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Abstract

Elevated aerobic glycolysis in cancer cells (the Warburg effect) may be attributed to respiration injury or mitochondrial
dysfunction, but the underlying mechanisms and therapeutic significance remain elusive. Here we report that induction of
mitochondrial respiratory defect by tetracycline-controlled expression of a dominant negative form of DNA polymerase c
causes a metabolic shift from oxidative phosphorylation to glycolysis and increases ROS generation. We show that
upregulation of NOX is critical to support the elevated glycolysis by providing additional NAD+. The upregulation of NOX is
also consistently observed in cancer cells with compromised mitochondria due to the activation of oncogenic Ras or loss of
p53, and in primary pancreatic cancer tissues. Suppression of NOX by chemical inhibition or genetic knockdown of gene
expression selectively impacts cancer cells with mitochondrial dysfunction, leading to a decrease in cellular glycolysis, a loss
of cell viability, and inhibition of cancer growth in vivo. Our study reveals a previously unrecognized function of NOX in
cancer metabolism and suggests that NOX is a potential novel target for cancer treatment.
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Introduction

Development of selective anticancer agents based on the

biological differences between normal and cancer cells is essential

to improve therapeutic selectivity. Increased aerobic glycolysis and

elevated oxidative stress are two prominent biochemical features

frequently observed in cancer cells. A metabolic shift from

oxidative phosphorylation in the mitochondria to glycolysis in

the cytosol in cancer was first described some 80 years ago by Otto

Warburg, who later considered such metabolic changes as ‘‘the

origin of cancer’’ resulting from mitochondrial respiration injury

[1]. It is now recognized that elevated glycolysis is a characteristic

metabolism in many cancer cells. In fact, active glucose uptake by

cancer cells constitutes the basis for fluorodeoxyglucose-positron

emission tomography (FDG-PET), an imaging technology com-

monly used in cancer diagnosis. In addition, cancer cells exhibit

elevated generation of reactive oxygen species (ROS), which

disturb redox balance leading to oxidative stress [2]. However,

despite these long-standing observations and clinical relevance, the

biochemical/molecular mechanisms responsible for such meta-

bolic alterations and their relationship with mitochondrial

respiratory dysfunction remain elusive. Identification of the major

molecular players involved in the metabolic switch in the context

of mitochondrial dysfunction in cancer cells is important for

understanding the underlying mechanisms and developing more

effective treatment strategies.

For many years, studies of mitochondrial respiratory defect

usually involve the use of ru cells, in which mitochondrial DNA

(mtDNA) deletion is generated by chronic exposure of cells to the

DNA-intercalating agent ethidium bromide [3]. While successful,
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the use of ru cells generated by this method as a model for

metabolic study has potential complications due to possible

nuclear DNA damage by ethidium bromide and thus may

compromise data interpretation [4]. To investigate the relation-

ship between mitochondrial dysfunction and alterations of cellular

metabolism, it is important to establish a model system in which

the mitochondrial function can be regulated without significant

impact on the nuclear genome. Mitochondrion DNA polymerase

gamma (POLG) is a key enzyme responsible for the replication of

mtDNA [5,6], which encodes for 13 critical components of the

respiratory chain. Thus, it is possible to specifically impact the

mitochondrial respiratory function by selectively suppressing

POLG, which is not involved in nuclear DNA replication. Indeed,

a dominant negative form of POLG (POLGdn), which contains a

point mutation (D1135A) in the coding sequence, has been

previously identified and demonstrated to have a negative impact

on mtDNA replication, causing respiratory defect after transfec-

tion [7,8]. Thus, it is possible to use a gene transfection strategy to

selectively impact mitochondrial function without affecting nuclear

DNA.

NOX are a group of membrane-associated enzymes capable of

oxidizing NADPH or NADH to NADP+ or NAD+, leading to

generation of superoxide by one-electron reduction of oxygen [9].

There are seven members of the NOX family in the human

genome with unique patterns of cellular expression and conserved

structure. They include NOX1 (also called Mox1), NOX2

(gp91phox), NOX3, NOX4, NOX5, and the dual oxidases

DUOX1 and DUOX2. Activation of most NOX complexes

requires proper assembling of multiple protein components,

including p22phox (CYBA), Rac-GTPase (Rac1 and Rac2),

p47phox, p67phox, p40phox, NOX organizer 1 (NOXO1), and

NOX activator 1 (NOXA1) [10,11]. NOX enzymes have been

implicated in host defense, regulation of gene expression, ROS

generation, and redox signaling [12]. In many cancers, NOX

activities are increased and mRNAs are overexpressed [13–16],

but the precise functions of NOX in cancer cell metabolism

remain unclear.

In the current study, we adapted the molecular strategy using

POLGdn to generate a tetracycline-inducible cell system as

previously described [8] and used this model system and cancer

cells with compromised mitochondrial respiration to investigate

the relationship between mitochondrial respiratory dysfunction

and metabolic alterations and to identify the key molecular players

in the metabolic switch from oxidative phosphorylation to aerobic

glycolysis. We discovered an unexpected metabolic function of

NOX, which is important for maintaining high glycolytic activity

in cells with mitochondrial respiratory dysfunction. We also found

that cancer cells with mitochondrial dysfunction due to the

expression of oncogenic Ras or a loss of p53 consistently exhibited

elevation in NOX activity and were highly sensitive to NOX

suppression. Importantly, the significant increase in the expression

of p22phox, a main component of NOX complex, was found in

human pancreatic carcinoma, where K-Ras aberrant activation is

prevalent. Furthermore, suppression of NOX exhibited significant

antitumor activity in vivo, suggesting that NOX can be a potential

target for cancer therapy.

Results

POLGdn Expression Leads to Mitochondrial Dysfunction
and Elevated Glycolysis

To investigate the relationship between mitochondrial dysfunc-

tion and metabolic changes, we first established an experimental

cell model where the mitochondrial respiratory status can be

regulated via a tetracycline-inducible system. This model is based

on the fact that mtDNA replication is catalyzed by DNA

polymerase c (POLG) and that POLGdn can abolish mtDNA

replication leading to respiration defects [7,17]. A 4-kb DNA

fragment containing the full-length POLGdn gene with a D1135A

mutation was constructed into a mammalian expression vector

pcDNA4/TO (Figure 1A), which was then transfected into human

T-Rex 293 cells to generate a Tet/on inducible system as

described in the Materials and Methods. As shown in Figure 1B,

in the absence of doxycycline (Tet/off), the endogenous POLG

was readily detected by POLG antibody, but the expression of

exogenous POLGdn was not detectable (absence of the FLAG

signal), suggesting that this experimental system was tightly

controlled without detectable leakage. Addition of doxycycline

(Tet/on) to the culture medium induced the expression of

POLGdn (detected by anti-FLAG), which remained expressed

for over 2 wk in the presence of doxycycline. The induced

expression of POLGdn was also evident by the increase of the

band intensity detected by anti-POLG antibody (Figure 1B).

The expression of POLGdn led to a severe decrease of mtDNA

synthesis, as evidenced by a dramatic decrease of mtDNA 2 d after

doxycycline induction (Figure 1C). To determine the mtDNA-

encoded gene expression, Northern blot analysis was used to

measure the level of mtDNA-encoded cytochrome c oxidase

subunit II (COII) RNA. Figure 1D showed that the expression of

COII RNA was decreased on day 2, almost depleted on day 6, and

disappeared by day 10 after POLGdn induction. Western blot

analysis showed a corresponding depletion of COII protein in a

time-dependent manner (Figure 1E).

