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Abstract

The mammalian circadian clock uses interlocked negative feedback loops in which the heterodimeric basic helix-loop-helix
transcription factor BMAL1/CLOCK is a master regulator. While there is prominent control of liver functions by the circadian
clock, the detailed links between circadian regulators and downstream targets are poorly known. Using chromatin
immunoprecipitation combined with deep sequencing we obtained a time-resolved and genome-wide map of BMAL1
binding in mouse liver, which allowed us to identify over 2,000 binding sites, with peak binding narrowly centered around
Zeitgeber time 6. Annotation of BMAL1 targets confirms carbohydrate and lipid metabolism as the major output of the
circadian clock in mouse liver. Moreover, transcription regulators are largely overrepresented, several of which also exhibit
circadian activity. Genes of the core circadian oscillator stand out as strongly bound, often at promoter and distal sites.
Genomic sequence analysis of the sites identified E-boxes and tandem E1-E2 consensus elements. Electromobility shift
assays showed that E1-E2 sites are bound by a dimer of BMAL1/CLOCK heterodimers with a spacing-dependent cooperative
interaction, a finding that was further validated in transactivation assays. BMAL1 target genes showed cyclic mRNA
expression profiles with a phase distribution centered at Zeitgeber time 10. Importantly, sites with E1-E2 elements showed
tighter phases both in binding and mRNA accumulation. Finally, analyzing the temporal profiles of BMAL1 binding,
precursor mRNA and mature mRNA levels showed how transcriptional and post-transcriptional regulation contribute
differentially to circadian expression phase. Together, our analysis of a dynamic protein-DNA interactome uncovered how
genes of the core circadian oscillator crosstalk and drive phase-specific circadian output programs in a complex tissue.
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Introduction

Circadian clocks provide higher organisms with cell-autono-
mous and organ-based metronomes that control temporally gated
and tissue-specific gene expression or metabolic programs [1—4].
In the liver, such programs have been implicated in detoxification
[5], glucose homeostasis [6,7], cholesterol biosynthesis [8,9], and
gating of the cell cycle [10,11]. The mammalian clock depends on
a cell-autonomous [11] core oscillator that is built around

interlocked transcriptional feedback loops. These use a variety of

transcriptional regulators: the basic helix-loop-helix (b HLH) PAS
domain proteins CLOCK, NPAS2, and BMALI [12,13], orphan
nuclear receptors of the REV-ERB [14] and ROR families [15],
and the DEC bHLH repressors [16]. In addition, important co-
regulators such as PER and CRY proteins mediate negative
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teedback by repressing their own transcriptional activators,
BMAL1/CLOCK [17-20]. Among all these regulators, the Bmall
gene is the only single gene in the circadian network whose
knockout results in arrhythmicity [21,22]. BMALI functions as a
heterodimeric complex, BMAL1/CLOCK, that activates tran-
scription of its targets via E-boxes [12,23,24]. The DNA-binding
activity of BMALI/CLOCK is thought to cycle because of
circadian changes in post-translational modifications [25,26]. The
core oscillator exerts its function by controlling temporally gated
outputs, notably metabolic functions [5,7,27]. Transcriptional
regulation of circadian output is known to occur both directly via
the core clock transcription factors and indirectly, as, for example,
via the PAR-bZip regulators DBP/TEF/HLF, which are
themselves controlled by BMAL1/CLOCK [28]. Thus, circadian
output function is controlled via a hierarchical network of
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Author Summary

The circadian clock is a timing system that allows
organisms to keep behavioral, physiological, and cellular
rhythms in resonance with daily environmental cycles. In
mammals, such clocks use transcriptional regulatory loops
in which the heterodimeric transcription factor BMAL1/
CLOCK plays a central role. While defects in circadian clock
function have been associated with diabetes, obesity, and
cancer, the molecular links between the circadian clock
and such output pathways are poorly characterized. Here,
we mapped DNA-binding sites of BMAL1 in mouse liver
during one circadian cycle. Our temporal analysis revealed
widespread daily rhythms in DNA binding, with maximum
levels peaking at midday. In the list of candidates, core
circadian genes stood out as the most strongly bound,
often showing multiple binding sites. Interestingly, BMAL1
targets were highly enriched in genes involved in
carbohydrate and lipid metabolism, and also in transcrip-
tion factors, in particular nuclear receptors. Our results
suggest that the mammalian clock uses BMALT1 to control
transcriptional output programs both directly and indi-
rectly. Additionally, the DNA specificity of BMAL1 binding
revealed the importance of tandem E-box elements, which
may favor strong binding and precise timing of daily gene
expression. Taken together, our work confirms BMAL1's
primary function as a master regulator of the core
circadian oscillator, while demonstrating that it also
contributes in a more distributed fashion to a variety of
output programs.

transcription regulators that drives vast programs of tissue-specific
gene expression both in the suprachiasmatic nucleus [29] and in
peripheral tissues [29-34] in the mouse. Notably, these transcript
rhythms cover the full range of expression phases, which thus begs
the question about the mechanism behind phase-specific circadian
gene expression. It has been proposed that virtually any peak
expression phase can be achieved by suitably tuned regulatory
sequences that integrate a small number of phase-specific core
regulators [35]. Here we investigate the degree to which BMALI
recruitment to the genomic DNA is itself rhythmic and to what
extent peak binding carries phase information for downstream
circadian mRNA expression.

To address these questions and further dissect the hierarchical
structure of circadian clock networks, we perform a time series
chromatin immunoprecipitation (ChIP) analysis for the master
clock regulator BMALLI in mouse liver. This allows us to identify a
comprehensive set of direct BMALIL targets in a circadianly
controlled tissue, to model the DNA-binding specificity of BMALI
in vivo, and to determine how tightly the phase of mRNA output
follows rhythmic protein-DNA interactions. Our results reveal the
pervasiveness of circadian protein-DNA interactions in a mam-
malian tissue by showing widespread rhythmic and phase-specific
binding of BMALLI to coding and non-coding genes. This enables
us to characterize the cooperative interactions of BMALL/
CLOCK complexes at tandem E-box elements (E1-E2), and to
emphasize the complexity of circadian phase control that involves
transcriptional and post-transcriptional mechanisms.

Results

BMAL1 Binds Rhythmically to Thousands of Genomic
Regions in Mouse Liver

To obtain a time-resolved and genome-wide map of BMALI
target sites, we performed ChIP in mouse liver at 4-h time intervals
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during one light-dark cycle. Following initial testing of ChIP
efficiency by quantitative PCR (qPCR) (Figure S1), two indepen-
dent BMALI ChIP time courses were subjected to ultra-high-
throughput sequencing to yield about 20 million tags per time
point (Table S1) and were analyzed via a bioinformatics pipeline
that combines existing and novel methods. Briefly, we used the
MACS software [36] to detect regions with enriched BMALI
binding compared to an input chromatin sample (see Materials
and Methods). To efficiently reject spurious signals and accurately
estimate the location of binding sites, we developed a model-based
deconvolution method for ChIP combined with deep sequencing
(ChIP-Seq) data (see Text S1). We identified 2,049 bona fide
BMALI binding sites in mouse liver. Among the top 200 sites,
more than 90% are significantly rhythmic (Fisher test, p<<0.05; see
Materials and Methods), while the proportion drops to 60% for all
sites (1,319 sites) (Figure 1A). Consistent with previously published
results [24,37], the binding phases are sharply distributed around
Zeitgeber time (Z'T) 4 to ZT8 (Figure 1A and 1B), which confirms
BMALI as a highly phase-specific circadian transcription factor.
At peak time, the binding signal (measured in number of unique
tags in a site) spans over one order of magnitude, and sites near
reference clock genes (RCGs) clearly stand out as the most strongly
bound sites (Figure 1C; Text S3), i.e., 26 out of the 41 RCG sites
are among the top 5% binding sites. In addition, RCGs often have
multiple robustly rhythmic binding sites. For example, the Dbp
gene has three sites: at the promoter and in the first and second
introns (Figure 1D), with peak-to-trough amplitudes greater than
10-fold, similar to those measured with qPCR (Figure S1), with
some residual binding at ZT'18 compared to input chromatin. The
three sites clearly overlap with DNase I hypersensitive sites
mapped in [28] and also with evolutionarily conserved regions in
the genome, suggesting that these sites are under purifying
selection. Similarly, Rev-Erbo. shows three strongly rhythmic sites,
two near the promoter and one 8 kb upstream (Figure 1E), which
could be involved in DNA looping with the promoter sites. A vast
majority of RCGs, including the Perl/2, Crp1/2, Decl/2, Rev-Erbf,
Rory, E4bp4, and HIf/ Tef genes, show similarly strong signals
(Figure S2). Moreover, we also find binding sites at recently
identified targets like Gys2 [38], Nampt [39,40], and Weel [10].

