpt gene [60]. BACs were confirmed by Illumina MiSeq

sequencing to verify sequence integrity.

Chicken embryo cells (CEC) were isolated from 11-day-old VALO specific-pathogen-free

(SPF) embryos (VALO Biomedia; Osterholz-Scharmbeck, Germany) as described previously

[61]. CEC were maintained in minimal essential medium (MEM, PAN Biotech; Aidenbach,

Germany) supplemented with 1% to 10% fetal bovine serum, 100 U/ml penicillin, and 100 μg/

ml streptomycin (AppliChem; Darmstadt, Germany) at 37˚C and 5% CO2.

All recombinant GFP reporter viruses were reconstituted by transfection of fresh CEC with

purified BAC DNA using CaPO4 transfection [62]. The viruses were propagated on CEC for

up to 9 passages, and infected cells were stored in liquid nitrogen.

Isolation and culture of bursal B cells. Fertilized eggs of M11 (B2/B2) chickens were

kindly provided by Dr. S. Weigend (Federal Research Institute for Animal Health, Mariensee,

Germany) and hatched at the Faculty for Veterinary Medicine, Munich. Birds were housed

under conventional conditions in aviaries with groups up to 10 birds and received food and

water ad libitum. Bursas were isolated from 6- to 8-week-old birds, and cells were obtained by

dissociation of the organs in PBS using a stainless steel sieve. Leukocytes were isolated by den-

sity gradient centrifugation on Biocoll (1.077 g/ml, Biochrom, Berlin, Germany).

B cells were cultured at 40˚C in Iscove’s modified Dulbecco’s medium (IMDM), 100 U/ml

penicillin, 100 μg/ml streptomycin, 8% (vol/vol) fetal bovine serum (all Bio&Sell, Nürnberg,

Germany), and 2% (vol/vol) chicken serum (ThermoFisher Scientific, Waltham, USA), with

the addition of recombinant soluble chicken BAFF and chicken CD40L, as described

[37,63,64].

Infection of bursal B cells. For MDV infection, 1 × 107 B cells were co-cultured with

3 × 105 freshly thawed MDV-infected CECs (representing an infectious dose between 0.5 to

1 × 105 plaque-forming units) in 1 ml in a 24-well plate. Up to 109 cells were harvested 24

hours after infection, washed with PBS 3 times, and frozen at −80˚C. At this time point, cul-

tures contained 25% to 35% viable B cells and 10% to 15% of viable B cells were GFP positive

(infected with MDV), as assessed by flow cytometry with the Fixable Viability Dye eFluor 780

(Thermo Fisher Scientific) using a FACSCanto II flow cytometer and FACS DIVA and FlowJo

software (BD, Heidelberg, Germany). Parallel flow cytometry experiments showed that the

CECs did not express class II molecules (S9 Fig).

Ethical permission. Permission for the procedures involving animals was given by Lande-

samt für Gesundheit und Soziales (LAGeSo) in Berlin (approval number T0245/14) and in

Munich (file number KVR-I/221-TA 160/13-He, Inst.-Nr. 01-17a) with organ sampling in

accordance with the German Animal Welfare Act.

Isolation of class II molecules and immunopeptidomics

Isolation of peptides from class II molecules. As described [38,65], frozen cells were

thawed into 10 mM CHAPS (AppliChem, St. Louis, Missouri) in PBS (Gibco, Carlsbad, Cali-

fornia) with complete protease inhibitor (Roche, Basel, Switzerland), and class II molecules

were isolated by standard immunoaffinity purification using purified monoclonal antibody

2G11 [66] produced in-house and covalently linked to CNBr-activated Sepharose (GE Health-

care, Chalfont St Giles, UK). MHC–peptide complexes were eluted by repeated addition of

0.2% trifluoroacetic acid (TFA; Merck, Whitehouse Station, New Jersey). Peptides were puri-

fied by ultrafiltration using centrifugal filter units (Amicon; Millipore, Billerica, Massachu-

setts), desalted using ZipTip C18 pipette tips (Millipore), and eluted in 35 μl 80% acetonitrile
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(Merck), 0.2% TFA, then vacuum-centrifuged and resuspended in 25 μl 1% acetonitrile, 0.05%

TFA, and stored at −20˚C.