To evaluate the metabolic alterations subsequent to POLGdn

induction, we first measured cellular oxygen consumption as an

indicator of mitochondrial respiratory capacity [18]. Expression of

POLGdn caused a time-dependent decrease in oxygen consump-

tion, detectable on day 2 and dramatically decreased on day 6

(Figure 2A). Associated with this decrease in mitochondrial

respiration, the Tet/on cells became highly glycolytic, as

evidenced by a significant increase in glucose uptake (Figure 2B)

Author Summary

Glycolysis is a cytoplasmic metabolic process that produc-
es energy from glucose. In normal cells, the rate of
glycolysis is low, and glycolysis products are further
processed in the mitochondria via oxidative phosphoryla-
tion, a very efficient energy-producing process. Cancer
cells, however, display higher levels of glycolysis followed
by cytoplasmic fermentation, and reduced levels of
oxidative phosphorylation. It was thought that increased
glycolysis is associated with mitochondrial dysfunction,
but how these phenomena are functionally linked was not
known. Understanding how these processes are regulated
will be essential for developing more effective anti-cancer
therapies. Here, we show that induction of mitochondrial
dysfunction by either genetic or chemical approaches
results in a switch from oxidative phosphorylation to
glycolysis. We further show that NADPH oxidase (NOX), an
enzyme known to catalyze the oxidation of NAD(P)H, also
plays a critical role in supporting increased glycolysis in
cancer cells by generating NAD+, a substrate for one of the
key glycolytic reactions. Inhibition of NOX leads to
inhibition of cancer cell proliferation in vitro and suppres-
sion of tumor growth in vivo. This study reveals a novel
function for NOX in cancer metabolism, explains the
increased glycolysis observed in cancer cells, and identifies
NOX as a potential anti-cancer therapeutic target.

Role of NOX in Cancer Metabolism
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Figure 1. POLGdn expression led to the depletion of mtDNA-encoded respiratory chain components. (A) POLGdn-pcDNA4/TO construct
and nucleotide sequencing analysis confirming the D1135A mutation. (B) Induction of POLGdn expression by doxycycline. T-Rex293 cells carrying
POLGdn construction were incubated with doxycycline at an indicated time point. POLGdn expression was detected by anti-FLAG antibody, while
both the endogenous POLG and POLGdn proteins were detected by anti-POLG antibody using Western blot assay. (C) Dramatic decrease of mtDNA
by expression of POLGdn. Southern blot assay was used to measure mtDNA content. 10 mg total cellular DNA (including genomic DNA and mtDNA)
from each sample was digested with SphI to linealize the circular mtDNA, followed by gel electrophoresis. 32P-labeled mitochondrial COII DNA
fragment was used as a probe to detect mtDNA. (D) Assay of mtDNA-encoded COII RNA expression by northern blot analysis. (E) Detection of
mitochondrial DNA-encoded COII protein by Western blot assay.
doi:10.1371/journal.pbio.1001326.g001

Role of NOX in Cancer Metabolism

PLoS Biology | www.plosbiology.org 3 May 2012 | Volume 10 | Issue 5 | e1001326



Figure 2. Suppression of mitochondrial respiration by POLGdn expression led to an elevation of glycolysis. (A) Time-dependent
decrease in cellular oxygen consumption following POLGdn expression. Reduction of oxygen consumption was observed as early as 2 d after
POLGdn expression, and the cells dramatically decreased their ability to consume oxygen with prolonged POLGdn expression. (B) Increased glucose
uptake in POLGdn-expressing cells (Tet/on, d12). Cells (26106) were incubated in 5 ml glucose-free RPMI1640 medium for 2 h, followed by
incubation with 0.2 mCi/mL 3H-2-deoxyglucose for 1 h. Cellular uptake of 3H-2-deoxyglucose was determined by liquid scintillation counting after the
cells were washed two times with PBS. Error bars, 6SD. p,0.01 (n = 3). (C) Increased lactate generation in Tet/on cells. Lactate in Tet/off and Tet/on
(day 12) cells was measured at the indicated time points after changing to fresh culture medium. (D) Increased protein level of hexokinase II (HKII)
following POLGdn expression. Upper panels show representative HKII protein by Western blotting assay at the indicated days after POLGdn induction

Role of NOX in Cancer Metabolism
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and elevated production of lactate, a metabolic product of

glycolysis (Figure 2C). Consistent with the active glycolysis, the

Tet/on cells showed an upregulation of hexokinase II (HKII), a

rate-limiting enzyme of the glycolytic pathway (Figure 2D). This

increase in glycolysis seemed effective in compensating the

decrease of ATP production in the mitochondria, since the overall

cellular ATP levels only decreased moderately (Figure 2E), even on

day 12 when respiration was severely suppressed.

Since the mitochondrial respiratory chain is a major site of

cellular ROS generation, we examined if induction of mitochon-

drial dysfunction by POLGdn could lead to a change in cellular

ROS. Flow cytometry analysis of cells stained with hydroethidine

(HET), a relatively specific chemical probe for superoxide (O2
2)

[19] showed that the cellular O2
2 level was significantly decreased

in the Tet/on cells at day 12 (Figure 3A). Consistently, MitoSox

Red, a mitochondrial O2
2 indicator, revealed a significant

decrease in mitochondrial O2
2 in the Tet/on cells (Figure 3B).

In contrast, a general redox-sensitive probe DCF-DA, which

detects cellular H2O2 and other ROS, revealed a significant

increase in cellular ROS in the Tet/on cells (Figure 3C).

Because O2
2 can be converted to H2O2 by the mitochondrial

superoxide dismutases (SOD2) or the cytosolic SOD1, we tested

the possibility that the increase in cellular H2O2 and the decrease

in O2
2 observed in the Tet/on cells might be a consequence of

altered SOD activity. Western blot analysis showed that the

mitochondrial SOD2 remained unchanged (Figure 3D), whereas

the basal expression of cytosolic SOD1 was abundant in the Tet/

off cells and was further increased by day 4 after POLGdn

induction (Figure 3E). Concurrently, SOD1 activity was also

increased (Figure 3F). Taken together, these data suggest that the

increase in cellular ROS detected by DCF-DA was most likely due

to elevated generation of O2
2 outside the mitochondria, and such

cytosolic O2
2 was then converted to H2O2 by the elevated SOD1.

Upregulation of NOX Is Important to Maintain High
Glycolytic Activity in Cells with Mitochondrial
Dysfunction

Since NOX is a membrane-associated enzyme capable of

generating ROS outside the mitochondria [20], we then measured

the membrane-associated NOX activity of the Tet/on cells in

comparison with Tet/off cells, using standard NOX assay

described previously [21,22]. The mitochondrial respiratory

defective cells consistently exhibited a significant increase in

NOX activity, which was detected 2 d after POLGdn induction

and remained high as long as the cells were maintained in Tet/on

stage (Figure 4A). This increase in NOX activity was inhibited by

10 mM diphenyleneiodonium (DPI), a known inhibitor of NOX

[23], to less than 10% of the original NOX activity (Figure 4B). In

contrast, pharmacologic inhibitors of other ROS-generating

molecules including NOS inhibitor Nv-nitro-L-arginine mrthyl

ester hydrochloride (L-NAME, 100 mM), the mitochondrial

respiratory chain complex I inhibitor rotenone (20 mM), and the

xanthine oxidase inhibitor oxypurinol (100 mM) showed no effect

on the NOX activity assay (Figure 4B). To determine if the

increased NOX activity was due to an increase in gene expression,

we used semi-quantitative RT-PCR to evaluate possible changes

in RNA expression of various NOX components and showed that

the mRNA levels of NOX1, NOXA1, and p47phox were

significantly increased (Figure S1A–B, Text S1). Time-course

analysis of NOXA1 and p47phox expression showed that the

mRNA levels increased 2 d after Tet/on (Figure S1B), concurrent

with the timing of NOX activity increase. This elevated gene

expression was further quantitatively confirmed by qRT-PCR

assay (Figure 4C).