BMAL1 Binding Sites Are Enriched in Promoter Regions
and Are Evolutionarily Conserved

To study the location of BMALI binding sites relative to genes,
we annotated each site with the nearest Ensembl transcript,
including coding and non-coding genes. Positioning of BMALI
sites with respect to the Ensembl annotation shows that 40% of the
sites are within 1 kb, and 60% within 10 kb, of an annotated
transcription start site (T'SS) (Figure 2A) (random expectation is
15%, p<<10"'®, binomial test). Viewed on a finer scale, the 40% of
sites within 1 kb of TSSs cluster slightly upstream of TSSs (50—
100 bp upstream), while no similar correlation is observed for the
3’ ends of transcripts (Figure 2B). Compared to genomic
frequencies, BMALL sites are strongly enriched in promoter
regions (£2 kb around T'SS) of coding genes and depleted inside
genes (Figure 2C). To assess whether BMALI might also control
non-coding genes, we considered all transcripts with a binding site
within 10 kb and found that the majority of sites are close to
coding genes (more than 50%), while few are found near RNA
genes or microRNAs (Figure 2D; Text S2). Moreover, we found
that BMAL] binds in accessible and transcriptionally active
chromatin regions, as 83% of the sites are located near genes that
are expressed (defined as expressed above the median in RNA-Seq
liver data [41]; Figure S3A; see Materials and Methods), which
represents a highly significant fraction (p<<10"'?, rank test).
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Figure 1. Time-resolved BMAL1 ChIP-Seq in mouse liver. (A) Top panel: Fraction of rhythmic BMAL1 sites in different subgroups. Sites were
ranked according to binding strength using total number of tags over all the time points. Subgroups include all sites up to the indicated ranking.
Lower panel: Histogram of binding phases peaks between ZT4 and ZT8. (B) Temporal profiles of BMAL1 binding ordered by phase. Only rhythmic
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profiles are plotted (Fisher test, p<<0.05; see Materials and Methods). (C) Histogram of number of tags in BMAL1 binding sites for all sites (black curve)
and a group of RCGs (grey bars), 63% of which (26 out of 41) are above the 95% quantile shown by the vertical dashed line. The RCGs include Per1/2/
3, Cry1/2, Dec1/2, Rev-Erba/B, Rora/y, E4bp4, and HIf/Tef/Dbp, and show 41 binding sites all together. (D) BMAL1 ChIP-Seq data at the Dbp locus
(visualized in the UCSC Genome Browser) show three rhythmic binding sites located at the promoter, in the first intron, and in the second intron.
Notably, these overlap with DNase | hypersensitive sites [28], shown by the black arrows. The panels below show quantifications of BMAL1 binding.
The scale is in number of non-redundant tags per 10 million mapped tags (see Materials and Methods). The PhastCons conservation score measures
phylogenetic conservation among 20 placental mammals [85]. (E) UCSC Genome Browser view of BMAL1 ChIP-Seq data at the Rev-Erba. locus,
showing two circadian binding sites close to its promoter and one upstream (—8 kb) site.

doi:10.1371/journal.pbio.1000595.g001

Phylogenetic analysis showed that the conservation of BMALI
sites increases with the strength of binding (Figure 2E), with the
first 100 sites showing very high conservation (median PhastCons
conservation scores near 1). Importantly, this is not simply a
consequence of strongly bound sites tending to fall near TSSs
(Figure S3B), as all Ensembl TSSs show lower conservation
(Figure 2E). We further assessed conservation levels in both
proximal sites (within 1 kb of an annotated Ensembl TSS) and
distal sites, and found that both categories of sites were
significantly more conserved than control regions (taken 500 bp
downstream of each site), with distal sites showing on average less
conservation than proximal sites (Figure 2F). On the same scale,
sites close to RCGs showed strong conservation among mamma-
lian species.

BMAL1 Sites Are Associated with Carbohydrate and Lipid
Metabolism, Transcriptional Regulation, and Cancer
Pathways

Functional annotation analysis with DAVID [42,43] identified
enriched annotation clusters, the most prominent ones relating
to carbohydrate and lipid metabolism, as well as transcriptional
regulation in general (Table S2). This supports the finding that
glucose metabolism is a major hepatic function directly
controlled by BMALIL [6,7,29,38]. For example, glycolytic
enzymes and transporters that were previously implicated in
the circadian control of glucose homeostasis, e.g., Pkl and Glut2
[7], as well as G6Pase [44], are identified as putative targets. As
the mRINAs of these genes cycle with a phase that is expected
for BMAL1/CLOCK targets, our data argue these key nodes
are direct BMALI targets. Supporting this scenario, loss of
function mutants have shown that BMAL] and CLOCK are
involved in glucose homeostasis [6,45]. Similarly, lipid synthesis,
notably sterol and triglyceride metabolism, is significantly
enriched among BMALI targets, which substantiates the action
of the core clock in these pathways. Interestingly, the most
enriched functional cluster is transcriptional regulation: in total,
82 DNA transcription factors show BMALI binding, including
18 nuclear receptors, all expressed in liver (Table S3; [27]), 15
basic-leucine zipper proteins, 6 bHLH factors, and 10 zinc
fingers (Table S3), indicating a hierarchic organization of
circadian output programs. Notice, though, that only a minority
of theses sites show binding strengths comparable to those of
canonical clock genes. Unexpectedly, the Bmall promoter itself
shows a weak BMALL site, the significance of which is unclear
at this point. More than 30% of these factors show rhythmic
mRNA abundance on expression arrays (Table S3). To assess
whether these factors are also circadianly active, we applied a
bioinformatics analysis that combines known transcription factor
consensus sites with mRNA measurements to infer active
transcription factors [46,47]. This method predicts a transcrip-
tion factor as circadianly active when its putative targets,
identified as those genes showing a conserved consensus binding
site in their promoter, show phase coherent circadian expression
(see Materials and Methods). Out of 22 factors with represented
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consensus sites, this analysis predicted circadian activity for those
binding the DBP/HLF/TEF/E4BP4, REV-ERB/ROR,
HIF1A, PPARo, and BACHI1 consensus motifs (Figure S4),
thus supporting a functional role for cyclic BMALI binding to
the promoters of these regulators. Finally, enrichment of Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathways found
cancer pathways as highly enriched in BMALI targets (DAVID,
$<<0.001; Table S4), notably in components of the cell cycle and
in transforming growth factor beta (TGFp) signaling (Figure S5).
Specifically, we identify previously described [10,11,48-50] and
novel links between the circadian clock and the cell cycle. For
example, the G2-M-transition inhibitor Wee! is a putative target.
Likewise, several cyclins of the GI1-S transition (Cenel, Ccne2,
Cendl, and Cend3) and their partner, cyclin-dependent kinase 4
(Cdk4), are also bound by BMALI. Notably, several of these
genes (e.g., Cend2 and Cene2) show circadian mRINA expression
(Figure S5A). Other important pathways at the threshold of
significance that have been previously linked to circadian
function include the insulin [6,45,51,52] and Pparor [53-53]
signaling pathways (Figure S5).

