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Abstract

The cytosolic glutathione transferase (cytGST) superfamily comprises more than 13,000 nonredundant sequences found
throughout the biosphere. Their key roles in metabolism and defense against oxidative damage have led to thousands of
studies over several decades. Despite this attention, little is known about the physiological reactions they catalyze and most
of the substrates used to assay cytGSTs are synthetic compounds. A deeper understanding of relationships across the
superfamily could provide new clues about their functions. To establish a foundation for expanded classification of cytGSTs,
we generated similarity-based subgroupings for the entire superfamily. Using the resulting sequence similarity networks, we
chose targets that broadly covered unknown functions and report here experimental results confirming GST-like activity for
82 of them, along with 37 new 3D structures determined for 27 targets. These new data, along with experimentally known
GST reactions and structures reported in the literature, were painted onto the networks to generate a global view of their
sequence-structure-function relationships. The results show how proteins of both known and unknown function relate to
each other across the entire superfamily and reveal that the great majority of cytGSTs have not been experimentally
characterized or annotated by canonical class. A mapping of taxonomic classes across the superfamily indicates that many
taxa are represented in each subgroup and highlights challenges for classification of superfamily sequences into
functionally relevant classes. Experimental determination of disulfide bond reductase activity in many diverse subgroups
illustrate a theme common for many reaction types. Finally, sequence comparison between an enzyme that catalyzes a
reductive dechlorination reaction relevant to bioremediation efforts with some of its closest homologs reveals differences
among them likely to be associated with evolution of this unusual reaction. Interactive versions of the networks, associated
with functional and other types of information, can be downloaded from the Structure-Function Linkage Database (SFLD;
http://sfld.rbvi.ucsf.edu).
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Introduction

The cytosolic glutathione transferases (cytGSTs), with several

Enzyme Commission (E.C.) [1] numbers, principally 2.5.1.18,

comprise one of four major groups of enzymes known to catalyze a

general reaction involving nucleophilic attack by reduced gluta-

thione (GSH) on compounds that contain an electrophilic carbon,

nitrogen, oxygen, or sulfur atom (Reaction (1)) [2,3].

GSHzR{X?GSRzHX ð1Þ

Each group represents a different superfamily and/or structural

fold; the cytGST superfamily described in this work is the largest

of these four groups. The cytGSTs are soluble proteins that occur

in a huge group of proteins that share overall structure similarity,

the ‘‘thioredoxin-like fold’’ [4] that we hereafter refer to as the

‘‘thioredoxin fold.’’ The cytGST enzymes play many important roles

in the cell, including metabolism of endogenous compounds, detoxifi-

cation of xenobiotics, and defense against oxidative stress. Some of

these proteins are of particular interest as targets of antiasthmatic and

cancer drugs [2,3,5]. Especially in microorganisms, their functions
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are particularly diverse and largely unexplored. The other three

groups of proteins that catalyze GST reactions include: (1) the

mitochondrial GSTs (kappa class enzymes) [6,7] that are members of

a different and only distantly related superfamily of the thioredoxin

fold; (2) the MAPEG (membrane-associated proteins in eicosanoid

and glutathione metabolism) or ‘‘microsomal’’ GSTs [8,9], and (3)

members of the vicinal oxygen chelate (VOC) fold superfamily [10–

12]. The latter two groups come from other, structurally distinct, fold

classes.

The structures of the cytGST superfamily are defined by a

minimum requirement for two domains, typically ordered as a

conserved N-terminal domain of the thioredoxin fold that includes

the glutathione binding site, and a C-terminal domain that is of a

different fold and that is more diverse across the members of the

superfamily as it provides the binding site for the many different

substrates that these enzymes can turn over. Although both domains

are required for activity and are fused in a single polypeptide, the

fold-centric SCOP [13] and CATH [14] classifications, and the

Pfam [15] resource classify these as separate N- and C-terminal

domains. Large-scale structural comparison shows that the cytGSTs

are divergent from other superfamilies of the thioredoxin fold with

the N-terminal domain easily distinguished from those other super-

families [16]. Divergent sequences homologous to the cytGSTs

whose functions differ from those of the cytGST enzymes have been

identified [17] and will likely continue to be discovered. Some of

these ‘‘outlier’’ proteins, for example, the chloride intracellular

channel proteins (CLICs) [18], are included in our dataset (see

Methods for details on construction of the dataset) but their

functions are not a focus of this analysis and so are not discussed in

this paper.

The many studies describing the sequences, structures, and

functions of the cytGST superfamily proteins have led to their

classification into a number of distinct classes, largely reflecting

sequence similarity and, for more closely related sub-classes,

knowledge about substrate similarities or other functional features

[5,19,20]. Historically, cytGSTs were grouped into classes

designated by Greek letters (e.g., ‘‘Alpha,’’ ‘‘Mu,’’ ‘‘Pi,’’ ‘‘Sigma,’’

etc.), with new classes added as they were discovered. Each class

was originally defined by the first researchers to study its members,

then refined over several decades as new cytGSTs were charac-

terized. Broader studies of subsets of cytGST classes have been

published [20–22] and provide in-depth discussion about many

issues, including findings of structural similarity among members

and how to standardize nomenclature. However, no systematic

rationale for an overall division of cytGST sequences, whether of

known or unknown function, is available for classification of the

entire superfamily. There has also never before been an attempt to

correlate reaction types with sequence- and structure-similarity

relationships over the entire superfamily.

The UniProtKB/Swiss-Prot resource (hereinafter called ‘‘Swiss-

Prot’’) [23] has compiled much of the available classification

information for the experimentally characterized cytGSTs, along

with new sequences their curators have assigned to these classes

on the basis of sequence similarity. We term this compilation

‘‘canonical’’ classes to distinguish them from the new subgroups of

sequences proposed in this work. Because it provides a high quality

representation of available knowledge about cytGST functions

that can be accessed on a large-scale using automated methods,

the Swiss-Prot classification was used as the main source of the

canonical classification data used in this paper. Two additional

classes are not yet included in Swiss-Prot; the Nu [24] and Xi

[25,26] classes have been recently defined in the literature and are

also included as canonical classes in this study.

Despite the attention that cytGSTs have received, classification

of their reactions and biological roles has remained challenging for

many reasons. First, the further addition of new classes and of new

proteins to existing classes has typically been done in an ad hoc

manner as each new divergent group was discovered. This has

resulted in the definition of classes of varying granularity where

better studied groups have tended to have more numerous and

smaller classes defined, complicating our understanding of their

similarity relationships. Second, large numbers of cytGST-like

sequences of unknown function have now been identified that do

not belong to any of the canonical classes. Only recently have

relationships been determined among some of these groups on a

larger scale [20,27]. Third, even for experimentally characterized

cytGSTs, classification is still complicated because of their ability

to catalyze a wide range of chemical reactions and their tendency to

show substrate specificities that broadly overlap even across quite

different classes. Moreover, few of the natural substrates of GSTs

are known, so that the substrates used to define or discriminate

cytGST-catalyzed reactions are often synthetic compounds. A

primary example is 1-chloro-2,4-dinitrobenzene (CDNB), a sub-

strate that can be turned over by many different GSTs. With the

advent of new technology along with enormously increased

information about these proteins in public databases, a more

systematic analysis of sequence and structure relationships is timely.

To begin to address these challenges and aid in functional

inference for the majority of proteins of unknown function that

now populate the superfamily, we performed all-by-all similarity

comparisons among approximately 13,000 nonredundant cytGST-

like sequences. The results can be viewed and explored in the form

of graphical network models called protein similarity networks [28].

In these networks, sequences or structures are grouped by similarity

to summarize their relationships on a large scale. The subgroup

partitions that result can then be mapped with functional

assignments and many other types of biological information to

identify functional trends from the context of those sequence and

structural relationships.