The elevated NOX in cells with mitochondrial dysfunction

induced by POLGdn suggests that NOX upregulation might be

functionally important for these cells. We then used DPI to test if

the POLGdn-expressing cells with mitochondrial respiratory

defects might be more vulnerable to NOX inhibition. As shown

in Figure 4D, the Tet/on cells were significantly more sensitive to

DPI treatment than the Tet/off cells, evident by a substantial loss

of mitochondrial integrity (ability to retain rhodamin-123), a

decrease in cell viability (annexin-V/PI double staining, Figure 4E),

and an inhibition of cell growth (Figure S1C). To test whether the

elevated NOX gene expression and NOX activity were only

limited to the POLGdn Tet/on system, we compared the

respiration defective (ru) cell line HL60-C6F (C6F cells) [24] with

its mitochondrial competent parental HL60 cell line and observed

that the mitochondrial respiration-defective C6F cells showed a

significant increase in NOX activity (Figure 4F) and elevated

expression of NOX1, NOXA1, and p47phox (Figure 4G).

Consistently, C6F cells were also more sensitive to DPI than the

parental HL60 cells (Figure 4H).

The above observations suggest that the up-regulation of NOX

might be important for the viability of cells with mitochondrial

dysfunction. Since respiration-defective cells are highly dependent

on glycolysis for cell survival, we tested the potential role of NOX

on glucose metabolism by evaluating the effect of NOX

knockdown on glucose uptake, ATP generation, and cellular

NAD+ level. siRNA was used to specifically knockdown the

expression of the critical NOX components NOX1 and p22phox

in both Tet/on and Tet/off cells (Figure S2A and S2B).

Interestingly, suppression of NOX by siRNA selectively impact

cells with mitochondrial dysfunction (Tet/on), evidenced by a

significant decrease in glucose uptake and reduced ATP genera-

tion, while cells with competent mitochondrial function (Tet/off

cells) were not affected (Figure 5A–B), suggesting a potential role of

NOX in glucose metabolism in cells that are highly glycolytic such

as in the cells with mitochondrial defect. We further measured

cellular NADH and NAD+ contents in the Tet/off and Tet/on

cells in the presence and absence of NOX inhibition. As shown in

Figure 5C, NADH and NAD+ were separated by HPLC and

eluted at 9 min and 15 min, respectively. The chemical identities

of NADH and NAD+ in these HPLC peaks were collected and

confirmed by mass spectrometry analysis (Figure S2C and S2D).

Quantitative analysis showed that the expression of POLGdn

(Tet/on) caused a decrease in NAD+ by approximately 30%

(75.5R53.6 ng/46106 cells; Figure 5D), indicating an increase in

NAD+ consumption by the high glycolytic activity when

mitochondrial respiration was suppressed by expression of

POLGdn. Inhibition of NOX by p22phox siRNA knockdown or

by DPI caused an additional 40%–50% decrease in NAD+, with a

corresponding increase in NADH (Figure 5D). Besides, cellular

NADP+/NADPH ratio was significantly increased in cells with

POLGdn expression (Figure 5E). The above data suggest that

NOX might by important to maintain high glycolytic activity in

by doxycycline. Lower panels show quantification of Western blot results using scanning and ImageJ software. Results are expressed as integrated
optical density. Each sample was normalized to b-actin content. Each bar represents the mean 6 SEM of three independent experiments. * p,0.05; **
p,0.01. (E) Comparison of cellular ATP levels in cells with or without POLGdn expression. Cellular ATP contents in Tet/on cells (days 8 and 12) were
measured and compared with the Tet/off cells. Error bars, 6SD (** p,0.01 and n = 3).
doi:10.1371/journal.pbio.1001326.g002
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Figure 3. Alterations in ROS generation and SOD expression in cells with mitochondrial defect induced by POLGdn. (A) Lower cellular
O2

2 in POLGdn-expressing cells (Tet/on, day 12). O2
2 was detected by flow cytometry using 200 ng/ml HET as fluorescent dye (p,0.001, Tet/off

versus Tet/on and n = 3). (B) Comparison of mitochondrial O2
2 in cells with POLGdn expression (Tet/on day 12) or without POLGdn (Tet/off).

Role of NOX in Cancer Metabolism
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the cells with mitochondrial defects by supplying additional NAD+
from oxidation of NADH. Indeed, the membrane-associated

NOX preparation was able to oxidize either NADPH or NADH

as the substrates, and the oxidase activity was decreased by

p22phox gene knockdown (Figure 5F). These data might explain

why p22phox knockdown could cause NAD+ level decrease in the

Tet/on cells.

Because NOX generates ROS, which might then stabilize HIF-

1a to stimulate glycolysis [25], we tested if altering NOX activity

would cause changes in ROS and HIF-1a. We knocked down

p22phox using siRNA and then induced POLGdn expression for

4 d. Cellular O2
2 and mitochondrial O2

2 levels did not show any

change on day 4 (Figure S2E–F), while knockdown p22phox

causes a detectable decrease in cellular H2O2 (Figure S2G),

consistent with the role of NOX in generating ROS outside the

mitochondria. HIF-1a was not induced in the POLGdn cells even

after 2 wk of Tet/on, while hypoxia induced a significant increase

of HIF-1a in the same cells (Figure 5G). These data together

suggest that induction of mitochondrial dysfunction did not

significantly change HIF-1a expression. Thus, HIF-1a seemed

not to play a major role in the POLGdn Tet/on cells to promote

glycolysis.

Cancer Cells with Compromised Mitochondrial Function
Due to p53 Loss Show Elevated NOX Activity and
Increased Sensitivity to NOX Inhibition

It is known that the tumor suppressor p53 plays an important

role in maintaining mitochondrial function through transcriptional

activation of SCO2 and the loss of p53 leads to a decrease in

mitochondrial respiration and increase in lactate generation

[26,27]. We reasoned that if NOX were important for the

survival of cells with mitochondrial respiratory defect, the p53-null

cells would be expected to have elevated NOX activity and be

sensitive to NOX inhibition. To test this possibility, we compared

NOX activity in human colon cancer cells (HCT116) with wild-

type p53 or p532/2. As shown in Figure 6A, the p532/2 cells had

a higher membrane-associated NOX activity. Further analysis by

semi-quantitative RT-PCR revealed that the expression of the

NOX components NOX1 and p67phox were increased in

HCT116 p532/2 cells (Figure S3A). Quantitative analysis using

qRT-PCR showed that NOX1 and p67phox in HCT116 p532/2

cells have about 2- and 4-folds increase in gene expression,

respectively, compared to HCT116 p53+/+ cells (Figure 6B).