BMAL1 Sites Are Enriched in E-Boxes and Tandem E1-E2
Elements

Having discussed genomic positioning and functional annota-
tions of BMALTL sites, we aimed at refining current models for the
DNA-binding specificity of BMAL1/CLOCK in vivo. To this end,
we performed de novo motif searches and applied hidden Markov
models (HMMs) to the genomic sequences surrounding the 2,049
binding sites. As expected, a MEME [56] analysis in short
windows of £50 bp around the predicted binding location (see
Materials and Methods) clearly identified E-box signals as the
strongest cis-element (Figure 3A). We also found an Spl motif,
which is consistent with 40% of sites being located near T'SSs [57]
(Figure 2B). In the window considered, we did not identify other
sequences that could indicate the involvement of further co-
factors. On the other hand, a positional analysis of the E-box
sequences indicates that these frequently occur in tandem with a
spacer constraint of six or seven nucleotides (Figure 3B),
reminiscent of the E1-E2 element [58,59]. This configuration
prompted us to train a nucleotide profile using a HMM that
considers both single and variably spaced tandem elements (Figure
S6B), similar to our previous model [58]. As the binding signal
spans more than a decade (Figure 1D), sites bound by BMALI
were weighted using the number of tags at peak binding for the
training of the HMM. The sequence-specific profile converges
toward two E-box elements, with inferred stringencies (cutoffs) that
tolerate about one (E1) and three (E1-E2) mismatches (Figure 3C;
Table S5). The genomic positions of the consensus sequences co-
localize tightly with the predicted centers of the ChIP signals, i.e.,
they are mostly within =25 bp (Figure 3D), which is largely
because of the accuracy of the deconvolution method in localizing
the binding sites. Overall, 13% of all BMALL sites had E1-E2
elements with spacers of 6 bp (7%) or 7 bp (6%), while in RCGs
this fraction represented 29% of the sites, covering 53% of genes
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from the respective sizes of the classes in the genome show that BMAL1 sites are mostly overrepresented in promoters and depleted inside genes.
(D) Number of sites in close proximity (<10 kb) to annotated features, including non-coding RNAs (ncRNAs). These are split in micro RNAs (miRNAs)
and others (long intergenic non-coding RNAs, small nucleolar RNAs, ribosomal RNAs, small nuclear RNAs, and miscellaneous RNAs). Middle column:
fraction of sites from each category; last column: background fraction from the Ensembl annotation. The vast majority of sites (83%) are near genes
expressed in liver (see Materials and Methods). (E) Strong BMAL1 binding correlates with high phylogenetic conservation. Sites are ranked according
to the number of tags at their peak binding, and all Ensembl TSSs are shown as controls. In the window of =50 bp around each site, the maximal
value of the placental mammals PhastCons conservation score is used. PhastCons score ranges from 0 (no conservation) to 1 (perfect conservation).
(F) Mean PhastCons conservation score for three classes of sites: 41 sites in RCGs (defined in Figure 1C), proximal sites (within 1 kb of an annotated
Ensembl feature, 709 sites), and distal sites (1,340 sites). All categories are significantly more conserved than control regions (+500 bp downstream of

each site). ***, p<<1x107, Student’s t test.
doi:10.1371/journal.pbio.1000595.9g002

with at least one E1-E2 site. To investigate the influence of single
and tandem E-boxes for BMALI binding, we divided the BMALI
sites into three classes: sites with no E-box (0), sites with a single
E-box (E1), and sites with E1-E2 elements (E1-E2). We found that
E1-E2 sites have significantly more BMALI tags and more
rhythmic binding profiles than E1 alone or empty sites (Figure 3E).
Moreover, both strongly and weakly bound BMALL sites harbor
significantly more EI1-E2 elements than control regions taken
500 bp downstream of each site (Student’s ¢ test, $p<2.2x107'°;
Figure 3F). In summary, our sequence analysis showed that E1-E2
tandem repeats are overrepresented in BMALL sites and that the
presence of such regulatory sites favors strong binding.

E1-E2 Sites Are Bound Cooperatively by Dimers of
BMAL1/CLOCK Heterodimers

The identified sequence elements prompted us to further
characterize how BMALI complexes interact with DNA at these
sites. We thus performed electromobility shift assays (EMSAs) with
nuclear extracts from mouse livers. Using oligonucleotide probes
from ChIP-Seq sites with E1-E2 sequences in the Dbp promoter, the
Dbp intron 2, and the Per? promoter, we observed three main
protein-DNA complexes, present in all probes (Figure 4A). Super-
shift assays with BMALI and CLOCK antibodies indicate that the
two slowest migrating complexes, hereafter termed 2BC and BC,
contain BMALI and CLOCK (Figure 4B). The supershift assay
results also exclude the possibility of other DNA-binding complexes
mvolving either one but not both. The third and fastest migrating
complex most likely represents other E-box binding bHLH proteins
expressed in liver, such as the abundant protein USF1, as discussed
in [28]. Of the two BMAL1/CLOCK-containing complexes, 2BC
shows stronger binding, which decreases when the spacing between
the E1 and E2 sites increases (Figure 4C). In contrast, BC does not
seem to be affected. This argues for a cooperative interaction
between two BMAL1/CLOCK heterodimers at the E1-E2 sites that
1s reduced and eventually lost when the spacing increases. This is
reflected in the pattern for the 9-bp spacer (sp9), which is comparable
to that of a probe with an intact E1 site and a mutated E2 site (E1-
mE2 probe). Finally, cross-linking protein-DNA complexes in
combination with two-dimensional EMSA confirms that the BC
and 2BC complexes have the same composition, i.e., they both
contain CLOCK and BMALI but no other DNA-binding proteins
(Figure 4D). Taken together, these data indicate a cooperative
binding of two BMAL1/CLOCK heterodimers at E1-E2 elements.

Naturally Spaced E1-E2 Sites Favor Strong Transcriptional
Activation

The data presented so far suggest that E1-E2 sites favor strong
binding in vivo, which could result from cooperative binding of
two BMALI/CLOCK heterodimers at these elements. To
substantiate the hypothesis that E1-E2 sites function as strong

transcriptional enhancers, we performed transactivation assays by
expressing BMALLI/CLOCK heterodimers in 29371 cells and
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measured luciferase reporter constructs driven by wild-type E1-E2
sites from the Dbp intron 2 and Per2 promoter sites, or by mutated
sites with only one E1 site. In both cases, the constructs with only
one El site (termed E1-mE2) show significantly reduced activity
compared to the constructs with intact E1-E2 sites, namely about
50% for the Dbp and 70% for the Per? site (Figure 5A). Consistent
with the EMSA results, reporter constructs with only the E2 site
(mE1-E2 and E2-E2; Figure 5B) show transactivation levels
comparable to background, underlining the importance of the
E1 moiety. However, the E1-E1 construct had an activity similar
to that of E1-E2, indicating that cooperativity can compensate for
weaker binding affinity. When the spacing is increased from seven
to ten nucleotides (sp10; Figure 5A), the activity is reduced to levels
similar to those in E2 mutants (E1-mE2), suggesting that the
interaction between the two BMAL1/CLOCK heterodimers is
reduced when the phasing of the two binding sites is altered.
According to this interpretation we observed that the transactiva-
tion increased again for spacers corresponding to one additional
full helical turn of the DNA, i.e., spacers of 16-17 bp (Figure 5C).
Notably, the intronic BMALI sites in Rev-Erbo. and Rev-Erbf3
harbor a 16-bp El-E2 element. These results thus argue that
tandem EI1-E2 sites play a role in determining the magnitude of
BMALI-dependent transactivation, which parallels our finding
that such elements favor strong BMALI binding in the liver
(Figure 3E).