In the networks shown in this paper, nodes (circles, other

shapes) represent sequences and/or structures, and edges (lines

between nodes) represent sequence or structure similarities with

Author Summary

Cytosolic glutathione transferases (cytGSTs) are a large and
diverse superfamily of enzymes that have important roles
in metabolism and defense against oxidative damage.
They have been studied for several decades but because of
the synthetic nature of the chemicals used to test these
proteins to determine if they have cytGST activity, little is
known about the physiological reactions and roles of
cytGSTs. In this large, collaborative study, we constructed
networks where more than 13,000 cytGST sequences were
grouped by sequence similarity and then used these
networks to prioritize new targets for experimental
characterization in relatively unexplored regions of the
superfamily. We report here experimental results confirm-
ing GST-like activity for 82 of them, along with 37 new
three-dimensional molecular structures determined for 27
targets. These new data, along with experimental data
previously reported in the literature, were painted onto
the networks to generate a global view of their sequence-
structure-function relationships. The results show how
proteins of both known and unknown function relate to
each other across the entire superfamily and illuminate the
complex ways in which their variations in sequence and
structure affect our ability to predict unknown functional
properties.

cytGST Sequence-Structure-Function Relationships
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scores better than a chosen statistical significance threshold. Node

properties (size, color, etc.) are then used to visualize functional or

other information mapped to the networks. Descriptions of the

creation and validation of thresholded protein similarity networks,

along with some of their uses and limitations, have been reported

elsewhere [28,29]. The networks can be visualized and interactively

explored using commonly available software such as Cytoscape

[30]. Because very large networks (more than a few thousand nodes

and their associated edges) cannot be visualized on commonly used

lab computers, most of the networks provided in this paper are

‘‘representative’’ networks [29] in which each node represents one

or more member sequences that all share a user-defined percent

identity (at least 50% identity in this work). For these compacted

networks, edges between any two representative nodes are drawn if

the least significant pairwise similarity score between the represen-

tative sequences is better than the statistical significance cutoff used

to visualize that network. Full networks, in which each node

represents a single sequence, provide a more detailed view of

specific subgroups.

We used the networks to guide our choice of sequence targets to

sample broadly across the superfamily putative cytGSTs of

unknown function. The targets were then processed using a

high-throughput pipeline to express and purify them, and, as

possible, determine crystal structures of the purified proteins

recovered from the pipeline. We report here new experimental

results confirming cytGST-like activity for 82 enzymes that had

not previously been characterized, along with the determination of

37 new structures. These results, along with experimentally known

GST reactions and structures reported in the literature, were

mapped to the networks to generate a global view of their

sequence-structure-function relationships across the superfamily.

(More detailed reports of these experimental results than can be

addressed here will be presented in related papers.)

The results show that the great majority of sequences assigned

to the cytGST superfamily have not been experimentally

characterized or even assigned to one of the canonical classes.

Moreover, this global view shows for the first time how proteins of

both known and unknown function relate to each other across the

entire superfamily, providing a foundation for an extended

classification system that includes the many unknowns revealed

by this study and new clues for their functional inference.

The remaining sections highlight other broad themes about

sequence-structure-function relationships in the cytGSTs, many of

which had been observed only for individual or small groups of

superfamily members. The first describes a mapping of taxonomic

representation across the superfamily, revealing its complex

nature. Next, we discuss a hallmark characteristic of the cytGSTs,

occurrence of the same reaction type in many different subgroups.

Finally, we provide a closer look at sequence-structure-function

relationships in a subgroup that includes an unusual cytGST

reaction, illustrating nature’s use of GST chemistry to evolve

specialized reactions quite different from those associated with

their roles in main metabolism.

Methods

Construction of Sequence Similarity Networks and
Designation of Subgroups

All networks were visualized using Cytoscape (v2.8.3) [30],

where each node represents a protein or group of proteins and an

edge or line between the nodes denotes a similarity relationship

between the proteins. The ‘‘organic’’ layout was used whereby

nodes are clustered more tightly if they are more highly

interconnected. Although edge lengths in this layout are not

explicitly correlated in the organic layout with similarity distance,

previous work has shown that the relative distances calculated by

this layout are close to the mathematically ideal BLAST E-value

distances (see supplementary material in Atkinson et al. [28]).

To construct sequence similarity networks, 13,435 full-length

sequences that were at least 100 residues in length were taken from

Pfam (v26.0) [15] that had scores above the Pfam gathering

threshold for at least one hidden Markov model (HMM) for the

conserved thioredoxin fold domain, i.e., the cytGST N-terminal

domain (collectively referred to here as ‘‘GST_N*’’). Fifty-eight

additional proteins identified by sequence similarity to cytGSTs

were also added. The entire set of 13,493 non-redundant proteins

is referred to here as ‘‘cytGSTdb’’; these sequences were deposited

in the Structure-Function Linkage Database (SFLD).

Two types of protein similarity networks were constructed: full

networks and representative networks. First, all-by-all BLAST

comparisons of all of the sequences in cytGSTdb were performed

using blastp (v2.2.24; default settings except with seg filtering

turned off) [31]. For full networks, the E-value for the highest

BLAST score between each protein pair was used in generating

network edges between nodes; each node depicts a single

sequence. To reduce noise and allow visualization of subgroupings

depicting our results in the networks, they are thresholded using an

E-value cutoff so that nodes are connected only if the E-value of

the relevant BLAST score is better than the cutoff threshold (see

Atkinson et al. [28] for a discussion of thresholded networks).

Because visualization of protein similarity networks using Cytos-

cape is limited by the number of edges in the network, full

networks cannot be opened and explored interactively for most of

the level 1 and many level 2 sequence similarity networks

provided. Instead, we used representative sequence similarity

networks, as described in the main text and relevant supporting

information.

Representative networks are composed of abstracted nodes and

edges, with each node representing one to many sequences binned

with a percent identity filter. To generate representative networks

for this study, CD-HIT [32] was used to filter the sequences to

50% sequence identity (ID50), with one sequence chosen as the

representative for each ID50 node. To achieve our goal of

capturing the greatest possible detail of the sequence space of the

cytGSTs, we used the least stringent percent identity cutoff that

would both include the greatest number of sequence representa-

tives and maintain the ability to view and manipulate the networks

in a reasonable amount of time on our computers. This resulted in

2,190 ID50 nodes representing the 13,493 member sequences in

cytGSTdb. The similarity score between each pair of represen-

tative nodes corresponds to the least significant BLAST E-value

between the representative sequences. Representative nodes were

annotated to a cytGST class or taxonomic category if .50% of its

annotated members had that annotation. Taxonomy classification

was assigned using NCBI taxonomy. Reaction types were assigned

to representative nodes if any member sequence in that node had

experimental evidence for that reaction type.

Class annotations were from Swiss-Prot [23,33]; some addi-

tional annotations were obtained from literature references for the

recently described Nu [24] and Xi [25,26] classes. Swiss-Prot is a

manually curated database of protein sequences shown to have

among the most reliable annotations that can be obtained from

large online databases [34]. Reaction types were assigned according

to experimental evidence from this work and the literature.

The E-value thresholds chosen for visualization of the repre-

sentative sequence similarity networks were determined by

stepping through E-value thresholds until the first major separa-

tion of clusters (groups of interconnected nodes separated from

cytGST Sequence-Structure-Function Relationships
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other interconnected nodes) appeared and persisted through

several more thresholds. Clusters at a threshold of 1610213 were

designated as level 1 subgroups (e.g., ‘‘Main,’’ ‘‘R1’’).

To choose the level 2 threshold, further thresholds were stepped

through and visually examined. It was observed that at an E-value

cutoff of 1610225, good separation of canonical classes occurred.

At more stringent thresholds, there was even better canonical class

separation, but it was also seen that annotated nodes began to

separate from others of the same class. To avoid losing information

in the network views depicting how nodes of the same class relate

to each other across the sequence space, the less stringent level 2

threshold was chosen as a compromise. This allowed good separa-

tion by canonical class while keeping together most nodes

annotated to the same canonical class; i.e., grouping nodes

together with others of their historically assigned class was favored

over separation. At this threshold (1610225), clusters were

designated as level 2 subgroups under their level 1 subgroup

parent (e.g., ‘‘Main.1,’’ ‘‘R1.1’’). For both level 1 and 2, clusters

with at least 50 member sequences were designated as subgroups.

For creation of full networks (in which each node represents a

single sequence), all of the member sequences associated with each

representative node were assigned to the same subgroup as their

representative node (and are also designated this way in the

SFLD).