Analysis of peptides by LC–MS/MS. Peptides were separated by reverse-phase liquid

chromatography and analyzed from 2 to 3 technical replicates, with sample shares of 33% or

50% trapped on a 75 μm × 2 cm trapping column (Acclaim PepMap RSLC; Thermo Fisher) at

4 μl/min for 5.75 minutes. Peptide separation was performed at 50˚C and a flow rate of 175 nl/

min on a 50 μm × 25 cm separation column (nano-UHPLC, UltiMate 3000 RSLCnano;

Thermo Fisher, Waltham, Massachusetts) applying a gradient ranging from 2.4% to 32.0% of

acetonitrile over the course of 90 minutes. Samples were analyzed as previously described [67]

using an online-coupled Orbitrap Fusion Lumos mass spectrometer (Thermo Fisher, Wal-

tham, Massachusetts), implementing a top-speed CID method with survey scans at 120k reso-

lution and fragment detection in the Orbitrap (OTMS2) at 60k resolution. The mass range was

limited to 300 to 1,500 m/z with precursors of charge states greater than or equal to 2 eligible

for fragmentation.

Database search and spectral annotation. LC–MS/MS results were processed using Pro-

teome Discoverer (v.1.3 and 1.4; Thermo Fisher) to perform database search using the Sequest

search engine (Thermo Fisher) with the chicken and appropriate MDV proteomes as reference

database annotated by the UniProtKB/Swiss-Prot (www.uniprot.org), status April 2018. The

search combined data of 3 technical replicates, was not restricted by enzymatic specificity, and

oxidation of methionine residues was allowed as dynamic modification. Precursor mass toler-

ance was set to 5 ppm, and fragment mass tolerance to 0.02 Da. False discovery rate (FDR) was

estimated using the Percolator node [68] and was limited to 5%. Length of peptides was limited

to 12 to 25 amino acids. The mass spectrometry proteomics data have been deposited to the

ProteomeXchange Consortium via the PRIDE [69] partner repository with the dataset identi-

fier PXD023954. Possible motifs for peptides of length 10 amino acids or greater were grouped

using GibbsCluster-2.0 [70], specifying parameters for class II ligands, number of groups,

length of motif, and first residue as a hydrophobic amino acid; the process collapses all species

with posttranslational modifications like oxidized methionines to one entry but keeps any

overlapping or nested sequences as separate entries. Venn diagrams were done by BioVenn

[71].

Expression of class II molecules and structural determination

Cell lines. Sf9 insect suspension cells (Spodoptera frugiperda female ovarian cell line,

ATCC CRL-1711) were used for production of baculovirus, and High Five insect suspension

cells (Trichoplusia ni female ovarian cell line, GIBCO B85502) streptomycin were used for pro-

tein production, both grown in Insect-XPRESS Protein-free Insect Cell Medium (Lonza,

BE12-730Q) supplemented with L-glutamine (to 1%), 50 U/ml penicillin, and 50μg/ml strepto-

mycin at 27˚C with 135 rpm shaking.

Cloning, protein expression, and purification. For protein production and crystallogra-

phy, the different constructs were cloned separately into the baculovirus insect cell expression

vector, pFastBac1 (GIBCO 10360014), modified to contain an N-terminal GP67 secretion sig-

nal sequence (for amino acid sequences of each portion, see S10 Fig). For the BLA construct,

the GP67 signal sequence was followed by the ectodomain of the α-chain of BLA (Hα5 to

Eα188; GenBank accession number AY357253, but with S79 due to dimorphism noted in

[33]), then a short Gly/Ser-linker (G4S), a c-fos dimerization domain [72], a two amino acid

linker (GT), and an Avi-tag sequence for biotinylation. For the BLB2�02 constructs, the GP67

signal sequence was followed by a peptide sequence (described in S10 Fig), a 15 amino acid

Gly/Ser-linker [3(G4S)], the ectodomain of the β-chain of BLB2�02 (Sβ4 to Kβ198; AB426141),
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a TEV-protease cleavage site, a c-jun dimerization domain [72], a Gly/Ser-linker [2(G4S)], a

V5-tag, and a 6x His-tag. Correct cloning was confirmed by DNA sequencing.