BMAL1 Targets Show Circadian mRNA Expression Profiles

Our positional analysis of BMALL sites showed that more than
60% are located less than 10 kb from a TSS, which was
emphasized by the strong enrichment of sites in promoter regions
(Figure 2B). To assess whether BMALI binding near coding genes,
i.e., located less than 10 kb from a TSS, is predictive of a circadian
mRNA expression pattern and to determine a possible functional
role for the E1-E2 element, we compared the putative targets with
mRNA expression profiles in liver sampled around the clock [31].
The set of BMALI targets was highly enriched (p<<2x10~ ', two-
sample Wilcoxon test) in circadian mRNA profiles (Figure 6A),
also when we restricted our analysis to liver-specific genes (see
Materials and Methods), excluding the possibility that this would
merely reflect the numerous circadianly expressed transcripts in
liver. Stratifying the analysis according to binding strength, we
found that strong binding is highly predictive of rhythmic mRNA
expression. Namely, for all BMALL sites with a T'SS within 10 kb,
100% of targets robustly cycled among the top 10, 85% among the
top 20, over 50% among the top 100, and 29% in total (Figure 6B).
Consistent with the maximal binding of BMALI around ZT6
(Figure 1A and 1B), the expression phase of the rhythmic targets
peaked around ZT'10 (Figure 6C). Interestingly, the distribution of
expression phases in targets with or without EI1-E2 elements
differed significantly: although targets harboring E1-E2 elements
showed a similar mean phase compared to targets without or with
single E-boxes, these genes showed a tighter mRNA phase
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Figure 3. Genomic sequence preference of BMAL1 binding sites. (A) Overrepresented motifs found using MEME [56]. DNA sequences in the
window of £50 bp around each BMAL1 site were used for the sequence analysis. The enrichment of Sp1 sites reflects the proximity of BMAL1 sites to
TSSs (Figure 2B). (B) Autocorrelation analysis shows that E-box motifs come in tandem, with a spacing of six or seven nucleotides. Grey dashed lines
represent the 95% confidence interval. (C) HMM for the tandem E-box motif (E1-E2 element) converges to one canonical E-box site with threshold at
7.2 bits and a tandem E1-E2 element with threshold at 10.2 bits (Table S5). To train the model, each sequence was given a weight proportional to the
number of BMALT1 tags at peak binding. (D) Distribution of distances from E1-E2 positions to peak centers. The E1-E2 elements are sharply located
around the inferred binding location. (E) Sites with E1-E2 elements have significantly more tags (left) and show more robust rhythmic binding of
BMALT1 (right) than sites without E-boxes (@) or with single E-boxes (E1). ***, p < 5x10~>, Student's t test. (F) BMALT sites are strongly enriched in E1-
E2 instances compared to control regions. Control regions were taken 500 bp downstream of each site.

doi:10.1371/journal.pbio.1000595.g003

dispersion (Rao homogeneity test for circular data [60], p<<0.01),
suggesting a role for the E1-E2 element in controlling the precision
of the circadian expression phase (Figure 6D). However, we did
not observe a significant difference in the mean nor in the

@ PLoS Biology | www.plosbiology.org 7

dispersion between the 6-bp and 7-bp spacer variants of E1-E2.
Therefore, these results suggest that a fair fraction of the BMALI
sites induce rhythmic transcription, and that E1-E2 elements play
a role in the precise temporal expression of BMALI targets.
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Figure 4. E1-E2 tandem sites are bound by dimers of BMAL1/CLOCK heterodimers. (A) EMSA gel analysis with nuclear extract from mouse
livers harvested at the ZT2 time point. Extracts are incubated with oligonucleotides containing the naturally occurring E1-E2 sites in the Dbp
promoter (Dbp-P), Dbp intron 2 (Dbp-12), the Per2 promoter (Per2), and an oligonucleotide with a canonical E-box (E1, CACGTG) and a non-canonical
E-box (E2, AACGTG) spaced by seven nucleotides (sp7). Note: the shifts for the Dbp-I2 and sp7 probes are very similar. (B) Supershifts with anti-CLOCK
and anti-BMAL1 antibodies identify two CLOCK- and BMAL1-containing complexes termed 2BC (heavier) and BC (intermediate weight), plus one
unspecific complex (U, lowest weight). (C) Increased spacing and mutants. The upper 2BC band is reduced as the spacing between the E1 and E2 sites
is increased from 6 bp (sp6) to 9 bp (sp9), the latter showing a pattern that resembles that obtained by mutating the E2-box but leaving E1 intact (E1-
mE2). Mutating the canonical E-box (mE1-E2) strongly suppresses all complexes, while the doubly mutated probe (mE1-mE2) shows no binding. (D)
Two-dimensional EMSA. The ZT2 extracts were incubated with sp7 oligonucleotides prepared with azido-dUTP nucleotides, and separated on a 1D
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EMSA gel (first dimension) (see Materials and Methods). The same three bands are found as in (A-C), and the weaker 2BC band compared to the
regular probes (without the azido nucleotides) reflects reduced affinity following the azido substitutions in the E-box sites. In the second dimension,
the five main spots indicate that the U complex contains one DNA-binding protein (spot 1), while the BC and 2BC complexes show identical DNA-
binding constituents, namely CLOCK (96 kDa, spots 3 and 5) and BMALT1 (70 kDa, spots 2 and 4), as inferred by their approximate molecular mass.

doi:10.1371/journal.pbio.1000595.g004

Transcriptional versus Post-Transcriptional Control of
mRNA Expression

To further study the temporal relationship between rhythmic
BMALI binding, transcription, and mRNA accumulation, we
quantified temporal profiles of pre-mRNA and mRNA for
canonical clock genes showing strongly rhythmic BMALI sites.
Comparing the profiles of BMALI] binding and pre-mRNA
accumulation identified several outcomes: (i) for early genes, Rev-
Erbo, Rev-ErbB, Dbp, Tef, and Dec2, the pre-mRNA closely follows
binding without significant delay, suggesting that transcription
largely depends on BMAL1/CLOCK (Figure 7A); (ii) genes such
as Perl, Per2, and Crp2 show pre-mRNA accumulation levels that

(Figure 7B); (iti) finally, Cryl, Rory, and E4bp4 show pre-mRNA
accumulation profiles that are delayed by about 12 h, indicating
that other regulators are dominant in determining the phase of
transcription (Figure 7C). The mRNA profiles followed pre-
mRNA accumulation with short delays of maximally 4 h (see Dbp,
Tef, and Dec2). We expected that longer lived mRNA transcripts
would show delayed phase and reduced amplitude compared to
pre-mRNA profiles, which was supported by the Gys2, March8, and
Qdpr genes (Figure S7A); proxies for mRNA half-lives from mouse
embryonic stem cells [61] and fibroblasts [62] showed consistency
in these cell types (Figure S7B). To test the prediction that
transcription in early targets depends largely on BMALI, while

additional regulators contribute to the other cases, we compared

are delayed by less than 4 h compared to BMALI binding,
mRNA accumulation for several genes in wild-type and Bmall '~