To view the details of each level 2 subgroup, a full network was

generated for each. Here, where each node represents a single

sequence, a more stringent threshold was used to create and view

clusters that are better separated according to canonical class

assignments. To help guide the choice of threshold for these full

networks, we applied the Markov Cluster Algorithm (MCL) [35],

an objective method that has been used to detect protein families

[36], to the representative network data. We then used our own

metric for calculating the E-value threshold (1610231) at which

network clusters best correlated with both canonical class assign-

ments and MCL clusters (see Text S1 for details). A full network

for each level 2 subgroup was constructed using all member

sequences in the previously defined subgroups and visualized at

the 1610231 cutoff. Visual review of these groupings confirmed

that the groupings at this threshold looked reasonable with regard

to annotated classes. Two of these full networks are depicted in this

paper and all of the full networks generated in this manner for

every level 2 subgroup can be downloaded from the SFLD.

Structure Similarity Networks
To generate structure similarity networks, we used the SFLD to

identify 392 crystal structures for cytGSTs in the Protein Data

Bank (PDB) [37] with $90% sequence identity to one or more of

the 13,435 cytGST sequences in our dataset. Six additional

structures were obtained from the Structure Core of the Enzyme

Function Initiative (EFI) [38] prior to completion of their

deposition in the PDB. Of these 398 structures, 37 were solved

by the EFI and a pilot study for the EFI within the New York SGX

Research Center for Structural Genomics (NYSGXRC, PSI-II)

[39]. The EFI has a Protein Core Facility that produces protein for

each target. These proteins were shipped to the Structure Core

Facility for structure determination and to the Armstrong

laboratory for activity assays. Because structures may have missing

domains, sequences for the 398 structures were extracted from the

PDB ATOM lines and searched with the GST_N* models using

HMMER (v2.3.2, gathering threshold) [40]. For the 379 structures

with an HMM match, pdbaa chain sequences were filtered to 95%

sequence identity (ID95) with CD-HIT, and representative

structures for each ID95 group (131 total) were chosen, taking

into consideration qualities such as resolution. After trimming

extraneous domains, 3D structure similarity was calculated from

all-by-all pairwise comparisons using FAST [41], and the

representative networks were visualized with Cytoscape. Class

and reaction type annotations were assigned according to the

annotations for the sequences associated with each PDB structure.

Experimental Assays and Methods
Guided by sequence similarity networks, targets for experimen-

tal characterization were chosen to cover sequence space broadly,

with proteins for which little was known about their structures and

functions and for which DNA was readily available prioritized for

characterization. Sequences from prokaryotes were preferred

because of ease of protein production and to allow microbiology

studies. Purified proteins were obtained from SGX Pharmaceu-

ticals (SGX), which supplied protein for NYSGXRC [39] or the

Protein Core of the EFI. Proteins were expressed and purified as

previously published [39,42]. Activity for the targets for which

purified protein was available was determined in a high-throughput

assay scheme using known cytGST substrates. This scheme utilizes

a 96-well plate reader formatted either for single time point or

continuous assays. The conditions for each assay were individually

optimized. The substrates used and relevant references to the

primary literature are provided in Table S1. More detailed assay

results including kinetic information will be described in related

papers in preparation. Data on EFI protein targets and their

progress regarding stage of expression, purification, and crystalli-

zation may be found at EFI-DB, the EFI public database of

experimental data (http://kiemlicz.med.virginia.edu/efi/).

Structures
The details of the crystallization and structure determination

will be discussed in future publications. Briefly, crystals were

obtained by the sitting-drop vapor diffusion method. X-ray

diffraction data were collected at 100uK on either beamline

X29A (National Synchrotron Light Source, Brookhaven National

Laboratory, Upton, New York) or at the beamline 31-ID

(wavelength of 0.979 Å, Advanced Photon Source, Chicago,

Illinois). Structures were determined by Se-MET SAD (typically

those crystals originating from SGX sourced protein) or by

molecular replacement (those crystals originating from EFI

sourced protein). All solved structures were deposited in the PDB.

Compilation of Experimental Evidence for GST Activity
for Proteins Previously Annotated to Have GST Activity

The gene_association.goa_uniprot file from GOA [43] (a

database of evidence-based associations between Gene Ontology

[GO] [44] terms and UniProt proteins) was parsed to identify

proteins experimentally assayed for GST-like activity. Because

substrates are not included in the GOA information, that

information was obtained manually from literature referenced by

GOA. Also, the manually curated databases of biochemical

reactions BRENDA [45] and SABIO-RK [46] were mined for

data corresponding to the following GST-relevant E.C. numbers:

2.5.1.18, 4.5.1.3, 5.3.99.2, 1.8.5.1, 1.11.1.9, 5.2.1.2, 5.2.1.4,

1.20.4.2, and 1.5.4.1. In addition, a manual search of the

literature was performed. Experimental evidence for cytGST-like

function was collected for 95 proteins from BRENDA, 58 from

GOA, 35 from the manual literature search, and 17 from SABIO-

RK for a total of 176 non-redundant proteins.

Construction of Multiple Sequence Alignments
Multiple sequence alignments (MSAs) were constructed using

ProbCons [47] or PROMALS3D [48,49], a program that

cytGST Sequence-Structure-Function Relationships
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incorporates 3D structure into the calculations to help guide the

alignment. Sequences were used if there was experimental

evidence for disulfide bond reductase (DSBR) activity; their

available cognate structures were used if they did not have

engineered mutations. In order to help guide the alignment, two

structures without DSBR evidence were included from subgroups

lacking 3D structures with DSBR evidence. Alignments were

visualized with Jalview [50].

Results and Discussion

In the sections below, we describe a large-scale analysis of

sequence, structure, and functional relationships among cytGSTs,

using similarity networks to provide a global context for

interpreting them. A level 1 network (Figure 1), which maps

literature-defined classes (canonical classes) to the sequences that

have been previously assigned to them, shows that the majority of

cytGSTs are unknowns. Division of the global level 1 network into

35 subgroups allows more detailed views (level 2 networks)

(Figure 2) of these relationships and provides a foundation for

assignment of unknowns either to extant classes or to new classes

suggested by these subgroupings. (See Table S2 for counts of

representative nodes and member sequences in these subgroups.)

Since the canonical classes describe only general functional or

other properties resulting from previous experimental studies (or

inferred by homology to founder members of a class), we also

provide a version of the level 2 network to which experimentally

determined cytGST reaction types have been mapped (Figure 3).

This network view includes a mapping of new experimental results

obtained in this study that confirms cytGST-like function for 82

unknowns across the superfamily sequence space and indicates on

the networks where the 37 new structures for 27 protein targets occur.

(See Table S3 for experimentally determined cytGST reaction types

in representative nodes, Table S4 for the substrates of experimentally

determined cytGSTs, and Table S5 for a full list of cytGST structures

mapped onto the networks described in this study.)

The full diversity of a set of sequences or structures in a

superfamily or other large group of proteins is often termed

‘‘sequence space’’ or ‘‘structure space.’’ These new results expand

the coverage of our experimental knowledge of cytGST reaction

types to many unexplored regions of their sequence and structure

space, especially those for which no functional information has

previously been available. The final sections highlight other

characteristics of cytGSTs leading to new insights regarding how

the cytGST fold has diverged to produce new functions.

Interactive versions of sequence similarity networks described in

this work, associated with functional and other types of biological

information, are freely available and can be downloaded from the

SFLD [51,52].

A Global View of Sequence Relationships Shows the
Majority of cytGSTs Are Unknowns

To summarize the coverage of the cytGST superfamily by the

canonical classes and determine the distribution of unknowns, we

compared more than 13,000 nonredundant sequences of the

superfamily in an all-by-all manner. Figure 1 provides a global

view of these relationships. Painting these networks by known

assignments to canonical classes shows that the majority of the

sequences are unknowns that have not previously been character-

ized or even assigned to canonical classes. The sequence-similarity

based separation of these sequences using an E-value threshold of

1610213 (as described in Methods) into the labeled subgroups is

shown in Figure 1. These are designated here and in the SFLD as

‘‘level 1 subgroups.’’