To evaluate the importance of increased NOX for the survival

of HCT116 p532/2 cells, we tested their sensitivity to NOX

inhibitor DPI in comparison with the HCT116 p53+/+ cells. As

shown in Figure 6C, after DPI treatment for 24 h, HCT116

p532/2 cells exhibited a round-up morphology and detached,

leading to a decrease in the number of viable cells when compared

with HCT116 p53+/+ cells. To further confirm this different

sensitivity, the effect of DPI on mitochondrial transmembrane

potential was compared in both cell lines by flow cytometry using

rhodamin-123 staining. Substantially more HCT116 p532/2 cells

(32%) lost their mitochondrial transmembrane potential after DPI

treatment for 24 h, compared to 17% observed in the HCT116

p53+/+ cells (Figure 6D). These data suggest that NOX was up-

regulated in cancer cells with loss of p53 and that inhibition of

NOX could be a therapeutic strategy to preferentially kill these

cancer cells. Indeed, cell death measured by annexin-V/PI

analysis showed that the HCT116 p532/2 cells were more

vulnerable to DPI than the HCT116 p53+/+ cells (Figure S3B). To

further confirm that p532/2 cells have higher NOX activity,

H1299 cells were transfected with p53wt expression plasmid to

generate p53wt stably expressed H1299-p53wt cell line (Figure

S3C). We observed that forced expression of wild-type p53 in

H1299 cells have significantly decreased NOX activity (p,0.001)

(Figure S3D).

Upregulation of NOX in K-rasG12V-Expressing Cells and in
Pancreatic Cancer Specimens

Malignant transformation by oncogenic Ras is known to

attenuate mitochondrial function and promote glycolysis [28,29].

We introduced an inducible K-rasG12V expression vector into the

T-Rex 293 cells and observed that induction of K-rasG12V

expression caused a 50% decrease in mitochondrial respiration

[30]. Importantly, this also caused a significant increase in NOX

enzyme activity (Figure 7A) and elevated gene expression of the

NOX components (Figure S4A). In a separate experiment, stable

transformation of human pancreatic ductal epithelial (HPDE) cells

with K-rasG12V also induced NOX upregulation (Figure 7B and

Figure S4B). Western blot analysis of the K-rasG12V stably

transformed cells and two naturally occurring pancreatic cancer

cell lines (AsPC1 and Panc-1) showed that the protein level of

p22phox, an essential component of the NOX enzyme complex,

was substantially higher in pancreatic cancer cells than in non-

malignant HPDE cells (Figure 7C). Using the H-RasV12-trans-

formed human ovarian epithelial cell pair [31,32], we also found

that NOX activity in H-RasV12-transformed cells (T72Ras) was

significantly higher than that in their non-tumorigenic parental

T72 cells (Figure 7D). The increase in expression of NOX1, NOX2,

p22phox, and p47phox in the H-RasV12-transformed cells was

demonstrated by semi-quantitative RT-PCR analysis (Figure S4C)

and quantitatively confirmed by qRT-PCR (Figure 7E). To test if

the elevated NOX activity is important for the survival of the H-

RasV12-transformed cells, we compared the sensitivity of T72Ras

cells and the parental T72 cells to DPI. The transformed T72Ras

cells were more vulnerable to NOX inhibition by DPI, leading to a

substantial decrease of mitochondrial transmembrane potential

(Figure 7F).

To test the clinical relevance of the above observations, we

analyzed the expression of p22phox in clinical specimens using

primary pancreatic tissue microarrays containing 105 cases of

stage II pancreatic ductal carcinoma samples and 94 benign

pancreatic tissues (normal and pancreatitis tissues). As shown in

Figure 7G, about 48% (50/105) of the pancreatic cancer tissues

exhibited a high protein level of p22phox, whereas only about 7%

(7/94) of the benign pancreatic tissues were positive for p22phox.

These data suggest that p22phox was significantly higher in

pancreatic carcinoma than in non-malignant tissues (p,0.0001,

Fisher’s exact test).

Mitochondrial O2
2 was detected by flow cytometry using 5 mm MitoSox Red as fluorescent dye (p,0.001, Tet/off versus Tet/on and n = 3). (C)

Increase in cellular H2O2 level in POLGdn expressing Tet/on (day 12) cells. Cellular H2O2 was measured by flow cytometry using 4 mm DCF-DA as a
fluorescent dye (p,0.001, Tet/off versus Tet/on, and n = 3). (D) Protein level of mitochondrial superoxide dismutase (SOD2) in cells at the indicated
time points after POLGdn induction. SOD2 was assayed by Western blot analysis. b-actin was used as a loading control. (E) Protein level of cytosolic
superoxide dismutase (SOD1) in cells at the indicated time points after POLGdn induction. Left panels show representative Western blots, and right
panels show quantification of normalized SOD1 levels to b-actin controls from three independent experiments. Data are shown in mean 6 SEM.
* p,0.05. (F) Changes in SOD1 activity in cells at the indicated time points after POLGdn induction. Error bars, 6SD. *** p,0.001 (n = 3).
doi:10.1371/journal.pbio.1001326.g003
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Figure 4. Cells with mitochondrial respiratory defects exhibit elevated NOX activity and are sensitive to NOX inhibition. (A) Increase
of membrane-associated NOX activity in cells with mitochondrial respiratory defects after induction of POLGdn expression (Tet/on, 2, 8, 12 d). Error
bars, 6SD. ** p,0.01 (n = 3). (B) Inhibition of NOX enzyme activity by DPI. The Tet/on cells (day 8) were treated with 10 mM DPI, 100 mM L-NAME,
20 mM rotenone, or 100 mM oxypurinol for 4 h, and the membrane-associated fractions were prepared for analysis of NOX activity. Error bars, 6SD.
*** p,0.001 (n = 3). (C) Increase in mRNA expression of NOX family members in Tet/on (day 2) cells, measured by qRT-PCR analysis. Error bars, 6SD. **
p,0.01 (n = 3). (D) Comparison of changes in mitochondrial transmembrane potential in Tet/off and Tet/on cells treated with DPI. Cells were pre-
induced by doxycycline for 7 d and then incubated with the indicated concentrations of DPI for 24 h. Mitochondrial transmembrane potential was
measured by flow cytometry using Rhodamine-123 as a potential-sensitive dye. Cells without DPI treatment were marked as control (Cont). (E) Cells
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Suppression of NOX Exhibits Significant Inhibitory Effect
against Pancreatic Cancer in vivo

To test the role of NOX in cancer cell survival, we stably

knocked down p22phox expression in human pancreatic cancer

cells (Panc-1), using p22phox shRNA lentiviral particles (Santa

Cruz). The p22phox protein was substantially decreased and

NOX activity was significantly decreased (Figure 8A) in p22phox-

shRNA stably expressed cells compared with Panc-1 cells

transduced with the control shRNA lentiviral particals. The

knockdown of p22phox led to a significant decrease in cell growth

(Figure 8B) and colony formation capacity (Figure 8C). Suppres-

sion of NOX expression also significantly decreased glucose uptake

and lactate generation in pancreatic cancer cells (Figure 8D and

8E). To test the effect of NOX suppression on tumor growth in

vivo, we subcutaneously inoculated the Panc-1 cells bearing

p22phox-shRNA into the left flank of athymic nude mice (n = 7)

and Panc-1 cells bearing control shRNA into the right flank of the

same 7 mice (56106 cells/injection site). Suppression of p22phox

expression significantly impaired tumor growth in vivo (Figure 8F

and 8G). The average tumor volume in the p22phox-shRNA

group was 53.4620.9 mm3, compared to 277.6677.8 mm3 in the

control group. After 60 d of cell inoculation, the average tumor

weight of the p22phox-shRNA xenografts was 1765 mg, com-

pared to 170662 mg in the control group (Figure 8H and 8I).