suggesting that other regulators contribute to transcription
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Figure 5. E1-E2 sites show increased transactivation compared to only E1 sites or E1-E2 sequences with longer spacers. (A) BMALT-
bound E1-E2 sites in the second intron of Dbp (Dbp-12) and at the promoter of Per2 show an increased BMAL1/CLOCK transactivation compared to
either the E2-mutated (E1-mE2) version or the 10-bp spacer version (sp10) (Student’s one-tailed t test, p < 0.05, n=3). Empty vector (Prom[—]) is
shown as a negative control. Wild-type (WT) levels are set to 100%. Error bars represent the standard error of the mean. (B) Mutation in the Dbp-I2
sequence shows that an E1 is needed for robust BMAL1/CLOCK transactivation. The wild-type version was compared to E1 mutated (mE1-E2), both E1
and E2 mutated (mE1-mE2), E2 replaced by E1 (E1-E1), and E1 replaced by E2 (E2-E2). All mutated versions have reduced activity compared to wild-
type (p<<0.005, n=4), with the exception of E1-E1, which shows a level of transactivation similar to that of wild-type. (C) Modifying the spacer length
of the Dbp-12 tandem E-boxes from 4 bp to 20 bp shows a spacer preference at 6-8 bp, but also at 17 bp, which corresponds to a full helical turn of
the DNA. Indeed, sp4, sp10, and sp20 have a significantly reduced activity compared to sp7 (p < 0.01, n=4).
doi:10.1371/journal.pbio.1000595.9005
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Figure 6. mRNA expression profiles of BMAL1 targets. (A) BMAL1 targets are highly enriched for robustly cycling mRNAs. Distribution of
-log10 (p-value) are shown for all genes (black), liver-specific genes (see Materials and Methods) (grey), and BMALT1 targets (red). The vertical dashed
line represents p =0.05. Expression data are from mouse liver light-dark time course data [31]. BMAL1 sites were annotated with the closest protein-
coding transcript in Ensembl within a window of 10 kb. (B) Strong BMAL1 binding is associated with circadian mRNA accumulation. The sites are
ranked according to their strength, and the fraction of robustly circadian mRNA patterns (Fisher test, p <0.05 ; see Materials and Methods) among the
top x sites is shown. This fraction decreases from 100% among the top 10 sites to 29% for all sites, and this proportion is practically unchanged (31%)
if we restrict our analysis to only rhythmic BMALT sites. (C) The distribution of the phase of cytosolic mMRNA expression of targets of BMAL1 peaks at
ZT10-ZT12. (D) BMALT targets with an E1-E2 element show narrower mRNA phase distribution than targets with no or single E-boxes (Rao
homogeneity test for circular data [60], plequality of dispersions] < 0.01). E1-E2-6 and E1-E2-7 represent, respectively, the subgroup of E1-E2 sites
with a spacer of 6 bp and 7 bp.

doi:10.1371/journal.pbio.1000595.g006

animals at both peak (Z16) and trough (ZT18) BMALI activity pre-mRNA  profiles indicate that other circadian regulators

time points (Figure 7D). We found that the expression of the early contribute to transcription. Therefore, additional data for
genes, Rev-Erbo. and Dbp, was strongly suppressed in Bmall ™"~ circadian activators and repressors will be key to further dissecting
mice. Moreover, genes of the intermediate or late types showed the transcriptional logic by which the binding amplitudes and

similar (e.g., Per2) or higher (e.g., Perl, Cryl, Cry2, Rory, and E4bp4) phases of such regulators are integrated at circadian promoters.
levels of expression in Bmall '~ compared to wild-type, indicating

that for these categories, Bmall can act as a repressor, either Discussion

directly [63] or indirectly [15]. Our Bmall ~/~ mRNA data are

consistent with measurements obtained at different time points in Widespread Rhythmic and Phase-Specific Binding of
light-dark time courses [64], and for dark-dark time courses [15]. BMALT1 in Mouse Liver

For Tef, the former data indicate a regulation in between early and Circadian gene expression relies on rhythmic transcription
intermediate types. Taken together, these results show that the mediated by transcription factors, among which is the master
phase of BMALI binding explains temporal accumulation of the regulator BMAL1/CLOCK in mammals. In this study, we
early circadian transcripts. In addition, genes with delayed identify more than 2,000 sites, of which 60% are rhythmically
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Figure 7. Phase relationships between BMAL1 binding, pre-mRNA, and mRNA accumulation. (A-C) BMAL1 binding profiles (filled
symbols, upper panels) in comparison to qPCR measurement on pre-mRNA (open symbols) and mRNA (filled symbols, lower panels). The clock genes
are separated into three groups based on the difference of phase of pre-mRNA expression and BMAL1 binding. The data represent the mean *=
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standard deviation of three experiments. The maximal value was normalized to 1. ZT22 is plotted twice to facilitate visualization. (A) Early targets. Rev-
Erba, Rev-Erbp, Dbp, Tef, and Dec2 pre-mRNA accumulation coincides with the BMAL1 binding profile. (B) Intermediate targets. Per1, Per2, and Cry2
pre-mRNA accumulation is delayed by a few hours relative to the BMAL1 binding profile. (C) Late targets. For Cry1, Rory, and E4bp4, BMAL1 binding
does not predict pre-mRNA accumulation. (D) mRNA expression levels in wild-type (WT) and Bmal1~/~ mice. Expression levels were measured at ZT6
and ZT18. The clock genes are separated into three groups as in (A-C). Early targets are likely to be controlled directly and only by BMAL1 since their
MRNA levels are low both at ZT6 and ZT18 in Bmall~’~ mice. Intermediate and late targets have either intermediate or elevated mRNA levels in

Bmal1™’~ mice, suggesting more complex transcriptional regulation. The data were analyzed as in (A-C).

doi:10.1371/journal.pbio.1000595.g007

bound by BMALI in mouse liver under physiological light-dark
conditions (Figure 1B). As liver tissue is mainly entrained through
circadian signals from the suprachiasmatic nucleus or from feeding
cues, we expect little differences with dark-dark conditions.
Nevertheless, future studies in dark-dark conditions will allow
estimating the changes in BMALI] binding that are strictly
dependent on the core clock. Our results substantiate at the
genome-wide level the model [24,65,66] that rhythmic protein-
DNA interactions in mammals underlie phase-specific circadian
gene expression, which is reminiscent of widespread circadian
binding found for dCLK in Drosophila [67], or the circadian
WHITE COLLAR COMPLEX (WCC) in Neurospora [68].
Importantly, we found that peak BMALI binding is fairly
narrowly centered around ZT6, indicating that it does not
contribute much to flexibility in specifying phase at this regulatory
level. As BMALI can form functional bHLH heterodimers with
CLOCK and NPAS2 [12,13], our data do not distinguish between
targets specific for either partner. In liver, NPAS2 protein is
weakly expressed [69]; however, our EMSA analysis (Figure 4B)
with liver extracts did not indicate that putative BMAL1/NPAS2
complexes bind E-boxes or tandem E1-E2 elements. Similarly the
BMALI paralog BMAL?2, which is very weakly expressed in liver
at the mRNA level [41,70], can form functional BMAL2/
CLOCK dimers [71-73] but those are not recognized by our
antibody, which is highly specific to BMALI (Figure S8).
Interestingly, we find that strongly bound BMALIL sites exhibit
high phylogenetic conservation among placental mammals, which
is even more pronounced in RCGs. As recent studies showed that
CEBPA and HNF4A binding in the liver could be highly species-
specific [74], it would be interesting to compare our results with
BMALI ChIP data from livers in other mammalian species.

CIRCADIAN
DNA-BINDING SO,
\

[t

| CORE OSCILLATOR |

(BIC)

Circadian Clock Genes Are the Strongest BMAL1 Target
Genes

Surprisingly, the distribution of binding strengths showed
relatively few (<<50) sites with binding strengths comparable in
magnitude to those of core circadian genes. This indicates that
BMALI plays a major transcriptional role in the core oscillator,
while the many weaker sites suggest that it controls diverse output
programs in a more distributed fashion. Among the strongest
targets, known circadian genes are indeed largely overrepresented,
and we found that many bona fide regulatory elements for
BMALI1/CLOCK, e.g., those in Dbp [24,62], Per2 [71], and Perl/
2/3 [59,72], were strongly bound by BMALI. Several of those
elements, e.g., in Dbp or Per2, contain previously identified E1-E2
elements [58]. However, this selectivity cannot be explained by
sequence-specific binding alone. Although strongly bound sites are
enriched in E1-E2 consensus sites, we also find sites with such
elements that are bound more weakly (Figure 3E). As the
measured ChIP signal is determined by a combination of
sequence-specific binding, cooperative interaction with co-regula-
tors, and chromatin accessibility, it is difficult to determine what
distinguishes strong from weaker sites. We have just argued that
sequence specificity is only partially informative, and differences in
accessibility are also unlikely, as we showed that 83% of the sites
fall near expressed genes. Thus, it may be that yet uncharacterized
cooperative Interactions with co-regulators, or cooperative inter-
actions between multiple BMALT sites, are primarily responsible
for the strong binding at core circadian genes (Figure 8). One
candidate co-regulator could be the SP1 protein, which was
suggested to bind DNA circadianly [37], and also found as an
enriched cis-element (Figure 3A). Supporting the scenario of
multiple interacting BMALTL sites, we found that circadian genes

/ |

CLOCK OUTPUT |

N Al A

Figure 8. Cooperative interactions drive strong circadian amplitudes: a hypothetical model. BMAL1 rhythmically binds thousands of sites
in liver, with peak binding around ZT6. Among the targets, core oscillator genes stand out as the strongest and often exhibit multiple BMAL1 binding
sites. E1-E2 elements favor strong binding and precise phase-specific gene expression. The many weaker sites are distributed among clock output
programs in liver, notably carbohydrate and lipid metabolism. A hypothesis for the differential binding and circadian amplitude of mRNA outputs
between core oscillator genes and clock outputs is that strong sites use cooperative interactions with other regulators, or between multiple BMAL1
sites.

doi:10.1371/journal.pbio.1000595.g008
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often contain multiple BMALI binding sites (Figure S2), which
could be involved in long-range DNA interactions, as proposed for
the estrogen receptor [73].