The two largest subgroups in Figure 1 reflect a natural

separation among cytGSTs based on sequence similarity. Some

major differences among proteins in these two subgroups have

been previously observed by many workers studying individual or

groups of these enzymes. One of these subgroups constitutes

proteins from the relatively well-studied Alpha, Mu, Pi, and Sigma

classes (AMPS). The largest subgroup in the superfamily is

designated as ‘‘Main’’ in this work and in the SFLD. The former

includes mostly eukaryotic cytGSTs, including some heavily

studied human enzymes, while the Main subgroup includes most

of the other defined classes. Differences in these two large

subgroups have been associated with differences in the position of

the sulfur atom involved in GSH-assisted catalysis and with the

amino acid residues in these enzymes that typically interact with it

[27]. A third subgroup labeled in Figure 1 designates proteins of

the recently described Xi class [25]. On the basis of the work

reported here, four other subgroups, R1, R2, R3, and R4 (for

‘‘Remainder’’) are also designated. In the SFLD, sequences not

assigned to any of the labeled subgroups are assigned only to the

superfamily but not to any subgroup within it.

Global analysis of the cytGST superfamily suggests few

members are combined with additional domains. Analysis

of the thousands of sequences in the cytGSTs provides an

opportunity to estimate the proportion of member sequences likely

to occur in combination with other domains. The cytGSTs

investigated in this study range from 100 to 4,512 residues in

length. Using length as a proxy to provide a rough estimation of

the domain organization of the sequences in this superfamily and

the proportion likely to contain additional domains not required

for GST-like activity, we generated a histogram (Figure S1)

showing the lengths of cytGSTs in our dataset. The histogram

shows that the majority (71%) of these sequences fall into a length

range of ,190–275 residues, consistent with the size of biologically

active cytGSTs. This conclusion is broadly consistent with Pfam

predictions for the architectures of proteins in the cytGST

superfamily. Only two other much smaller peaks occur in the

histogram. In the first peak, comprising sequences of ,300–350

residues in length, most were found to have two instances of the

GST thioredoxin fold domain. Most of the sequences in the other

peak, comprising sequences of ,400–430 residues in length, have

an instance of a translation elongation factor EF1B domain. For

those cytGST proteins that do exist in combination with other

domains, those additional domains, to the degree that they are

similar to each other, could contribute to the BLAST similarity

scores linking those proteins. However, similarity among the

highly conserved and essential cytGST N-terminal (thioredoxin

fold) domains present in all the sequences in the dataset dominates

the relationships illustrated in the networks.

A More Detailed Subgrouping Suggests Additions to the
Canonical Classification System to Enable Classification of
Most cytGST-Like Unknowns

To provide a more detailed view of sequence similarity

relationships across the superfamily, we further subdivided the

level 1 subgroups by requiring a greater degree of sequence

similarity for drawing edges between nodes. These are designated

as ‘‘level 2 subgroups’’ and are shown in Figure 2. Like the

organization of the canonical classes, these level 2 subgroups

reflect groupings based on sequence similarity, but unlike historical

classifications, the sequence similarity grouping is based on a

threshold that is applied uniformly and globally across the entire

superfamily. This establishes a consistent framework for defining

new classes that could be used to extend the current classification

cytGST Sequence-Structure-Function Relationships
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system to include the majority of unknowns that now populate the

superfamily.

We attempted to choose a level 2 threshold that would distin-

guish similarity groupings at approximately the same granularity

as the existing Swiss-Prot classes. The E-value threshold choice of

1610225 was a compromise for defining groupings that reflect

good separation by canonical class, while also keeping together

most annotated class nodes of the same class; grouping nodes

together with others of their historically assigned class was favored

over separation. (See Methods and Text S1 for more detail

regarding how threshold choices were made.) These level 2

subgroups are named to reflect their level 1 parents. ‘‘Main.1’’

through ‘‘Main.12’’ are labeled in Figure 2; these represent the

largest subgroups from the level 1 ‘‘Main’’ parent subgroup, with

the exception of Main.11. Even though it designates a small set of

only three representative nodes totaling 59 member sequences, the

Figure 1. Global view of sequence relationships in the cytGST superfamily. This level 1 representative network shows 2,190 nodes
representing 13,493 proteins filtered at 50% sequence identity. A cluster (a group of interconnected nodes separated from other groups of
interconnected nodes) is labeled if there are at least 50 member sequences in that cluster. These include the large and diverse Main subgroup, the
AMPS subgroup containing the Swiss-Prot classes Alpha, Mu, Pi, and Sigma, the recently described Xi subgroup, and several smaller but distinct
clusters labeled R1–R4. Colors assigned correspond to Swiss-Prot annotations for canonical cytGST classes or to annotations from the literature for the
newer classes Nu and Xi. These representative nodes are colored only if at least 50% of Swiss-Prot annotated sequences in that node have been
assigned to that class. Grey nodes denote representative nodes for which no corresponding Swiss-Prot annotation is available for a class for greater
than 50% of the annotated sequences in that node. Heavy borders indicate that a 3D crystal structure is associated with at least one member
sequence of a representative node and shape indicates the source of the structure data: triangle, structures that were solved for this work; square,
from the literature; diamond, structure evidence both from this work and the literature. Edges or lines between nodes are shown if the least
significant pairwise sequence similarity score between the representative sequences of two nodes is better than the threshold (BLAST E-value#
1610213). The 32,716 edges depicted have a median percent sequence identity of 33% over 208 residues.
doi:10.1371/journal.pbio.1001843.g001
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Main.11 subgroup is included in the top 12 ‘‘Main’’ list because it

has a specific Swiss-Prot class annotation (Lambda).

There are 28 level 2 subgroups that arise from level 1 Main. In

contrast, as can be seen in Figure 2, the membership of AMPS.1,

Xi.1 (and some of the remainder subgroups designated in Figure 2

with an ‘‘R’’ label to distinguish them from the ‘‘Main,’’ ‘‘AMPS,’’

and ‘‘Xi’’ subgroup sets) are mostly unchanged from their parent

level 1 subgroups. Over the entire superfamily, we defined 35 level

2 subgroups and 128 singleton representative nodes that are

sufficiently diverse to be unconnected to any other nodes at this E-

value threshold. Table 1 provides summary information about the

representative and member sequences in the larger subgroups; full

counts are provided in Table S2.

For each level 2 subgroup, we additionally constructed a full

network, where, in contrast to representative networks, each node

corresponds to a single sequence and all member sequences of a

subgroup are used. Examples of full networks are provided in

subsequent sections of this paper and full networks for all

subgroups are available from the SFLD and are provided at this

cutoff. These networks may also be easily viewed with different

user-defined thresholds.

We do not suggest that the level 2 subgroups or the

subclusterings visualized in the full networks be used to replace

canonical classes or to rigidly define new classes. Instead, we

propose that both the representative networks and the full

networks provide useful guides for addressing inconsistencies from

the ad hoc assignment of sequences to named classes. Further, they

may serve as a starting point for the addition of new classes to the

canonical classification system.

Only a minority of sequences (280 of the total 13,493

nonredundant sequences in the superfamily) have canonical class

annotations either from Swiss-Prot or from the literature for the

more recently described Nu [24] and Xi [25,26] classes. Only 176

of the 13,493 sequences represented by the 2,190 representative

nodes shown in Figure 2 had been experimentally confirmed to

catalyze a GST-like reaction prior to this study, as far as can be

inferred from online databases or our manual survey of the

literature (see Methods).

Figure 2. The level 2 representative network shows more detailed subgroupings. The same network as in Figure 1 except that it is
visualized at a higher stringency threshold, i.e., E-value#1610225. Coloring is the same as in Figure 1. The 15,070 edges depicted in the figure have a
median percent sequence identity of 38% over 212 residues. As with level 1 subgroups, clusters are designated as level 2 subgroups if there are at
least 50 member sequences in that cluster.
doi:10.1371/journal.pbio.1001843.g002
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New Experimental Evidence Increases Confirmation of
GST-Like Activity and Structural Coverage over the
Breadth of Sequence Space in the cytGST Superfamily

Figure 3 shows the same network as in Figure 2, here mapped

with experimental evidence for GST-like reaction types obtained

both from assay results reported in this study and those we found

from previous reports. (We cannot be sure that we found all of the

annotations that have been published.) Figure 4 provides a listing

of major GST reaction types where we have grouped reactions by

similarity of chemistry. These 15 reaction types describe major

known classes of GST-like reactions plus a category ‘‘other.’’ The

‘‘other’’ category represents some biologically relevant reactions/

functions such as hematin binding [53] and pyrimidodiazepine

synthase activity [54] (a key step in eye pigment formation in

Drosophila) that differ from the general reaction types listed in

Figure 4.