To generate bacmids, the constructs were transformed DH10Bac cells (GIBCO 10361012),

plated out and clones grown up overnight. Bacmid DNA was subjected to PCR using M13

primers to confirm transposition of inserts, and then transfected into Sf9 cells as follows to

generate P0 viral stocks. First, 20 μl bacmid DNA and 15 μl Fugene (Promega E2311) were

each diluted into 600 μl of Lonza Insect Xpress medium, mixed together, and incubated at

room temperature for 20 minutes, and then 200 μl of the mixture were transferred to a well of

a 6-well plate containing 9 × 105 Sf9 cells in 2 ml antibiotics-free medium and incubated for 4

to 6 days at 27˚C. The cell medium containing baculovirus was collected, passed through a 0.2-

μm filter (Sartorius 16532-K), and then this P0 stock was used to amplify the number of viruses

to give the P1 stock as follows. First, 1 ml P0 stock was added to 50 ml of 2 × 106 Sf9 cells/ml in

suspension and cultured at 27˚C for 48 hours with shaking at 135 rpm, then the cells were pel-

leted, and the culture media was filtered as above. Both P0 and P1 viral stocks were stored at

4˚C until needed.

High Five cells were grown in 0.6 L medium in 2 L flasks and transduced with 6 to 10 ml P1

stock. Forty-eight to 72 hours after infection, culture media was collected and incubated over-

night at 4˚C with nickel-Sepharose Excel (GE Healthcare 17-3712-01). His-tagged proteins

were eluted from the nickel-Sepharose with 1 M imidazole in TrisCl (pH 8.5), then purified by

FPLC size-exclusion chromatography using Superdex S200 in 100 mM TrisCl (pH 8.5), and

subjected to endoproteinase Glu-C (V8 Protease, Sigma, United Kingdom) cleavage at 37˚C

overnight to remove C-terminal tags and dimerization domains, with successful proteolysis

confirmed by size shift in SDS-PAGE. The proteins were again purified as above using Super-

dex S200 in 25 mM TrisCl (pH 8.5), and then concentrated using Amicon Ultra (with 3,000

molecular weight cut-off, Merck UFC8003) to 3 to 12 mg/ml as determined using a nanodrop

spectrophotometer.

Crystallization and structure determination. Crystallization conditions were screened

using the PEGs II suite (Qiagen, United Kingdom) at 20˚C, with10.45 mg/mL protein in 25

mM TrisCl (pH 8.5) mixed at 1:1 or 1:2 with mother liquor to give 0.6 to 0.9 μl sitting drops.

The protein complex BL2�02 with the peptide QIESLSLNGVPNIFLSTKA from MDV protein

gE crystalized in 100 mM TrisCl (pH 8.5), 200 mM sodium acetate, and 30% w/v PEG 4000.

Crystals were cryo-cooled in mother liquor supplemented with 10% to 35% (v/v) glycerol

before data collection.

Diffraction data were collected remotely on the I04-1 beamline (Diamond Light Source,

Oxford, UK) at a wavelength of 0.978 Å. Data reduction and scaling were performed using

XDS [73] and SCALA [74]. The crystal of the BL2�02 belongs to the C 1 2 1 space group, and

the structure was solved by basic molecular replacement deploying Phaser from the CCP4i

package [75] using HLA-DR1 (4X5W) as the search model [76]. Further rounds of manual

model building and refinement were done using Coot [77] and Phenix [78]. Further details

about collection and refinement are shown in S2 Table. The structure was deposited in the

Protein Database (PDB) on 14 October 2019 and assigned accession number 6T3Y.