Sequence Specificity of BMAL1/CLOCK Complexes

Previous bioinformatics analyses, including our own, identified
evolutionarily conserved E-boxes and E1-E2 sites as putative
BMALI1/CLOCK consensus sites in vertebrates [58,59,76], both
of which were shown to drive rhythmic transcription in luciferase
reporter assays [59,76]. Here we established in vivo that both
simple and tandem E-boxes are characteristic of BMALI target
genes. While the sites comprising E1-E2 elements are overall in the
minority, these sites contain a number of distinguishing features: (i)
more than half of the RCGs have such sites bound in vivo; (ii)
E1-E2 sites are associated with strong and rhythmic binding
(Figure 3E); (it) finally, the comparison with microarray data
indicates that E1-E2 sites show comparably tighter mRNA
expression phases (Figure 6D). Our in vitro experiments show
that BMAL1/CLOCK binding to E1-E2 elements involves a
cooperative and spacing-dependent interaction between the
tandem sites, consistent with the constraint in the spacer length
that was identified computationally [58,59]. Together, our data
argue that single E-boxes in the genomic context are sufficient to
recruit BMAL1/CLOCK heterodimers rhythmically, while E1-E2
elements may play a role in the core clock to ensure precise ticking
of the circadian clock.

Does Circadian BMAL1 Binding Predict the Timing of
mRNA Accumulation?

A central question was to study the relationship between
circadian DNA binding and mRNA expression. Although the
nature of ChIP experiments does not imply that circadian
oscillations in DNA binding necessarily lead to a circadian
modulation of the transcription rates, the body of experiments
and analyses shown here indicate that a large fraction of the
BMALIL sites lead to circadian modulation in transcription. For
instance, a significant fraction of BMALI targets show robustly
circadian mRINA expression, with a peak phase that is delayed by
a few hours compared to peak BMALI binding. Indeed, the
analysis of binding profiles shows that BMALI binding is mainly
restricted to Z'T4-7ZT8, while the phases of mRNA expression are
centered at ZT10-ZT12, with a distribution that is broader than
that of binding (Figure 6C). Analysis of pre-mRNA and mRNA
levels of core clock genes in wild-type and mutant Bmall /=
animals indicated that transcription of genes with early phases (in
phase with  BMALI binding) depended predominantly on
BMALI, while that of delayed genes involved further regulators.
Other regulators that have been implicated in the tuning of
circadian expression phase include the DEC [77] and CRY [66]
repressors. The finding that delayed genes tended to be
upregulated in the knockout condition suggests that BMALLI
could act as a repressor either via direct [63] or indirect
mechanisms [15], as has been previously proposed. While the
genetic data [15] indicate that the delays reflect a primary
regulation by the Rev-Erb/Ror repressor/activator pair, we showed
that these genes nevertheless do have rhythmically bound BMALI
binding sites. Moreover, the timing of mRNA expression can also
be influenced by post-transcriptional mechanisms that regulate the
stability of the transcripts, such as those mediated by microRNA.
In fact, transcript stability affects not only the phase but also the
amplitude of the mRNA accumulation. If the amplitude of the
pre-mRNA is weak already, a long mRNA half-life can cause the
mRNA accumulation to be practically constitutive, as exemplified
by March8 mRNA levels (Figure S7A). For this reason, the fraction
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of cyclic mRNA transcripts among BMALI targets probably
underestimates the fraction of functional sites, i.e., those that drive
rhythmic transcription.

A Hierarchy of BMAL1-Controlled Metabolic Functions
and Gating of the Cell Cycle

The large number of transcriptional regulators among putative
BMALI targets emphasizes the pervasiveness of the circadian
oscillator in liver function and shows the hierarchical control of
circadian output function. Accordingly, circadian transcriptional
regulators controlled by BMALI/CLOCK can transmit their
phase information to downstream targets, a model that is
supported by regression analyses that predict circadian activity
for several of those targets (Figure S4). These findings substantiate
regulatory links that were proposed in previous computational
studies aimed at reconstructing the circadian transcription
regulatory network [78-80]. In our ontology analysis, nuclear
receptors appeared as the most overrepresented annotation
cluster, which may reflect their role in serving as a relay between
the circadian clock and metabolic processes [27,81], as well as in
orchestrating tissue-specific circadian gene expression [30].
BMALLI also appears to directly control specific pathways such
as glucose metabolism (Gys2, Glut2, and Pckl) and triglyceride
metabolism (Insigl/2 and Pnpla2). This dual, direct and indirect,
regulation of circadian output function is emphasized by the
presence of feed-forward loops (FFLs) [82] among targets, and
might be implicated in the control of circadian expression phase.
For mstance, BMALI binds P450 oxydoreductase (Por), which was
previously identified as a DBP/HLF/TEF target [5] with robust
cyclic mRNA expression [7]. Similarly, BMALI binds both Hif7o
and its known target Vegfa (Figure S5A). Interestingly, HIFlel,
which we also predicted to be circadianly active (Figure S4), has
been previously linked to the circadian clock as a CLOCK
interacting protein [83] and in large-scale small interfering RNA
perturbation experiments [47]. A number of studies have
suggested that transcriptional regulation of cell cycle components
by the circadian clock would lead to temporal gating of cell
division [10,11,48-50]. Our data provide a number of additional
links between these processes, in particular for regulators of the
G1-S transition. Therefore, the circadian clock appears to not only
interact with the cell cycle at G2-M [10] but might also influence
entry into S phase.

Conclusions

In conclusion, our circadian time course ChIP analysis showed
that BMALI binds over 2,000 sites in the mouse genome. In
addition, we found highly phase-specific binding patterns, peaking
at ZT6. The distribution of binding strength rapidly decays, i.e.,
we find at most a few dozen sites with magnitudes in the range of
those found at core oscillator genes or PAR-bZip transcription
factors. This strengthens the idea of BMALIL’s primary function as
master regulator of the circadian clock, with weaker contributions
to a variety of output programs. At the genomic sequence level,
strong sites also more frequently harbor highly conserved tandem
E1-E2 sites, and the latter are bound cooperatively by dimers of
BMAL1/CLOCK heterodimers. Genes with such elements also
showed more tightly distributed phases in their mRNA expression.
However, while some genes are principally regulated by BMAL1/
CLOCK, other targets exhibit more complex temporal patterns in
their precursor and mature RNA, hinting at contributions from
further regulators. The large number of transcription factors
among BMALLI targets is reminiscent of the hierarchic organiza-
tion of circadian output pathways in mouse liver. This network
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structure may provide flexibility in the control of tissue-specific
output programs by peripheral oscillators.

Materials and Methods

Animals

Animals were housed under a 12-h light/12-h dark regimen
with food and water available ad libitum. ZTO is defined as the
time when the lights are turned on. Animals were housed for 3 wk
under the indicated photoperiods. The age of the animals was
between 3 and 4 mo. All animal care and handling was performed
according to the State of Geneva’s law for animal protection.