These data together suggest that NOX are essential for tumor

growth in vivo.

We then used DPI, a chemical inhibitor of NOX [23], to test its

potential therapeutic activity against pancreatic cancer in vivo.

Athymic nude mice were inoculated with Panc-1 cells subcutane-

ously (Text S1). When the tumor grew to 100 mm3, the mice were

divided into two groups for treatment with vehicle (PBS) as control

or with DPI (1.5 mg/kg mouse, i.v., 5 times/week). Such

treatment did not cause significant toxicity in the mice and there

was no loss of body weight in the DPI-treated group (Figure S5A).

The tumors grew progressively in the control group, whereas the

DPI-treated group exhibited significant retardation in tumor

growth (tumor volume 1,0686309.7 mm3 versus 139680.4 mm3,

Figure S5B). Some of the tumors in the treatment group showed

complete regression (Figure S5C). The average tumor weights of

the control group were significantly increased after about 10 wk

compared with the DPI-treated group (478698 mg versus

84652 mg, p,0.01, Figure S5D). These data suggest that DPI

could effectively inhibit pancreatic tumor growth without apparent

toxic side effects.

Discussion

In this study, we established a dominant-negative mitochondrial

DNA polymerase c inducible cell system, which enabled us to

investigate the relationship between mitochondrial respiratory

defect and metabolic alterations. Unlike ru cells derived by

chronic exposure of cells to ethidium bromide that could also

damage nuclear DNA, the POLGdn inducible cells provide a

clean isogenic model system that allowed the induction of

mitochondrial respiration suppression under well-defined condi-

tions without causing direct nuclear DNA damage. This model

made it possible to monitor metabolic alterations during the shift

from oxidative respiration to high glycolysis and to examine the

biochemical mechanisms in detail. The use of this cell system in

the current study led to a novel finding that NOX was consistently

up-regulated when mitochondrial respiration was suppressed by

the expression of POLGdn, and this was further confirmed in

cancer cells with loss of p53 or expression of oncogenic Ras.

Further study showed that such NOX elevation is critical for the

maintenance of high glycolytic activity in cells with mitochondrial

respiratory defects. This conclusion is supported by multiple lines

of evidence: (1) NOX expression and enzyme activity were

elevated in cells with different degrees of mitochondrial respiration

suppression induced by POLGdn, and in cancer cells with

mitochondrial defect due to a loss of p53, or under the stress of

Ras oncogenic signal. (2) In cells with mitochondrial respiratory

defect, a suppression of NOX led to a decrease in NAD+ level,

lower glucose uptake, and reduced ATP content, leading to loss of

cell viability. (3) Knockdown of NOX enzyme component

p22phox in Panc-1 cancer cells decreased glucose uptake and

lactate generation, decreased cancer cell proliferation and colony

formation capacity, and suppressed tumor growth in vivo.

Cells with mitochondrial respiration defect require a higher rate

of glycolysis, and activation of NOX seems necessary to provide

additional NAD+ to support the highly active glycolysis. Our study

showed that suppression of NOX in these cells caused a decrease

in NADH oxidation and lower cellular NAD+ level, a decrease in

glycolysis and cellular ATP, and a loss of cell viability. Thus, NOX

activation is important for providing additional NAD+ to support

active glycolysis. This is a previously unrecognized function of

NOX in energy metabolism. The production of NAD+ by lactate

dehydrogenase (LDH) is traditionally thought to be the main

pathway that maintains the supply of NAD+ for glycolysis. In

normal cells with competent mitochondria and a moderate level of

basal glycolytic activity, the NAD+ generated by LDH may be

sufficient to support the glycolytic reaction catalyzed by GAPDH.

However, in cells with mitochondrial dysfunction that require

higher glycolytic activity, upregulation of NOX seems important

to provide additional NAD+.

It is important to note that the POLGdn cells not only represent

a model system to study mitochondrial respiration defect as shown

in other ru cells, but it also allows us to investigate the metabolic

changes with various degrees of mitochondrial dysfunction. The

upregulation of NOX was observed not only at the stage when

mitochondrial respiration was severely inhibited by POLGdn

expressing, but we have also observed NOX activation in the early

stage (day 2 of Tet/on) of mitochondrial dysfunction. NOX

activation is also consistently observed in cancer cells with

mitochondrial dysfunction, such as HCT116 colon cancer cells

that lack p53 and thus have a disruption of cytochrome c oxidase

complex (complex IV) in the mitochondria [26]. Synthesis of

cytochrome c oxidase 2 (SCO2) is a transcriptional target of the

tumor suppressor p53. The alterations of metabolic parameters

including lactate generation and cellular ROS, NADH, and ATP

levels observed in the HCT116 SCO22/2 cell model [33] were

similar to those seen in the POLGdn-Tet/on cells in this study.

Interestingly, the Ras oncogene has recently been shown to cause

mitochondrial dysfunction by disrupting mitochondrial complex

activity [30,34], which is consistent with our findings in this study.

with mitochondrial respiratory defect (Tet/on, day 8) were more sensitive to DPI treatment (10 mM, 48 h) compared with the Tet/off cells. Cell viability
was measured by annexin-V/PI assay. (F) Increase of NOX activity in mDNA-less HL60-C6F (C6F) cells. Mean 6 SD. *** p,0.001 (n = 3). (G) Increase in
NOX family mRNA expression in C6F cells, measured by qRT-PCR assay. Data are shown as mean 6 SD of triplicate samples from two independent
experiments. * p,0.5; *** p,0.001. (H) C6F cells were more sensitive to DPI treatment. HL60 and its derived C6F cells were treated with indicated
concentration of DPI for 48 h. Cell viability was measured by annexin-V/PI assay.
doi:10.1371/journal.pbio.1001326.g004
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Figure 5. NOX supports glycolysis in cells with mitochondrial respiratory defects induced by POLGdn. (A) Inhibition of glucose uptake
by siRNA knockdown of NOX1 or p22phox in cells with mitochondrial respiratory defects (Tet/on, day 8), but not in cells with intact mitochondria
(Tet/off). p,0.05 (n = 3). Insert: Tet/off and Tet/on (at day 4) cells were transiently transfected with p22phox siRNA and the knockdown efficiency was
detected by anti-p22phox antibody using Western blot. Non-targeting control siRNA (Scram or sc) was used as negative control. (B) Effect of NOX1
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Stable transfection of human pancreatic ductal epithelial (HPDE)

cells by K-rasG12V, induced expression of K-rasG12V in T-Rex 293

Tet/on cells, or stable H-rasV12 transformation in human ovarian

epithelial cells led to a significant increase in NOX enzyme

activity. Moreover, the protein level of p22phox was found to be

significantly elevated in human primary pancreatic cancer tissues.

These observations together suggest that NOX up-regulation may

be an important cellular adaptive response to mitochondrial

dysfunction to enable the increase in glycolytic activity. As such,

NOX upregulation may be significant in many pathological

processes related to mitochondrial respiratory inhibition, especially

in cancer cells where mitochondrial respiratory dysfunction and

metabolic abnormalities are prominent.