For experimental characterization, there were a total of 857

targets chosen from 31 level 2 subgroups and 64 smaller clusters/

singletons not assigned level 2 subgroup names (see Methods).

Proteins for approximately 230 targets were successfully purified

for this work and assayed for GST-like activity. The new

experimental evidence reported here confirms GST-like activity

in 82 of these proteins that had not previously been assayed for this

activity. These proteins occur in 20 level 2 subgroups and also in

five smaller clusters (Figure 3); these new data account for an

increase in the total number of clusters with experimental evidence

for GST-like reactions from 23 to 35; seven level 2 subgroups

lacked such experimental data before this study. Although these

new results increase by about 50% the number of annotated

proteins for which experimental evidence of cytGST-like activity is

now available, the proportion of superfamily members that have

been experimentally characterized with respect to reaction

Figure 3. The level 2 representative network painted with known reaction type. Nodes are colored if at least one member in a
representative node has experimental evidence for that reaction type. Colors denote reaction types as given in Figure 4, with the additional category
of multiple reaction types (‘‘multiple’’), where orange indicates more than one reaction type occurring in a node. Some reaction types in Figure 4 are
not represented by a separate color because they are subsumed by the ‘‘multiple’’ category. Single reaction type abbreviations: DSBR, disulfide bond
reductase; ERO, epoxide ring opening; NA, nucleophilic addition; NAS, nucleophilic aromatic substitution; NS, nucleophilic substitution; RD, reductive
dehalogenase. Node shapes indicate the source of experimental evidence for each reaction type: triangle, this work; square, literature; diamond, from
this work and the literature. Nodes with member sequences that have evidence for biologically relevant reactions/functions are marked with thick
black borders.
doi:10.1371/journal.pbio.1001843.g003
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specificity remains small. Table S3 provides a summary of reaction

types that occur in representative nodes in Figure 3. A full listing of

cytGSTs that have experimental evidence for cytGST-like

reactions, including UniProt accession numbers, available sub-

strate information, and literature references, is in Table S4.

Figure 2 shows the coverage on the level 2 subgroups of the 37

new structures (for 27 new protein targets) determined by this

work, along with previously determined structures. These new

structures reported here expand the structural information

available for cytGSTs substantially, especially for the Main.9

subgroup and several of the smaller level 2 subgroups. (Table S5

lists structures incorporated into this and other network views.)

The new structures solved in this work occur in 14 level 2

subgroups and in a representative cluster that is a singleton with

only one member node (UniProt A5E0V2, PDB code 4EXJ). This

sequence is less than 25% identical to any other sequence in the

Main level subgroup in the SFLD as well as any other sequence in

Genbank, making it especially divergent relative to the rest of the

superfamily. Although none of the level 2 subgroups lacked

structures prior to this work, the new structures reported here add

significant data to the unexplored sequence space. Their

contribution may be somewhat difficult to appreciate from the

representative network shown in Figure 2 because of the

compression of the information required to show relationships

across the more than 13,000 sequences of the superfamily. This

contribution is more readily apparent when viewing the full

networks. Pre-existing structures populated 22 level 2 subgroups as

well as some smaller clusters.

Structural Comparisons Reveal Relative Connectivity
among Subgroups and Support Relationships Inferred
from Sequence Similarity Networks

While the level 2 networks (Figures 2 and 3) distinguish

subgroupings useful for extending classification of cytGSTs, these

assignments reveal little about which subgroups are most related to

each other. As structural comparisons can capture more diverse

relationships than can sequence comparisons [55], we generated

structure similarity networks to complement the networks gener-

ated from sequence similarity and reveal relationships between

subgroups in more detail.

Figure 5A shows a structure similarity network generated from

all-by-all comparison of 131 representative structures and colored

according to the largest level 2 subgroups. The cutoff threshold

used for visualization of this network (FAST SN score $20) is

highly statistically significant (see Methods) and was chosen to

match roughly that used to visualize the level 1 sequence similarity

network. As has been previously observed [27], the superfamily

members share remarkable overall structure similarity despite the

great diversity of their underlying sequences. Consistent with this

observation, application of a more stringent threshold to the

network shown in Figure 5A still fails to separate the nodes into

well-resolved clusters.

The similarity of this structure-based network (Figure 5) to the

sequence networks provides support for the clustering pattern

shown in Figure 1 but also reveals how the Main level 2 subgroup

structures are related to each other. We note that the structure

similarity network generally, but not completely, corresponds to

Table 1. Summary counts of representative nodes and member sequences in level 1 and level 2 subgroups.

Level 1 Subgroup Level 2 Subgroup Number of Representative Nodes Total Number of Sequences

AMPS 262 1,033

AMPS.1 205 921

Main 1,630 10,884

Main.1: Beta-like 320 1,965

Main.2: Nu-like 139 1,642

Main.3: Omega- and Tau-like 154 1,252

Main.4: Theta-like 149 872

Main.5: Phi-like 58 422

Main.6 38 191

Main.7 51 338

Main.8: Zeta-like 62 666

Main.9 68 412

Main.10 22 281

Main.11: Lambda-like 3 59

Main.12 48 417

R1 40 87

R1.1 36 81

R2 37 193

R2.1 8 97

R2.2 25 92

Xi-like 80 920

Xi.1 79 919

The counts for only the largest level 1 and level 2 subgroups are shown except for level 2 subgroup Main.11, as described in the text.
AMPS, Alpha-, Mu-, Pi-, and Sigma-like.
doi:10.1371/journal.pbio.1001843.t001
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Figure 4. Major reaction types of the cytGST superfamily. Reactions are grouped by chemistry with a sample reaction shown for each reaction
type.
doi:10.1371/journal.pbio.1001843.g004
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the sequence similarity relationships shown in Figures 1–3. For the

AMPS.1 subgroup, the structures mostly group together, indicat-

ing they share much overall structural similarity. In contrast, the

other major structure similarity cluster has mixed membership

from diverse sequence similarity subgroups and some of these

subgroups, such as Main.9, are split into more than one structure

cluster, indicating their structures are quite divergent.

As with the sequence similarity network shown in Figure 3, the

structure similarity network shown in Figure 5B, colored by

reaction type, shows that reaction types generally do not cluster by

subgroup or by annotated class (see Figure S2), but are represented

broadly across many subgroups. However, some trends indicating

structure similarity correlation with individual reaction types may

be seen when the network is viewed painted with reaction types

one at a time (unpublished data). For example, when nodes are

highlighted only if there is evidence for dehydroascorbate reductase

activity, it is observed that this reaction type occurs only in small

outlier clusters well away from the largest two groupings. The

structure similarity network available from the SFLD may be

viewed by each individual reaction type as well as by the color

coding scheme shown here in Figure 5B that indicates multiple or

single reaction types. Though beyond the scope of this work, we

note that because active sites may offer better discrimination of

structural features associated with different reaction types, creation

of structure-similarity networks based on similarity of conserved

active site features rather than overall structure could reveal

stronger correlation of structure with reaction type.

Although the structure similarity network offers a higher

confidence determination of distant similarities among subgroups

than can the sequence similarity networks, far fewer structures are

available than are sequences. The latter include many thousands

of unknowns that are missing from the structure similarity

network. Thus, the structure similarity network is insufficient to

describe the global relationships among the proteins of the

superfamily. Rather, they complement the sequence similarity

networks and reveal connections among level 2 subgroups that are

not evident from the sequence data (Figure 2).

