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‘Pseudoreplication’, or the treatment of nonindependent data points as independent, can be

difficult to identify [1,2]. Failure to account for pseudoreplication increases the probability of

falsely concluding that experimental treatments have real effects (i.e., making a Type I error),

and can lead to applying conclusions to the wrong ‘population’ (see paragraph 5). In this light,

Lazic and colleagues’ [2] recent article provides a useful resource to identify pseudoreplication

when designing and analyzing experiments. However, as illustrated below, discussion of their

framework introduces some confusion with respect to sources of pseudoreplication and may

therefore misguide some readers for common experimental designs. Lazic and colleagues dis-

cuss pseudoreplication through examples that draw from frameworks and examples illustrated

in their figures. Therefore, to clarify concepts in [2] this Formal Comment focuses on figures

therein.

The heart of the question ‘What is ‘N’ (sample size) in my experiment?’ lies in the notion of

sample independence. ‘Independence’ implies that measurements are uncorrelated among

samples; when correlations exist, analyses must account for them to obtain reliable results.

Sample independence can be violated in two ways. First, an experiment’s design can render

samples nonindependent. For example, as explained by Lazic and colleagues, applying a treat-

ment simultaneously to a group of subjects (rather than to subjects individually) or interac-

tions between subjects can induce nonindependence. Lazic and colleagues focus on this first

cause of nonindependence, and they provide their Fig 3 to help assess independence within an

experiment.

Second, nonindependence can arise due to how a population is sampled, which Lazic and

colleagues discuss less directly than they do the first source of nonindependence. To illustrate

how sampling an entity of interest (the ‘population’) can generate nonindependence, imagine

a study that aims to estimate the average height of people in a city. Consider two approaches to

obtain height measurements (the ‘samples’). First, we might number all of the families (defined

in some convenient way) in the city, randomly select 10 families, and measure the heights of

10 random people per family. We know that family members are likely more similar in height

than any two randomly selected individuals from the city because family members likely share

similar environments (e.g., similar diets) and (by definition) share genetics. In other words,

height measurements are likely to be correlated and are therefore nonindependent due to

shared environments or genetics. As a result, the variance in this data set will not properly

reflect the city’s true variance in height: variance in height will be lower than the true value for

the city, and standard errors (SEs) for the height estimate will be artificially small. Second, we

could randomly sample 100 individuals in the city to measure. These measurements will lack

correlation (they are independent), and the sample variance will correctly reflect the variance

in the population and yield reliable SE.
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How can ignoring the details of sampling affect analyses and conclusions? Consider Lazic

and colleagues’ Fig 2C, which illustrates an experiment that applies a different treatment to

each of a mouse’s eyes for a series of mice, e.g., Treatments A and B may be applied to the left

and right eyes, respectively, of the first mouse, B and A to the left and right eyes, respectively,

of the second mouse, and so on. Lazic and colleagues argue that each eye represents an individ-

ual sample, i.e., the N = 1 for each eye, so for four mice, we have N = 8. This view suggests

using a two-sample t test to test for differences between the treatments. However, following

arguments above, eyes from individual mice are not independent; a mouse’s two eyes share

genetics and their developmental environment, so we expect measurements made on pairs of

eyes to be correlated. This recognition of nonindependence suggests the use of a paired t test

to analyze these data. Simulations (see S1 Text) illustrate how these different perspectives affect

conclusions. When between-mouse variance is low (i.e., mice are similar to one another), two-

sample and paired t tests perform similarly, as they have similar Power and Type 1 error rates.

However, when between-mouse variance is comparable to variance in the treatment effect, a

two-sample t test is vastly underpowered compared to a paired t test. Hence, failure to account

for nonindependence can lead to loss of power. Of course, this principle also applies to more

sophisticated scenarios; for example, a study of gene expression from, say, six tissues, each

measured once per mouse, should similarly account for nonindependence within mice.

Fig 2D provides a more concerning case. Here, Lazic and colleagues consider an experi-

ment in which individual mice experience and are measured for a response to a treatment

more than once (compared to Fig 2C, in which each treatment is applied to each mouse only

once). For example, Treatments A and B are both applied to individual mice twice over the

course of an experiment, and a measurement follows each application. Lazic and colleagues

argue that each of these four measurements per mouse constitute independent measurements,

i.e., N = 4 per mouse. Again, the arguments above suggest that the four measurements per

mouse are not independent: two measurements made with respect to Treatment A for a focal

mouse will be similar because they come from the same treatment but also because they share

the mouse’s genetics, age, environment, etc. However, unlike the case in Fig 2C, failing to

account for nonindependence here (2D) can increase the Type 1 error rate, if the experiment

aims to understand a population larger than a focal mouse (see bottom of this paragraph). To

make this point explicit, imagine that we used ANOVA to analyze the experiment in Fig 2D

(although the argument applies more generally). Broadly speaking, ANOVA quantifies and

compares variance due to treatment effects and residual ‘error’; with correlated samples, their

increased similarity decreases the estimate of error variance, thereby artificially inflating a sig-

nal of treatment effects and increasing the risk that researchers falsely conclude that a treat-

ment affects their data. These principles apply more generally to experiments in which

individuals are repeatedly measured (i.e., beyond experiments with a ‘time’ component; see [3]

for additional discussion of time effects), including the use of technical replicates, which are

repeated measurements of some entity. (Lazic and colleagues make similar arguments with

their ‘nonhuman primate neuron’ example but do not explain how they apply to their Fig 2D.)

Note, however, that Lazic and colleagues correctly assert in Fig 2D that each measurement on

an individual is independent if the experiment aims to understand treatment effects for that

mouse only [2] because each measurement may be viewed as an independent sample from a

population of possible responses by that focal mouse. Similarly, if a study uses only samples

from a single individual, genotype, or family, it will be pseudoreplicated if it aims to make

inferences at a higher level (e.g., for a population or species) but not if the study aims to under-

stand responses only at the level at which they are measured: whether a study is pseudorepli-

cated depends on its scope.
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To conclude, we note that identifying your ‘N’ does not in itself aid an analysis when this

identification is unconnected to the analysis. In some cases, Lazic and colleagues’ framework

to identify ‘N’ and their suggestion to simply use an average value per ‘experimental unit (EU)’

in analyses will not suffice. Consider their example experiment that involves randomising mul-

tiple body parts from individual animals to treatments. Lazic and colleagues assert that ‘N’

equals the total number of body parts. However, this approach does not resolve nonindepen-

dence that arises when multiple animals each provide multiple body parts, and more sophisti-

cated methods are required (e.g., including ‘animal id’ as a ‘random’ effect in a mixed effects

model). Overall, the safest approach to deal with pseudoreplication involves careful consider-

ation of sampling, experimental design, and the researcher’s goals [1] and applying statistical

analyses that correctly characterise an experiment’s complete design to incorporate variance

that underlies ‘N’ [4].
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