The molecular mechanisms by which divergent triggers

including POLGdn, oncogenic Ras, and loss of p53 cause

upregulation of NOX remain unclear. In the study, we observed

that the expression of various NOX family members was

upregulated in cells with mitochondrial dysfunction. A recent

study suggests that SIRT1, a NAD+-dependent histone deacety-

lase, is involved in the negative regulation of NOX1 expression

[35]. It is possible that mitochondrial dysfunction induced by

various factors would lead to a decrease in cellular NAD+ content

due to active glycolysis that consumes NAD+, and therefore release

the SIRT1 suppression on NOX1 expression. Further study is

needed to investigate this possibility.

Conventionally, the membrane-bound NOX enzyme complex is

considered as ROS-generating machinery in phagocytes involved in

the defense against microorganisms and mediating certain inflam-

matory processes. Subsequently, nonphagocytic NOX family of

proteins homologous to gp91phox and other subunits have been

shown to generate ROS in nonphagocytic cells and have been

thought to contribute to various cancer cell proliferation and

progression [15,16,36,37]. Our study revealed an important function

of NOX in cellular energy metabolism, especially in cancer cells with

mitochondrial dysfunction. The ability of NOX inhibition to suppress

pancreatic cancer cell proliferation, to abrogate colony formation

ability, and to significantly suppress tumor growth in vivo suggests the

feasibility to target NOX for cancer treatment. Since pancreatic

cancer is highly resistant to many anticancer agents currently used in

clinic, targeting NOX may have significant clinical implications and

merit further investigation.

Materials and Methods

Generation of Mitochondrial Respiration-Defective Model
System

T-Rex 293 cells containing the pcDNA6/TR vector were

obtained from Invitrogen. Full-length POLGdn cDNA harboring

D1135A mutation and a FLAG-tag was excised by restriction

enzyme EcoRI digestion from the POLGdn plasmid described

previously [8]. The POLGdn fragment was subcloned into a

mammalian expression vector pcDNA4/TO (Invitrogen) at EcoRI

site and verified by nucleotide sequencing. The plasmid with

correct orientation was verified by HindIII or XhoI enzyme

digestion. The resulting POLGdn plasmid was then transfected

into T-Rex 293 cells using lipofectamine 2000 (Invitrogen) to

generate Tet/on inducible cell line. POLGdn positive colonies

were selected by Zeocin (250 mg/ml) for 15 d, and expression of

POLGdn was verified by 1 mg/ml doxycycline induction and

Western blot analysis using anti-FLAG antibody (Sigma).

Metabolic Measurements
Oxygen consumption, glucose uptake, and lactate generation

were described previously [18]. For measurement of oxygen

consumption, cells were trypsinized and resuspended in 1 ml fresh

culture medium pre-equilibrated with 21% oxygen at 37uC
followed by applying the cells to the sealed respiration chamber

of a Clark-type oxygen measuring system (Oxytherm, Hansatech

Instrument, Cambridge, United Kingdom) with constant stirring.

To measure cellular glucose uptake, cells in exponential growth

phase were washed with glucose-free medium and incubated in

fresh glucose-free RPMI 1640 medium for 3 h followed by an

incubation with 0.2 Ci/mL 3H-2-deoxyglucose for 1 h. The

glucose uptake represented by 3H radioactivity was determined

by liquid scintillation counting and normalized by cell number. To

measure lactate production, cells in 80% confluent were replen-

ished with fresh medium. Aliquots of the medium were removed at

the indicated time for measurement of lactate, using an Accutrend

lactate analyzer (Roche, Mannheim, Germany). At each time

point, cell number was also counted for normalization of lactate

generation. Cellular ATP contents were measured using CellTiter-

Glo Luminescent Cell Viability Assay kit (Promega) according to

manufacturer’s recommendations.

Flow Cytometry
Flow cytometry determination of ROS, mitochondrial mem-

brane potential, and cell death was performed using a BD

Biosciences FACSCalibur flow cytometer (Mountain View, CA)

and analyzed using the CellQuest software (Becton Dickinson).

Cellular superoxide level was measured by incubating cells with

200 ng/ml HET for 1 h and mitochondrial superoxide level was

measured by incubating the cells with 5 mm MitoSox Red for

60 min. Intracellular H2O2 contents were measured by incubating

cells with 4 mM DCF-DA at 37uC for 1 h and mitochondrial

transmembrane potential was assessed by incubating cells with

1 mM Rhodamine-123 (Rho-123) for 30 min before flow cytom-

eter analysis. Apoptosis was determined by using the annexin-V

and PI double staining method.

Assay for NAD(P)H Oxidase Activity and SOD1 Activity
NAD(P)H oxidase activity was measured by a lucigenin-derived

chemiluminescence assay as described [21,22]. Briefly, 5–7 mg

homogenized protein was incubated with its substrate 100 mM

NADH or NADPH in a phosphate buffer (50 mM, pH 7.0)

containing 150 mM NaCl and 1 mM EGTA for 15 min, followed

by an addition of 5 mM lucigenin for 15 min in dark. The

knockdown on ATP contents in cells with intact mitochondria (Tet/off) and cells with mitochondrial respiratory defect (Tet/on, day 8). p,0.01 (n = 4).
(C) HPLC analysis of cellular NAD+ and NADH levels. Standard NAD+ and NADH were used as references, which were monitored simultaneously at
260 nm and 340 nm, respectively. A lower NAD+ content was detected in the Tet/on cells with mitochondrial respiratory dysfunction and higher
glycolytic activity that consumed more of NAD+. Inhibition of NOX activity by p22phox siRNA and DPI resulted in further decrease in cellular NAD+

level. (D) Quantitation of intracellular NAD+ and NADH in triplicate experiments, using HPLC method as described above. (E) Effect of POLGdn
expression on cellular NADP+/NADPH ratio. *** p,0.001. (F) Knockdown of p22phox decreased NADPH/NADH oxidase activity. Comparing to the
control siRNA knockdown in Tet/on (d8) cells, p22phox knockdown significantly decreased cellular NADPH/NADH oxidase activity using either
NADHP or NADH as substrate. All error bars, 6SD. ** p,0.01; *** p,0.001 and n = 3. (G) HIF-1a is not stabilized following POLGdn induction. Protein
level of HIF-1a in cells at the indicated time points after POLGdn induction was assayed by Western blot analysis. Tet/off cells with 2% oxygen were
used as positive control. b-actin was used as a loading control.
doi:10.1371/journal.pbio.1001326.g005
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Figure 6. Cancer cells with loss of p53 and compromised mitochondrial respiration exhibit increased NOX and are sensitive to NOX
inhibition. (A) Comparison of membrane-associated NOX activity in human colon cancer HCT116 cells with wild-type p53 (p53+/+) or complete loss
of p53 (p532/2). Error bars, 6SD. * p,0.05 (n = 3). (B) Increased gene expression of NOX components NOX1 and p67phox in HCT116 p532/2 cells
detected by qRT-PCR assay. Error bars, 6SD. * p,0.05; ** p,0.01 (n = 3). (C) Comparison of cell morphology and cell growth in HCT116 p53+/+ and
HCT116 p532/2 cells treated with the NOX inhibitor DPI (10 mM, 24 h). (D) Inhibition of NOX by DPI (10 mM, 24 h) preferentially induced loss of
mitochondrial transmembrane potential in HCT116 p532/2 cells.
doi:10.1371/journal.pbio.1001326.g006
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Figure 7. Elevation of NOX in Ras transformed cells and in primary pancreatic cancer tissues. (A) Increase of NOX activity in T-Rex 293
Tet/on cells with 1 mo K-rasG12V induction compared with control. Error bars, 6SD. ** p,0.01 (n = 3). (B) NOX activity was substantially elevated in
pancreatic K-rasG12V stably transformed HPDE-kRasG12V cells compared with the parental HPDE (human pancreatic ductal epithelial) cells. Error bars,
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chemiluminescent signal (photon emission) was measured using a

Turner 20/20 luminometer (Turner Designs, Sunnyvale, CA). No

activity could be measured in the absence of NADH or NADPH.