Phylogenetic Representation of cytGSTs
Figure 6 shows the level 2 subgroup network painted by

taxonomic classification describing several ‘‘type of life’’ categories

of general interest, including insect cytGSTs, discussed further

below. Non-insect nodes were painted according to general

categories describing type of life, and by kingdom and super-

kingdom if they did not belong to these categories. The cytGSTs

were first discovered in mammals and cytGST studies initially

focused more attention on eukaryotic and especially metazoan

proteins [56]. However, previous studies [27] and the results

reported here show that the great majority of cytGSTs discovered

thus far come from eubacteria. As with reaction types, Figure 6

shows clearly that sequence-based subgrouping of these GSTs does

not track well with phylogenetic representation. For example,

although many of the metazoan cytGSTs that have been most well

studied are found in the AMPS.1 subgroup, many are found in

other subgroups as well. Conversely, a substantial number of

AMPS.1 sequences are not from metazoans, but represent other

eukaryotes, including insects, fungi, and green plants (Viridiplan-

tae), and even include a small group of bacterial sequences.

Interestingly, the cytGST superfamily even has a few (16) proteins

from the superkingdom Archaea. These are halobacteria that

occur mostly in subgroup Xi.1, although the archaeal coloring

does not show up in this subgroup because in the view shown, non-

archaeal designations of other member sequences dominate in the

representative nodes. However, one outlier node of three

halobacterial sequences with archaeal coloring can be seen near

the bottom of Figure 6.

Figure 5. Representative structure similarity network for the cytGST superfamily. 131 representative structures for 379 cytGST structures
filtered to 95% sequence identity are shown. Edges are shown as for Figure 1 except that structural similarity is defined from the FAST algorithm, with
a FAST SN score $20 required to show edges. 565 edges are shown. For this network the median SN score is 22.7 over 187 residues. (A) Nodes are
colored by level 2 subgroup assignments. (B) Nodes are colored by reaction type. As with the level 2 sequence similarity network, multiple reaction
types are broadly spread throughout the structure similarity network, indicating that some divergent structures catalyze the same reaction types.
Reaction type abbreviations: multiple, multiple reaction types present; DSBR, disulfide bond reductase; NAS, nucleophilic aromatic substitution; NS,
nucleophilic substitution; RD, reductive dehalogenase.
doi:10.1371/journal.pbio.1001843.g005
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The disconnect between sequence similarity and phylogenetic

representation is observed in the other subgroups of cytGSTs.

These patterns, along with the broad promiscuity that is a

signature feature of cytGSTs, make it difficult to classify

uncharacterized superfamily members. The insect cytGSTs, for

which historical classifications remain challenging to clarify,

provide an example.

Challenges for classification and functional inference in

insect cytGSTs. In addition to fundamental roles in metabo-

lism and protection against oxidative stress, insect cytGSTs have

been studied for many decades because of their role in resistance

to insecticides, including organochlorine insecticides such as

dichlorodiphenyltrichloroethane (DDT). Historically, insect

cytGSTs were classified using several different nomenclature

schemes. This has resulted in some confusion about their

distribution across the canonical class designations. (See Ketter-

man [22] for a recent review of insect cytGSTs and their

nomenclature.) For example, some Drosophila cytGSTs were

originally misclassified into the Theta class, and later were re-

classified as Delta class [22,57]. The network view in Figure 6

shows that most insect cytGSTs (640 of the 916 insect sequences)

occur in the subgroup designated as Main.4 (Theta-like) and

represent the predominant type of life in this subgroup.

Annotations for insect cytGST classes obtained from the literature

show their distribution mapped onto the more detailed full

network of Main.4 (Figure 7). These results show that the majority

of characterized cytGSTs from insects have now been assigned to

the Delta and Epsilon classes (including two re-classified Drosophila

sequences specifically mentioned by Board et al. [57]). The

designations Delta and Epsilon are not used by Swiss-Prot, adding

to the challenges of sorting out these relationships from a global

analysis.

The full network shown in Figure 7 is thresholded at an E-value

cutoff of 1610231. At this threshold, clustering obtained by

BLAST-based grouping and MCL correlated well (Text S1). In

this view, most sequences that have been annotated by workers in

Figure 6. Level 2 sequence similarity network painted by type of life. The nodes of this level 2 representative network are colored by the
type of life represented if more than 50% of the annotated member sequences in a representative node have that classification. Taxonomic
classifications were labeled and ordered by the class Insecta, the kingdoms Metazoa, Viridiplantae, and Fungi, and the superkingdoms Eukaryota,
Bacteria, and Archaea. Grey nodes indicate nodes in which there were not a majority of annotated nodes for one of these classifications or if
annotations were not available from NCBI.
doi:10.1371/journal.pbio.1001843.g006
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the field as Theta class appear to form a natural cluster largely

separated from the Delta and Epsilon groups. The main cluster

shown on the left of Figure 7 also suggests that some inconsis-

tencies still persist across the literature in the use of the Delta and

Epsilon designations. The network indicates that some bona fide

Theta class insect sequences may also exist (right cluster in Figure 7).

As with the insect enzymes, the systematic application across the

entire superfamily of the similarity criteria described by this work

may be useful to experts in defining and correcting class boundaries

for this and other subgroups as well. Misclassifications are not

uncommon in this large and complex superfamily. For example,

Sheehan et al. describe several other historical cases of misannotations/

re-classifications involving plant and mouse cytGSTs [58].

While the representative network of Figure 6 shows insect

cytGSTs to be most enriched in the Main.4 (Theta-like) subgroup,

insect sequences are also found in other level 2 subgroups such as

AMPS.1 and Main.3, but appear to be completely lacking in

others such as subgroups Main.2, Main.5, and Xi.1. This is also

consistent with the known patterns of broad and complex

taxonomic distribution across most subgroups. The full network

of Main.4 in Figure 7 also shows that while insects represent the

majority of sequences, many non-insect arthropod, chordate,

plant, and other cytGST sequences are quite similar to insect

cytGSTs and are found together with them in this subgroup.

DSBR Activity Is Broadly Represented across the
Superfamily

As with taxonomic distribution, many reaction types are also

represented in multiple subgroups of the cytGSTs. For example, a

substantial number of divergent members of the cytGST

superfamily have been experimentally determined to reduce low

molecular weight disulfides using GSH (DSBR activity), a reaction

that is also catalyzed by some members of the glutaredoxin

superfamily [59,60]. While most of the physiological substrates for

this reaction remain to be identified, the presence of DSBR

activity may be detected using any type of disulfide as a substrate

provided that it readily forms a mixed disulfide with glutathione

(Figures 4 and S3) [60,61]. The most commonly used substrate is

hydroxyethyl disulfide.

The distribution of proteins across the cytGSTs confirmed to

catalyze the DSBR reaction is provided in Figure 8, showing that

this reaction type is widely distributed throughout the superfamily.

There are 44 sequences in 36 representative nodes that have

experimental evidence for this activity (16 determined by this work

and 28 proteins reported in the literature); 13 of these proteins

have been structurally characterized [24,25,62–67] including three

proteins with structures determined for this work (PDB codes

4ECI and 4ECJ [UniProt Q02KA8], 4HI7 [B4KM86], and 4IKH

[Q4KED9]). The Main.2 and Main.3 subgroups contain the

largest number of sequences that exhibit DSBR activity. Figure 9A

and 9B show active site residue interactions with the substrate(s)

from two of the most remotely related subgroups that include

proteins with DSBR activity: Main.2 (using a structure from this

work, 4IKH from Pseudomonas fluorescens, as the example structure

in Figure 9A) and Xi.1 (using 3PPU from Phanerochaete chrysosporium

as the example structure in Figure 9B). Sequences in these two

subgroups share only 14% sequence identity (mean pairwise %ID

calculated from the alignment). Figure 9C provides a view of the

sequence context for the residues labeled in Figure 9A and 9B.

These motifs, generated from a structure-guided MSA of 44

sequences with experimentally confirmed DSBR activity from 11

level 2 subgroups, summarize key similarities and differences

among additional divergent proteins with DSBR activity. The full

MSA that includes all 44 sequences is provided in Figure S4.