Interaction analysis. LigPlot+ [79] was used to calculate the potential interactions from

the crystal structure. Unless stated otherwise, the maximum hydrogen-acceptor distance was

set to 2.70 Å and the maximum donor-acceptor distance was set to 3.35 Å. The minimum and

the maximum contact distances of hydrophobic residue to any contact were set to 2.90 Å and

3.90 Å, respectively. PyMOL (The PyMOL Molecular Graphics System, Version 2.0 Schrö-

dinger, LLC) was used to display and analyze the structural data visually.

Differential scanning fluorimetry. Differential scanning fluorimetry was performed

using a CFX Connect real-time PCR thermal cycler (Biorad, United Kingdom) set to
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Fluorescence Resonance Energy Transfer (FRET) scan mode. SYPRO orange (Invitrogen

S6651) was diluted to 1:500 in 25 mM TrisCl (pH 8) and 12.5 μL mixed with 12.5 μL 10 μM

protein in 25 mM TrisCl (pH 8) in each well of a 96-well plate, with buffer alone serving as

negative control. The samples were scanned every 0.5˚C from 25 to 95˚C. Data analysis was

performed in Prism (GraphPad San Diego, California, United States of America).

Supporting information

S1 Fig. There is a large overlap in peptides found in different samples, presented as Venn

diagrams. Comparison of peptides (A) from all CVI988 samples pooled and from all RB-1B

samples pooled, (B) from CVI988 sample and RB-1B sample from 2019 experiment, (C) from

CVI988 sample and RB-1B sample from 2020 experiment, (D) from CVI988 samples in 2019

and 2020 experiments, and (E) from RB-1B samples in 2018, 2019, and 2020 experiments.

Total peptide numbers are below each sample name; percentages indicate peptides unique to a

particular sample (that is, not shared) in a particular comparison and are rounded. The under-

lying data for this figure can be found in S1–S6 Data.

(PDF)

S2 Fig. Length distribution of peptides found in the 6 samples. Top panel, absolute numbers

of peptides for each length; bottom panel, percentage of total peptides for each length. The

underlying data for this figure can be found in S1–S6 Data.

(PDF)

S3 Fig. The N-termini of the class II β chains of humans and chickens are in the same posi-

tion. Shown are portions of the genomic sequences of HLA-DRB1 (AM910430 [80]) and

BLB2 (called BLBII in M29763 [43]), similar to sequences from other class II molecules ([34]

and other papers cited therein), aligned with the N-terminal sequences of DR1 β chain [81],

similar to other human class II β chains (reviewed in [82]). Nucleotide sequences in lower case

along with numbering from GenBank flat files (AM910430 for HLA-DRB1, M29763 for BLB2)

with introns in lower case italic, invariant residues at start and end of introns in bold and

underlined. Protein sequences in capital letters either from translation of genomic sequence or

N-terminal amino acid sequencing, with signal sequence cleavage site double underlined (60%

probability from SignalP-5.0, www.cbs.dtu.dk/services/SignalP/) and possible downstream sig-

nal sequence cleavage site single underlined.

(PDF)

S4 Fig. Key residues in chicken and human class II molecules are identical or similar.

Upper panel, class II α chains; lower panel, class II β chains. Single letter amino acid code;

blue, identical residues; green box, CD4 contact; yellow box, DM contact; grey box, hydropho-

bic transmembrane region; blue box, cytoplasmic tail. Arrow, β-strand; blue cylinder, α-helix;

purple cylinder, 310-helix (secondary structure elements as determined by PyMol); red “SS,”

cysteine for intrachain disulfide bond; orange “g,” glycosylation site. The underlying data for

this figure can be found in PDB files 1DLH, 6KVM, and 6T3Y.