Chromatin Immunoprecipitation

For each time point, livers from two mice were pooled to
prepare chromatin as in [24]. For the BMALI ChIP, a polyclonal
anti-rabbit antibody to a C-terminal peptide was raised and
purified using standard techniques. The specificity of the
antibody for BMALI] was ascertained using SDS-PAGE with
nuclear extract from wild-type and Bmall =/~ animals (Figure
S8); extracts were provided by Frédéric Gachon (University of
Lausanne). Sepharose-protein A beads (GE Healthcare) were
prepared according to manufacturer indications and resuspended
in RIPA buffer (50 mM Tris-HCI [pH 8], 150 mM NaCl, 2 mM
EDTA [pH 8], 1% Triton X-100, 0.5% sodium deoxycholate,
0.1% SDS) supplemented with Roche Complete Protease
Inhibitor Cocktail. Chromatin (250 pl) was pre-cleared by
incubating with 60 ul of bead suspension for 1.5 h at 4°C on
the rotating wheel. Pre-cleared chromatin was then incubated
with 4 pl of BMALL antibody for 5 h at 4°C on the rotating
wheel. Bead suspension (35 pl) was added to each reaction, and
incubation was continued for 3 h at 4°C on the rotating wheel.
Beads were then washed three times with wash buffer (0.1% SDS,
1% Triton X-100, 2 mM EDTA [pH 8], 150 mM NaCl, 20 mM
Tris-HCI [pH 8]) and once with final wash buffer (0.1% SDS,
1% Triton X-100, 2 mM EDTA [pH 8], 500 mM NaCl, 20 mM
Tris-HCI [pH 8]). Co-immunoprecipitated DNA fragments were
eluted from the beads in 120 ul of 1% SDS and 100 mM
NaHCOg3 for 15 min at 30°C and then treated with 1 pl of
RNase A for 1h at 37°C. Co-immunoprecipitated DNA
fragments were incubated overnight at 65°C with Proteinase K
and then purified using Qiaquick PCR Purification Kit (Qiagen).
For real-time PCR quantification, the equivalent of 5 pl of
chromatin of each reaction was used in a 20-pl reaction using the
primers and TagMan probes listed in Table S6, using an ABI
7900HT PCR machine (Applied Biosystems). For Illumina
sequencing, two sets of libraries were prepared with independent
BMALTI ChIP time courses (library A: one time course; library B:
pool of three time courses), and a total of 16 lanes were
sequenced on an Illumina Genome Analyzer 2 machine. To
prepare the input library, samples from the six time points were
pooled at equal amounts, and one lane was sequenced.

ChIP-Seq Data Analysis

At each time point, sequenced DNA reads from both libraries
were pooled and mapped to the mouse genome (Mus musculus
National Center for Biotechnology Information m37 genome
assembly [mm9; July 2007]) using Bowtie [84] with three
mismatches and only one hit allowed on the genome. If several
reads coming from the same library mapped at the same genomic
position and on the same strand (redundant tags), we considered
this as a PCR duplicate and only one read was kept for the rest of
the analysis. The numbers of reads per time point are shown in
Table S1. To normalize for differences in sequencing depth
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among the time points, the number of tags per position in each
BMALIL ChIP-Seq library was rescaled by the total number of
mapped tags in this library, and then for each time point, the
numbers of tags in each library were summed up. The number of
tags in a binding site is expressed as the number of non-
redundant tags per 107 aligned tags, with the best sites in the
range of 200. The list of all sites with their annotations is given in

Text S2.

Peak Identification

At each time point separately, BMALI-bound regions were
detected by MACS [36] with the following parameters: shift =75,
bandwidth = 150, genome size = 2.4 Gb, and the input chromatin
sample as control data; overlapping binding regions were merged.
In each region, a refined estimate of the binding location was
obtained using a deconvolution algorithm that models the
expected distribution of tags on the positive and negative strands
(see Text S1). This was done on a single track in which all tags
from all time points were merged. Local maxima in the
deconvolved signal were used to call binding site positions for
the rest of the analysis. The deconvolution methods also allowed us
to efficiently reject spurious sites, leaving us with a total of 2,049
trustable binding sites. For each binding site, the signal in windows
of =250 bp were quantified for each time point and subjected to
rythmicity analysis.

Binding Site Annotation

Each binding site was annotated with the Ensembl transcript
having the closest TSS using the R package biomaRt. The
Ensembl transcript ID was then used to retrieve further
annotations such as Mouse Genome Informatics symbol, Entrez
Gene ID, and Affymetrix Mouse 430 probe ID. Mouse liver
RNA-Seq data from [41] were used to define the liver
transcriptome (threshold was set at 1.35 reads per kilobase per
million mapped reads, corresponding to the 50" percentile; sce
Figure S3A).

Sequence Analysis

DNA sequences and placental mammals PhastCons conser-
vation scores [85] in windows of %50 bp around the center of
each binding site were retrieved from Ensembl and the UCSC
Genome Browser database, respectively. To analyze correla-
tions in the positions of E-boxes, the sequences for all BMALI
binding sites were scanned with a weight matrix (Figure S6A),
and the resulting likelihood scores were converted to occupan-
cies using a sigmoid transformation with threshold correspond-
ing to one mismatch. The correlation signal was then computed
on the occupancies. The HMM was trained using the sequences
under all BMALLI binding sites, weighted proportionally to the
number of BMALI tags at peak binding, using the model
architecture shown in Figure S6B. To compute the position of
E1-E2 instances with respect to binding sites, we extracted
weight matrices from the trained HMM with spacing ranging
from 6 to 7 bp and scanned windows of £250 bp around each
binding site.

Fourier Analysis and Microarray Data

Time series expression data were from [31] using the plus-
doxycyclin condition, which mimics wild-type light-dark condi-
tions. Liver-expressed genes for these data were defined as having
mean log2 (expression) over the 12 time points greater than 3.5
(Figure S3A). The 24-h Fourier component (F24) and phase were
computed using established methods [86], and the p-value
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associated with 24-h rhythmic expression (also for cyclic binding)
was computed using a Fisher test for one specific period [87] for a
time series at 4-h intervals of even length N

2:Poy

> P

k# 0,8

p=(1—S)%72,Where S= (1)

Inference of Transcription Factor Activities

Times series data as above [31] were combined with position-
specific weight matrices (PSWMs) from the SwissRegulon database
[47] to predict transcription factor activities using a regression
model similar to that in [47]. Briefly, we fitted the following multi-
linear model:

2

Eq=1I+ Z N A +noise
m

where Eg is the mean-centered expression level of the gene g at
time ¢, N, is the number of predicted conserved sites for motif ,
and 4, is the activity of the motif m at time ¢ I, denotes an
intercept. To compute the N, matrix, windows of *2,500 bp
around each Ensembl transcript annotated with an Affymetrix
Mouse 430 probe ID were scored with the corresponding PSWM,
and the likelihoods along the sequence were summed up [46] and
weighted by a factor C*%°, where C stands for the product of the
PhastCons conservation scores in that sequence. Given expression
data F, and the occupancies N, the unknown activities 4,,, are
then inferred using standard least squares regression.

RNA Isolation and Analysis

To quantify pre-mRINA and mRNA levels with real-time RT-
PCR, whole cell RNA was isolated according to [88]. For each
time point, the extracted RNA from four livers was pooled (in each
case two of the four livers were from the animals used for the
chromatin preparation). For the Bmall~’~ samples at ZT6 and
Z'T'18 (provided by Frédéric Gachon), total RNA from two livers
was pooled. Pooled RNA (0.5 ug) was reverse-transcribed using
random hexamers and Superscript reverse transcriptase (Invitro-
gen). The cDNA equivalent to 20 ng of total RNA was PCR-
amplified in an ABI 7900HT PCR machine using the primer and
TagMan probes listed in Table S7. The relative levels of each
RNA were calculated on the basis of 27" and normalized to the
corresponding levels of Gapdh RNA. Each mRINA time course was
normalized by its mean value, and the data shown represent the
mean*standard deviation of three independent time courses.