Natural variations in the machinery required for DSBR

catalysis across the superfamily. Structural and functional

studies on Main.2 (Nu-like) subgroup members YfcG [64] and

YghU [24] from E. coli showed binding in the active site to either

two molecules of GSH or one molecule of oxidized glutathione

(GSSG), respectively. We compared these proteins with other

Main.2 structures and sequences with experimental evidence for

DSBR activity, and found strong conservation of several active site

residues likely to be important for binding the substrate (using

4IKH numbering): Thr28, Gln57, Glu89, Ser90, and Arg152

(Figure 9C). Thr28 forms a hydrogen bond to the sulfhydryl group

of a bound glutathione, presumably facilitating the stabilization of

the glutathione thiolate that acts as the nucleophile in the

catalyzed reaction (Figure 9A). The utilization of a threonine

residue in GST-catalyzed reactions has been previously observed

[24,64], but is unusual within the superfamily. Other members

typically use cysteine, serine, or tyrosine residues in catalysis

[2,27]. An arginine residue (Arg152) in the second subunit of the

enzyme interacts with the presumed second bound ligand. Also

shown in Figure 9A are interactions that occur between various

functional groups of bound GSH or GSSG with Gln57, Glu89,

and Ser90. The strong conservation of these five highlighted

residues in subgroup Main.2 proteins is shown in Figure 9C. These

residues may thus represent a general motif that predicts Main.2

Figure 7. Full sequence similarity network of level 2 subgroup
Main.4 indicating conflicting classifications from the literature.
Edges are shown if they meet the similarity threshold of a BLAST E-
value#1610231. Shapes indicate class annotation from the literature:
square, Delta; triangle, Epsilon; and diamond, Theta. To show more
detail, colors are for taxonomic classifications from NCBI Taxonomy at a
finer grained level than that used in the representative network shown
in Figure 6. There are 872 sequences in the network with a median
percent sequence identity for the 92,539 edges of 44% over 209
residues. Literature references for class annotations can be obtained
from the network file for this subgroup available for download from the
SFLD.
doi:10.1371/journal.pbio.1001843.g007
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subgroup characteristics that include the binding of a second

glutathione in the active site.

As illustrated in Figures 9C and S4, further comparison of all

sequences and structures with evidence for DSBR activity across

all the subgroups reveals the sulfhydryl-interacting residue at

position 28 (using 4IKH numbering) is a Thr in Main.2 subgroup

members but is typically a Cys and sometimes a Ser in other

subgroups containing members with evidence for DSBR activity.

This illustrates the variability nature has allowed for the role of this

residue in DSBR activity. Across the superfamily, without regard

to DSBR activity, this critical residue is most commonly a Tyr in

the Alpha, Mu, Pi, and Sigma classes, and a Cys or Ser in enzymes

in the level 1 Main subgroup [2,27].

Inspection of the available structures from non-Main.2

subgroups with DSBR activity shows that there is a lack of

conservation of residues corresponding to Main.2 Arg152 and

Gln57 (4IKH numbering) and inspection of the MSA shows that

no clear alternative sub-motif exists (Figures 9C and S4).

Additional investigation will be needed to determine if alternative

residues in non-Main.2 subgroup members fulfill similar roles to

Main.2 Arg152 and Gln57 in interacting with bound ligand in

DSBR reactions. In contrast to Arg152 and Gln57, the dipeptide

of Glu89 and Ser90 is highly conserved across all subgroups with

DSBR activity, though in a few cases, the Glu is substituted with

an Asp (Figure S4). It is known that these two residues occur in a

core bba region that is highly conserved across many divergent

cytGSTs and have been described as a Gln or Glu residue followed

by a Ser or Thr among Alpha, Mu, Pi, Sigma, and Theta class

members [2]. The strongly conserved ES dipeptide in the proteins

depicted in Figure 9 reveals an important commonality that perhaps

suggests a shared evolutionary ancestor linking proteins from the

extremely divergent level 2 Main and Xi subgroups.

Figure 8. New experimental evidence for DSBR activity in many level 2 subgroups. The level 2 sequence similarity network is painted by
DSBR activity. Nodes are colored if one or more member sequences in a representative node have experimental evidence for DSBR activity. Green
indicates the evidence comes from only from this work and purple indicates evidence is from the literature. One representative node, labeled with
member sequence YghU, has evidence both from the literature and this work. Heavy borders indicate that a 3D crystal structure is associated with at
least one member sequence of a representative node where DSBR activity occurs and shape indicates the source of the structure data: square, from
the literature; diamond, structure evidence both from this work and the literature.
doi:10.1371/journal.pbio.1001843.g008
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cytGSTs Catalyze Unusual Reactions: Bioremediation of
Environmental Pollutants

An examination of the full network of the Main.2 (Nu-like)

subgroup (Figure 10A) shows many unknowns, with only a few

members that have been biochemically and structurally charac-

terized. One of these, the cytGST-like protein Q54B85 (DrcA), is a

eukaryotic reductive dechlorinase (reductive dehalogenation reac-

tion type) (Figure 4) for which a natural substrate, differentiation-

inducing factor (DIF), is known [68]. DIF is a chlorinated alkyl

phenone found in Dictyostelium discoideum (slime mold) and induces

stalk cell differentiation under starvation conditions. The chemical

structures of DIF and the commonly used cytGST synthetic substrate

CDNB are shown in Figure 10B. How dehalogenation of organic

compounds occurs in nature is of interest because of the importance

of these reactions for biodegradation of synthetic organohalides such

as DDT, dioxins, and polychlorinated biphenyls (PCBs) that persist in

the environment as toxic pollutants. Understanding how enzymes

have evolved to dehalogenate naturally halogenated compounds in

an efficient way may provide guidance for engineering enzymes in the

lab for bioremediation and other specialized chemistry.

In an experiment that addresses this challenge, Velazquez and

colleagues [68] showed that Cys54 of DrcA is critical for reductive

dechlorinase activity and that in C54N mutants, the step in

which DIF is conjugated by GSH is left intact but that the

second step that generates free GSH and the reduced

dechlorinated substrate does not occur. This suggests that

Cys54 is required for full reductive dechlorinase activity. As

indicated in Figure 10C, alignment of DrcA with homologs from

Main.2 for which experimental evidence confirms cytGST-like

activity shows that most have an Asn residue in the position that

corresponds to Cys54 in DrcA. There are a total of 17 Main.2

sequences with experimentally confirmed GST-like activity, and

of these, ten have experimental evidence only from this work.

Two of these homologs have been shown to catalyze GST

chemistry using CDNB as a substrate, but some others do not,

even though they possess an Asn in this position. It is an open

question whether mutating the conserved Asn to a Cys (perhaps

along with other mutations) could confer reductive dechlorina-

tion activity to those cytGST homologs that exhibit CDNB

activity, especially in the sequence in Main.2 most closely related

to DrcA, Q9RBP3. A number of other cytGSTs have been

reported to play roles in detoxification of toxic pollutants and

are under investigation for bioremediation efforts. One well-

known example is a pathway found in Sphingomonas that degrades

Figure 9. Comparison of the active site region from divergent subgroups with DSBR activity reveals some commonalities. (A)
Structure of Q4KED9 (UniProt accession) from Pseudomonas fluorescens (PDB ID 4IKH, subgroup Main.2), one of the new structures from this work,
showing two molecules of glutathione bound in the active site. The interactions between the bound ligands and the side chains of Thr28, Gln57,
Glu89, Ser90, and Arg152 of the other subunit (magenta) are shown. (B) Structure of B3VQJ7 from Phanerochaete chrysosporium (PDB ID 3PPU,
subgroup Xi.1) with one molecule of glutathione bound. The corresponding interactions between glutathione and the side chains of Cys86, Glu173,
and Ser174 are shown. (C) Summary of sequence motifs from the structure-guided alignment showing the sequence context for the residues
highlighted in 7A and 7B from several divergent subgroups: Main.2 (red box), Main.3 (green box), and Xi.1 (blue box). All the proteins shown have
experimental evidence for DSBR activity. UniProt entries and available PDB IDs are given on the left side of the sequences. Highlighted in yellow are
the aligned positions of the residues that have notable interactions with the bound ligand as described in the text (numbered according to 4IKH/
Q4KED9). New structures generated for this work are indicated with an asterisk.
doi:10.1371/journal.pbio.1001843.g009
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Figure 10. Similarity relationships between a reductive dehalogenase protein and some homologs may give insight into function.
(A) The full sequence similarity network view of Main.2 displays all 1,642 non-redundant sequences for this level 2 subgroup. Boxed labels and arrows
indicate the slime mold protein with reductive dehalogenase activity (Q54B85) and its closest homolog Q9RBP3. Nodes are colored if there is
experimental evidence for cytGST-like function with shapes indicating the evidence source: triangle, this work; square, the literature; diamond, both
this work and the literature. Dark borders indicate nodes with crystal structures; the border color indicates the source of the structure: blue, this work;
brown, the literature. Node colors designate the reaction type(s) associated with each sequence (node): multiple, multiple reaction types; DSBR,
disulfide bond reductase; NA, nucleophilic addition; NAS, nucleophilic aromatic substitution; NS, nucleophilic substitution; RD, reductive
dehalogenase. Edges with BLAST E-values#1e–31 are shown; the 233,255 edges shown in the network have a median percent ID of 54% over 214
residues. (B) Chemical structures of DIF that is reductively dehalogenated by Q54B85, and CDNB, the synthetic compound commonly used in NAS
assays. (C) Alignment of Q54B85 (red box) with homologs that have experimental evidence for GST-like activity. An arrow indicates residue Cys54
from Q54B85 that is critical for RD activity but is a conserved Asn in most homologs. The blue box indicates Q9RBP3, the closest homolog of Q54B85