Experiments were also performed with the following pharmaco-

logic inhibitors: a flavoprotein inhibitor DPI, a NOS inhibitor L-

NAME, a mitochondrial respiratory chain complex I inhibitor

rotenone, or a xanthine oxidase inhibitor oxypurinol.

Superoxide dismutase 1 (SOD1) activity was assayed using a

SOD assay kit (Cayman Chemicals) per the manufacturer’s

instructions. Briefly, cells were collected by centrifugation at

1,0006g for 10 min at 4uC, lysed, and centrifuged at 1,5006g for

5 min at 4uC. Cytosolic fraction containing SOD1 was obtained

from further centrifugation at 10,0006 g for 15 min.

NAD+ and NADH Measurement
Intracellular NAD+ and NADH were quantified by HPLC as

described previously [38] with some modifications. Briefly, after

trypsinization, 66106 cells were suspended in DMEM medium

without FBS and collected by centrifugation at 1,400 rpm for

5 min. Cells were then shock-frozen with liquid-nitrogen. The

cell pellets were resuspended in 150 ml extraction buffer

containing 7 volumes of ethanol and 3 volumes of 10 mM

potassium phosphate buffer, pH 8.5. The cells were disrupted

by sonication and then kept at room temperature for 30 min to

release cellular contents. Lysates were cleared by centrifugation

at 13,000 rpm at 4uC for 15 min. 100 ml of the supernatant

were subjected to HPLC analysis using an anion-exchange

column (Partisil-10 SAX, Whatman) at a flow rate of 1 ml/min

from 100% buffer A (5 mM NaH2PO4, pH 4.0) to 100% buffer

B (250 mM NAH2PO4+0.5 M NaCl, pH 4.75) over 20 min,

followed by another 5 min isocratic 100% buffer A. Pure NAD+

and NADH were used as reference standards and for

quantitative calibration. NAD+ and NADH were detected by

UV absorbance at 260 nm and 340 nm with retention times of

8.9 min and 15.4 min, respectively. The peaks corresponding

NAD+ and NADH were collected according to the standards’

retention time, freeze-dried in a lyophilizor, and further

confirmed by MALDI-MS analysis (Bruker Daltonics). In HPLC

analysis, the amount of cellular NAD+ and NADH of each

sample was quantified based on the peak area compared to the

standard curve generated by NAD+ and NADH standards.

Analysis of p22phox Expression in Pancreatic Tissues on
Microarray

Immunohistochemical staining for p22phox was performed

on 4-mm unstained sections from the tissue microarray blocks

consisting of 105 stage II pancreatic ductal carcinoma and

their paired non-neoplastic pancreatic tissue samples from

patients who underwent pancreaticoduodenetomy at our

institution. The use of clinical specimens for tissue array study

was approved by the Institutional Review Board of MD

Anderson Cancer Center. To retrieve the antigenicity, the

tissue sections were treated at 100uC in a steamer containing

10 mmol citrate buffer (pH, 6.0) for 60 min. The sections were

then immersed in methanol containing 0.3% hydrogen

peroxidase for 20 min to block the endogenous peroxidase

activity and were incubated in 2.5% blocking serum to reduce

nonspecific binding. The sections were then incubated with a

rabbit polyclonal antibody against p22phox (Santa Cruz, 1:100

dilution) at 4uC overnight, washed, and then incubated with

secondary antibody at room temperature for 60 min. Standard

avidin-biotin immunohistochemical analysis of the sections

was done according to the manufacturer’s recommendations

(Vector Laboratories, Burlingame, CA) and photographed

using a digital camera attached to the microscope. The

staining results were evaluated by a gastrointestinal patholo-

gist. Since all the pancreatic cancer samples showed either

negative or diffuse staining for p22phox, the levels of p22phox

expression were graded based on the staining intensity as

negative (0), weak (1), moderate (2), and strong (3). P22phox

expression was categorized as p22phox-low (intensity score of 0

or 1) or p22phox-high (intensity score of 2 or 3).

Assay of in vivo Antitumor Activity of NOX Inhibition by
p22phox-shRNA

The experiments with mouse xenografts were carried out

according to the protocols approved by the Institutional Animal

Care and Use Committee (IACUC) of the University of Texas

MD Anderson Cancer Center. Each side of the seven 10-wk-old

athymic nude mice received a subcutaneous injection of 56106

Panc-1 cells bearing p22phox-shRNA (p22phox-shRNA, left flank)

or control shRNA (c-shRNA, right flank). Tumor size and body

weight were measured throughout the experiment. Moribund

animals were sacrificed as mandated by the IACUC protocol, and

the tumor weight was recorded. Tumor volume was calculated

using the equation: tumor volume (mm3) = L * W *(L+W)/2 *

0.526.

Statistical Analyses
The Kolmogorov-Smirnov test (Cell Quest Pro software,

Becton-Dickinson, San Jose, CA, USA) was used to evaluate the

significant difference between control and test samples in flow

cytometry analysis. For comparison of the statistical differences

of more than two groups, one-way ANOVA and Newman-

Keul’s multiple comparison test was used. All other statistical

significant difference analyses were evaluated using Student’s t

test (Prism GraphPad, San Diego, CA). Statistical differences

between p22phox expression in benign and malignant pancre-

atic tissue groups on microarray were evaluated by Fisher’s

exact test. A p value of less than 0.05 was considered statistically

significant.

6SD. * p,0.05 (n = 3). (C) Increased protein level of p22phox in HPDE-K-rasG12V cells and primary pancreatic cancer cells Aspc1 and Panc-1 compared
to HPDE cells. (D) Increased NOX activity in the H-RASV12-transformed (T72Ras) cells compared to normal ovarian epithelial cells (T72). Error bars, 6SD.
** p,0.01 (n = 3). (E) Increased gene expression of NOX components (NOX1, NOX2, NOXA1, p22phox, and p47phox) in the H-RASV12-transformed
T72Ras cells when compared to the parental T72 cells. Expression of mRNA was measured by qRT-PCR analysis. Error bars, 6SD. * p,0.05; ** p,0.01
(n = 3). (F) Preferential disruption of mitochondrial transmembrane potential by DPI (3–10 mM, 20 h) in H-RASV12-transformed T72Ras cells compared
with the parental T72 cells. Mitochondrial transmembrane potential was measured by flow cytometry using rhodamine-123 as a probe. (G)
Representative tissue staining showing no expression of p22phox protein in normal pancreas (a, single arrow, normal pancreatic duct; double arrows,
islet cells) and chronic pancreatitis (b, arrows, benign pancreatic ducts), and a moderately differentiated pancreatic ductal carcinoma (c) and strong
positive staining in a moderately differentiated pancreatic ductal carcinoma (d). The strong positive staining in the inflammatory cells served as
internal positive controls for our immunohistochemical stain (original magnification, 2006). Expression of p22phox in stage II pancreatic ductal
carcinoma (PDC) and benign pancreatic tissue on microarray. p22phox expression is considered to be significantly different between PDC and benign
group and higher in PDC group (p,0.0001 analyzed by Fisher’s exact test).
doi:10.1371/journal.pbio.1001326.g007
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Supporting Information

Figure S1 Figure S1 is related to Figure 4. (A) Comparison of

mRNA expression of NOX family genes in Tet/off and Tet/on

(day 8) cells, measured by semi-quantitative RT-PCR analysis.