(PDF)

S5 Fig. The only example reported for peptide position P10 binding a class II molecule is

not a deep pocket but a shelf, which is outside of the groove that binds the nonamer core

(49). Comparison of BL2�02 (PDB file 6T3Y) in upper panel with DR1 (1T5W) in lower panel

for (A) top view of solvent-accessible surface of class II molecules calculated by APBS electro-

statics (positive charge, blue; negative charge, red) with P1 and P10 pockets for BL2�02 indi-

cated (upper panel) and the P1 and P9 pockets along with the P10 shelf for DR1 indicated
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(lower panel), and with peptides in sticks, (B) side view of peptide in sticks with amino acids

indicated and with pockets as surfaces with P1 and P10 pockets indicated for BL2�02, and with

length between Cα of P1 and P9 or P10 shown (blue asterisks indicate that the side chains are

not resolved), and (C) edge-on view of peptide Cα backbone, with arrow indicating departure

of P4 in BL2�02 from the polyproline II helix. (D) Ribbon representation of class II molecule

with superimposing peptide Cα backbones for BL2�02 (slate blue) and DR1 (1T5W, grey)

showing top view (α1 domain above, β1 domain below) and side view (α1 domain shown, β1

domain removed for clarity), and with blue arrow indicating departure of P4 in BL2�02 from

the polyproline II helix. The underlying data for this figure can be found in PDB files 1T5W

and 6T3Y.

(PDF)

S6 Fig. H-bonds (dotted lines, cut-off of 4 Å) between class II molecules (ribbons with side

chains of key interacting residues in brown sticks, with residue numbers in green), peptide

(purple) and water molecules (blue circles), as well as hydrophobic contacts (red spokes with

residue numbers in black), as determined by LigPlot+ v.2.2 (www.ebi.ac.uk/thornton-srv/

software/LigPlus/), based on structures 1DLH for DR1�01, 6KVM for BL�19, and (A) 6T3Y

for BL�2; (B) 6KVM for BL�19; (C) 1DLH for DR1�01; and (D) 4X5W also for DR1�01. The

underlying data for this figure can be found in PDB files 1DLH, 4X5W, 6KVM, and 6T3Y.

(PDF)

S7 Fig. 3D representation of H-bonds (dotted lines, cut-off of 4 Å) between class II mole-

cules (ribbons with side chains of key interacting residues in sticks), peptide in sticks, and

waters as blue circles. Top panel, BL2�02 (6T3Y) with peptide in blue; middle panel, BL2�19

(6KVM) with peptide in yellow; bottom panel, HLA-DR1�01 (1DLH) with peptide in grey.

Based on LigPlot analyses in S6 Fig. The underlying data for this figure can be found in PDB

files 1DLH, 4X5W, 6KVM, and 6T3Y.

(PDF)

S8 Fig. Schematic of H-bonds interacting with peptide main chain atoms (cut-off of 4 Å) com-

paring HLA-DR1�01 (solid lines), BL2�19 (dashed lines), and BL2�02 (dotted lines), including

H-bonds through waters (solid blue circles), based on structures 1DLH for DR1�01, 6KVM for

BL�19, and 6T3Y for BL�2 analyzed by LigPlot (S6 Fig). The underlying data for this figure can

be found in PDB files 1DLH, 4X5W, 6KVM, and 6T3Y.

(PDF)

S9 Fig. Flow cytometric analysis CECs used for infection of bursal B cells shows virtually

no expression of chicken class II molecules. Dot plots (GFP from MDV on x-axis, PE from

antibody staining on the y-axis) for (A) chicken class II molecules using the monoclonal anti-

body 2G11 and (B) isotype control antibody. (C) Histogram of antibody staining (mean fluo-

rescent intensity on x-axis, number of events on the y-axis); red, 2G11 staining; blue, isotype

control. CECs, chicken embryo cells; GFP, green fluorescent protein; MDV, Marek’s disease

virus; PE, phycoerythrin; TEV, tobacco etch virus.

(PDF)

S10 Fig. Protein sequences encoded by constructs for soluble class II chains in Baculo-

viruses. Sequences in single letter amino acid code, all black except: bold blue, TEV protease

cleavage site; bold oranges, c-fos tag; bold gold, c-jun tag; bold red, V5-tag; normal red, Avi-

tag (biotinylation site). Highlights: green, GP67 signal sequence; deep pink, peptides; cyan,

linkers; grey, MHC extracellular domains; yellow, 6xHis-tag. MHC, major histocompatibility
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