cytGST Sequence-Structure-Function Relationships

PLOS Biology | www.plosbiology.org 16 April 2014 | Volume 12 | Issue 4 | e1001843



pentachlorophenol in which two cytGST enzymes play roles

[69–71].

Conclusions
As sequence databases continue to grow much faster than the

encoded proteins can be experimentally characterized, new

approaches are required to infer structure-function relationships

among the majority of proteins of unknown function. Large-scale

analysis of what is known and unknown across the entirety of large

superfamilies of homologous proteins offers one strategy for

leveraging experimental information to address this challenge. Here,

we have described relationships across the members of the cytGST

superfamily from a global context defined by sequence similarity. To

aid in visualization and interpretation of the results, we used

sequence similarity networks to illustrate these relationships at

several levels of detail and mapped to them known classifications,

structures, reaction classes, and the distribution of these proteins

across the biosphere. We neither suggest that the subgroupings that

result and the subclusterings shown within them are replacements

for the canonical classes nor that they rigidly define new classes;

rather, they could provide a foundation for an expanded classifica-

tion of cytGSTs to include the majority of unclassified unknowns.

They may also help to resolve inconsistencies in the canonical

classifications of knowns arising from the ad hoc manner in which

they were historically assigned. Additionally, the new network views

provided here show how the use of the large-scale data now available

reveals patterns that relate sequence and structure to function in

ways that would be difficult to obtain from smaller-scale approaches.

The new experimental results reported here expand substantially

the number of unknowns that can now be confirmed to catalyze a

GST-like reaction. Further, they expand structural coverage into

several highly divergent clusters that previously had little structural

representation. Using DSBRs as an example, this work also

illustrates from a global perspective the substantial overlap of this

reaction type across the many subgroups of the superfamily. As

shown in Figure 4, this theme of promiscuity and widely overlapping

reaction types across many subgroups provides new insight about

why inference of their functions is an especially difficult task.

Likewise, the global view of taxonomic representation across the

superfamily suggests a complex pattern that does not track well with

subgroupings by sequence or structure similarity, complicating

further our understanding of the evolution of the cytGSTs.

While the results from this study provide new insight for a global

understanding of structure-function relationships for the cytGST

superfamily, many challenges still remain, among them the difficulty in

obtaining functional information on the scale that is available from

sequence data. Further, unlike sequence and structure data that are

deposited by standard practice into public databases, much experi-

mental data about proteins are not deposited systematically into

centralized, cross-referenced databases annotated with specific acces-

sion identifiers, so that even obtaining all available functional data for

systematic analysis of an entire superfamily remains challenging.

Supporting Information

Figure S1 Distribution of cytGST lengths in the SFLD.
The lengths of all cytGST proteins in this study were binned by

length (full-length sequences were used).

(PDF)

Figure S2 Structure similarity network colored by
canonical class. The network is the same as that shown in

Figure 5, except nodes are colored according to canonical cytGST

classes from Swiss-Prot annotations, and by the Xi and Nu classes.

Sequences from the Alpha, Mu, Pi, and Sigma classes share similar

overall structures, consistent with the sequence similarity network

shown in Figure 2. In contrast, proteins from other classes group

together in the other major structure cluster shown in the figure,

despite their quite divergent underlying sequences.

(EPS)

Figure S3 Examples of some experimentally known
disulfide substrates for cytGSTs with DSBR activity.

(EPS)

Figure S4 Full structure-guided MSA from which the
summary motif alignment shown in Figure 9C was
created. PDB IDs and UniProt entries for sequences without

structures are given on the left of the alignment. Sequences for

proteins with DSBR activity were used in the alignment, some of

which also had structures as indicated. In order to help guide the

alignment for subgroups that lacked structures with evidence for

DSBR activity, two available structures from these subgroups were

included in the alignment (indicated by ‘‘NO_DSBR’’ in the

labels). Higher conservation is indicated by more intense colors.

The five highly conserved positions in the Main.2 (Nu-like)

subgroup discussed in the main text are indicated with arrows, and

subgroups represented in Figure 9C are boxed and color-coded as

in the legend for Figure 9. The strongly conserved ES (Glu-Ser)

pair that is noted in the text for the summary alignment is also

shown to be highly conserved in the full alignment shown;

although for a few sequences an Asp is substituted for Glu.

(PDF)

Table S1 High throughput assays used in this work. The

assays for cytGST-like activity used in this work are shown,

categorized by reaction type, and the substrates used are indicated.

References for the methods are also given.

(DOCX)

Table S2 Total counts of representative nodes and
member sequences in level 1 and level 2 subgroups.

(XLSX)

Table S3 Experimentally verified cytGST reaction types
for each representative nodes in networks provided in
this work. ‘‘Multiple reaction types in node’’ means that there is

evidence for more than one reaction type in one or more member

sequences in a representative node.

(XLSX)

Table S4 Experimentally characterized cytGSTs and
their substrates. Proteins with experimental confirmation of

cytGST-like activity are listed. ‘‘This work’’ means the experi-

mental data are from assays run for this work. Column titles and

definitions: accn, UniProt accession; ID in network, identifier for a

non-redundant protein used in the full networks; reference,

PubMed ID or ‘‘This work’’; source, database from which

evidence was extracted or ‘‘This work’’; efdid, protein identifier

for accessing a protein in the SFLD; link to protein in the SFLD,

URL address to the protein in the SFLD. The full names for

shortened level 2 subgroup names in the table are: AMPS.1:

that has CDNB activity. Reactions designated in the alignment are as follows: R, RD; D, DSBR; N, NAS; S, NS; A, NA; P, peroxidase. Sequences marked
with an asterisk indicate that the experimental evidence for that reaction was obtained only from this work; sequences marked with a diamond
indicate the availability of a crystal structure for that protein and black diamonds indicate crystal structures are from this work.
doi:10.1371/journal.pbio.1001843.g010
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Alpha-, Mu-, Pi-, and Sigma-like; Main.1: Beta-like; Main.2: Nu-

like; Main.3: Omega- and Tau-like; Main.4: Theta-like; Main.5:

Phi-like; and Main.8: Zeta-like.

(XLSX)

Table S5 3D structures for cytGSTs. The 3D structures

mapped onto the networks in this work are listed; new structures

from this work were solved by the EFI, and are indicated by the

presence of an EFI target ID. Primary ID designates the protein

ID used in this paper (usually UniProt accession number, or an

EFI target ID [see Methods]) to represent redundant protein

sequences. The Primary ID may differ from the dbAccession,

which is the ID in the PDB file that lists the target ID for the

cognate sequence for that structure. If a dbAccession in the PDB

file was not a UniProt identifier, a UniProt identifier is provided in

this Table (UniProt column). The column ‘‘GST activity’’

indicates the source of the experimental data if there is evidence

for GST-like activity: ‘‘This work’’ means the experimental data

were obtained only from assays provided in this work; ‘‘Lit’’ means

the evidence comes from the literature; ‘‘This work and Lit’’

means the evidence comes from both sources.

(XLSX)

Text S1 How thresholds for viewing networks were
chosen.

(PDF)
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