(B) Increase in NOXA1 and p47phox mRNA expression in the

Tet/on cells, measured by semi-quantitative RT-PCR at the

indicated time points after POLGdn expression. (C) Compar-

ison of cell proliferation and morphology in cells with or without

mitochondrial defect induced by POLGdn (Tet/on or Tet/off

cells) treated with the NOX inhibitor DPI. The POLGdn-

inducible T-Rex 293 cells were pre-incubated with or without

doxycycline for 8 d and then treated with the indicated

concentrations of DPI for 24 h. Cell density (as an indication

of proliferation) and morphology were examined under a

microscope.

(TIF)

Figure S2 Figure S2 is related to Figure 5. (A–B) siRNA

knockdown of the NOX1 and p22phox in Tet/off or Tet/on cells

(at day 4), respectively. Cells were transfected with siRNAs against

NOX1, p22phox, or scramble RNA (SC) for 96 h. Knockdown

efficiency was evaluated by qRT-PCR. (C–D) Mass spectrometry

confirmation of NADH and NAD+ peaks from HPLC analysis.

(C) Identification of NADH eluted at 15–15.5 min from SAX

column in multiple salt forms. (D) Identification of NAD+
corresponding to the NAD+ peak eluted at 8.5–9.0 min. (E–G)

Detection of cellular O2
2, mitochondrial O2

2, and cellular H2O2

in p22phox siRNA transfected Tet/on (d4) cells. Tet/off cells were

used as control.

(TIF)

Figure S3 Figure S3 is related to Figure 6. (A) Increased

expression of NOX components NOX1, NOX5, and p67phox

in HCT116 p532/2 cells detected by semi-quantitative RT-

PCR assay. (B) HCT116 p532/2 and HCT116 p53+/+ cells

were seeded in six-well plates. Cells were cultured to

subconfluent and then treated with 30 mM DPI for 42 h

followed by annexin-V/PI double staining and flow cytometer

analysis. The number in each panel indicates percentage of

death cells. (C) H1299 cells were stably transfected with p53wt-

pcDNA3.1/zeocin plasmid. p53wt expression in H1299 was

confirmed by Western blot using anti-p53 antibody. (D)

Comparison of membrane-associated NOX activity in H1299

cells and p53wt stably transfected H1299 cells (H1299-p53wt).

Error bars, 6SD. *** p,0.001 (n = 3).

(TIF)

Figure S4 Figure S4 is related to Figure 7. (A) Real-time PCR

revealed that mRNA expression of NOX2 and NOXA1 were

upregulated after induction of K-Ras in T-Rex 293 cells. (B)

NOX2 and NOXA1 expression were also upregulated in K-ras

transformed pancreatic ductal epithelial cells (HPDE). Data are

shown as mean 6 SD of triplicate samples from two independent

experiments. p,0.0001 compared to cells without K-ras induc-

tion. (C) Increased expression of NOX components NOX1,

NOX2, p22phox, NOXA1, and p47phox in T72Ras cells detected

by semi-quantitative RT-PCR assay.

(TIF)

Figure S5 Figure S5 is related to Figure 8. Ten 9-wk-old nude

mice were inoculated subcutaneously with Panc-1 cells (56106/

0.15 ml/mouse) and randomly divided into two groups (five mice

each). After tumor formation (about 100 mm3), the treatment

group received DPI (1.5 mg/kg mouse, i.p.) 5 times per week. The

control group received an equal volume of PBS control. The mice

were monitored for tumor growth and body weight throughout the

experiment. (A) The body weights of the nude mice were

measured during the drug treatment to estimate toxicity. Error

bars, 6SEM (n = 5). (B) The tumor sizes were measured

throughout the experiment to evaluate DPI effect. Data represent

tumor volume: mm36SEM (n = 5). (C) Photographs of nude mice

bearing Panc-1 xenografts on day 65 of DPI treatment (one mouse

from each group was sacrificed 2 d before). PBS treatment was

used as control. (D) Tumor weight derived from control and DPI

treated mice on day 65 after DPI treatment was measured. Error

bars, 6SEM. p,0.01 and n = 5.

(TIF)

Text S1 Supplemental materials and methods and supplemental

references.

(DOC)
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Figure 8. Inhibition of pancreatic tumor growth by NOX inhibition. (A) Decrease of NOX activity by stable shRNA knockdown of
p22phox (p22phox-shRNA) in Panc-1 cells, but not in cells with control shRNA (c-shRNA) knockdown. *** p,0.001 (n = 3). Insert, Panc-1 cells
were infected with p22phox-shRNA lentiviral particles, and the knockdown efficiency was detected by anti-p22phox antibody using Western
blot. Non-targeting control shRNA lentiviral particles (c-shRNA) were used as negative control. (B) p22phox knockdown significantly decreased
Panc-1 cell growth. 16105 cells were seed to six-well plates. Cell numbers were counted using Z2 coulter counter (Beckman Coulter) during 6 d
of culture. (C) p22phox knockdown significantly suppressed colony formation of Panc-1 cells. 16104 cells were seed in 0.35% of the soft agar
and assayed for colony formation after 2 wk. The numbers of colonies formed on soft agar were counted. Error bars, 6SD. *** p,0.001 (n = 3).
(D) p22phox knockdown decreased glucose uptake in Panc-1 cells. Cells (16106) were incubated in 5 ml glucose-free DMEM medium for 4 h,
followed by incubation with 0.2 mCi/mL 3H-2-deoxyglucose for 1 h. Cellular uptake of 3H-2-deoxyglucose was determined by liquid scintillation
counting after the cells were washed 2 times with PBS and normalized by cell number. Error bars, 6SD. * p,0.05 (n = 3). (E) p22phox
knockdown decreased lactate generation in Panc-1 cells. Lactate was measured 24 h after changing to fresh culture medium and normalized
by cell number. Error bars, 6SD. ** p,0.01 (n = 3). (F–I) Each side of athymic nude mice (n = 7) received subcutaneously injections of 56106

Panc-1 cells bearing p22phox-shRNA (left flank) or c-shRNA (right flank). The mice were monitored for tumor growth and body weight
throughout the experiment. All the mice were sacrificed when tumor size reached about 10% of body weight as mandated by the IACUC
protocol. Tumor volume was calculated using the following equation: tumor volume (mm3) = L * W *(L+W)/2 * 0.526. (F) The tumor sizes were
measured throughout the experiment to evaluate p22phox knockdown effect. Data represent tumor volume: mm36SEM. *** p,0.001 (n = 7).
(G) Photographs of athymic nude mice bearing p22phox-shRNA (left flank) or c-shRNA (right flank) xenografts. (H) Photograph and comparison
of excised tumor size. (I) Tumor weight derived from p22phox-shRNA knockdown or c-shRNA knockdown was measured. Error bars, 6SEM.
p,0.05 (n = 7).
doi:10.1371/journal.pbio.1001326.g008
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