Electromobility Shift Assays

EMSA and preparation of nuclear extracts were performed as
in [37] with the following modifications. EMSA probes were
prepared by dissolving forward and reverse oligonucleotides (listed
in Table S8) in 100 mM NaCl, annealing them by warming them
to 95°C and letting them cool down to 25°C over the course of
several hours. Annealing oligonucleotides (30 ul, 25 ng/ul) were
incubated with 4 pl of Klenow fill-in buffer, 2 pl of 5 mM dATP/
dGTP/dTTP, 2 ul of 3,000 Ci/mmol 32-dCTP, and 2 ul of 5
U/ul Klenow fragment for 15 min at room temperature.
Radiolabeled probes were then purified using Qiaquick Nucleo-
tide Removal Kit (Qiagen) and resuspended in 15 pl of HyO. For
supershift experiments, 1 pl of purified antibody was added
immediately before the addition of the radioactive probe. The
antibodies used were anti-BMALI and anti-CLOCK from [28].
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Two-dimensional EMSA was performed as in [28] with the
following modification: the protein-DNA complexes were sepa-
rated on a 4% acrylamide gel by electrophoresis (first dimension).

Transactivation Assays

293T cells were cultured in Dulbecco’s Modified Eagle Medium
supplemented with 10% fetal bovine serum (Invitrogen) and 1.5%
streptomycin/penicillin antibiotics (Cellgro) under 5% CO4 at
37°C. Twenty-four hours after seeding at 1.5x10° cells/ml, cells
were transfected using LipofectAMIN 2000 (Invitrogen). At 28 h
after transfection, cells were harvested, and the luciferase activity
was determined by using Dual Luciferase Reporter Assay
(Promega) on a luminometer (EnVision 2104 MultiLabel Reader,
PerkinElmer). Transactivation assays were performed using
1,200 ng of total DNA per well (300 ng of pDEST26-BMALI,
300 ng of pDEST26-CLOCK, 50 ng of different pGL3-Promoter
constructs [firefly luciferase], phRL-SV40 [renilla luciferase]) and
a total of 1,200 ng of pPDEST26-LACZ plasmids. Different E-box
motifs were inserted upstream of the SV40 promoter of pGL3-
Promoter vector (Promega) by using annealed primers (Table S9)
and ligated into KpnlI-Xhol sites.

Data Availability

Illumina sequencing data for the BMALIL ChIP are available at
Gene Expression Omnibus (http://www.ncbinlm.nih.gov/geo/),
accession number GSE26602. Processed BigWig files that can be
visualized on the UCSC Genome Browser as a custom track to
generate graphs such as Figure 1D and 1E are available at http://
circaclock.epfl.ch. The fully annotated (including binding strength)
2,049 sites are provided in Text S2.

Supporting Information

Figure S1 BMAL1 ChIP-qPCR at control loci. Two
positive control loci, the Per/ promoter (A) and the Débp site in
intron 2 (B), show circadian BMALI binding. Fold enrichments
relative to glyceraldehyde 3-phosphate dehydrogenase (Gapdh) are greater
than 100-fold at ZT6 and about 10-fold at Z'T'18.

Found at: doi:10.1371/journal.pbio.1000595.s001 (0.33 MB PDF)

Figure S2 ChIP-Seq time series at circadian reference
genes. Data viewed in the UCSC Genome Browser showing two
BMALIL sites in Cry! (A), two in Cry2 (B), two in Decl (C), four in
Dec2 (D), three in E4bp4 (E), three in HIf (F), five in Perl (G), two in
Per2 (H), one in Rev-Erbf (I), one in Rory (J), and four in Tef (K)
loci. RefSeq annotation and PhastCons placental mammal
conservation score are displayed.

Found at: doi:10.1371/journal.pbio.1000595.s002 (2.60 MB PDF)

Figure S3 Liver RNA-Seq data define the liver-specific
transcriptome, and binding strength depends on dis-
tance to genes. (A) Defining the liver-specific transcriptome
from RNA-Seq data. Number of reads per kilobase per million
mapped reads (RPKM) from RNA-Seq data [41] correlates with
microarray data (normalized with RMA) averaged over time
points from [31]. Liver-expressed genes were defined as genes with
more than 1.35 reads per kilobase per million mapped reads (red
line, 50% percentile). (B) Stronger BMALTI sites are located closer
to TSSs than weaker sites. The sites are binned according to rank,
as in Figure 2E.

Found at: doi:10.1371/journal.pbio.1000595.s003 (0.94 MB PDF)

Figure S4 Inferring transcription factor activities from
linear regression models. Inferred activity profiles (4,,) for
BMALI targets (see Materials and Methods). Microarray data
from [31] were used together with the PSWMs of the
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corresponding transcription factors (SwissRegulon database) to
infer motif activities. Logo of the PSWM is shown above each
profile, and phase of peak activity is indicated. Grey shades
represent the standard errors of the linear regression at each time
point. Only profiles with cyclic activity profiles are shown (Fisher
test, p<<0.05; see Materials and Methods). RRE stands for ROR
response element, D-box is the DBP consensus element, PPARa is
the Pparo binding site, HIF1A is a bHLH regulator, and BACH1 is
a CGNC-bZip leucine zipper protein.

Found at: doi:10.1371/journal.pbio.1000595.s004 (0.50 MB PDF)

Figure S5 BMALI targets in KEGG pathways. (A) BMALLI
targets in the “Pathways in Cancer” KEGG pathway. Targets are
colored according to phase of their mRNA expression in the data
from [31]. The color legend is given in (C). All targets are shown as
red boxes, but only those with well-defined phases (F24>0.2) are
colored. (B) BMALI targets in the insulin signaling pathway. (C)
BMALI targets in the Pparo signaling pathway. These graphs were
generated using KEGG Mapper (http://www.genome.jp/kegg/
tool/ color_pathway.html).

Found at: doi:10.1371/journal.pbio.1000595.s005 (1.31 MB PDF)

Figure S6 Weight matrix and structure of the HMM
used for sequence analysis. (A) Logo of the E-box PSWM
used for autocorrelation analysis. At each position of the PSWM,
the most probable letter has p=0.96875, while the others have
p=0.03125. (B) Structure of the HMM. El and E2 model,
respectively, the collection of hidden states of the first and second
E-box. M states allow for filtering of spurious signal, namely
GTGT repeats. Bl and SP represent, respectively, background
and spacer states. For simplicity, the reverse complement of the
HMM is not shown here.

Found at: doi:10.1371/journal.pbio.1000595.5006 (0.35 MB PDF)

Figure S7 Pre-mRNA and mRNA measurements of
longer lived transcripts. (A) mRNA transcript stability may
explain lag and relative amplitude between pre-mRNA and mRNA
accumulation in the Gys2, March8, and Qdpr transcripts. Experi-
ments were performed as described in Figure 7A—7C. Approximate
half-lives for March and Qdpr are 5.4 h and >10 h, while that for
Gys2 is not available (see [B]). (B) mRNA half-lives from mouse
embryonic stem cells [61] and mouse fibroblasts [62] for the genes
in Figure 7A-7C and (A). When several measurements from the
same cell line were available, we took the mean.

Found at: doi:10.1371/journal.pbio.1000595.s007 (0.51 MB PDF)

Figure S8 The anti-BMALI1 antibody recognizes specif-
ically BMALL. Ponceau staining (A) and Western blot (B and C)
of nuclear extracts (15 ug) from wild-type and Bmall "~ mouse
liver at ZT6. The nuclear extracts were electrophoresed on a 12%
SDS-PAGE gel, transferred onto a nitrocellulose membrane, and
detected using anti-POLII Cter (ab817-100, Abcam) (B) and anti-
BMALI antibodies (C). The sequence of the peptide used for the
immunization is located at the C-terminal of the mouse BMALI
protein: LEADAGLGGPVDFSDLPWPL.

Found at: doi:10.1371/journal.pbhio.1000595.s008
PDF)

(3.48 MB

Table S1 Sequencing data: number of sequenced and
non-redundant tags at each time point.
Found at: doi:10.1371/journal.pbio.1000595.s009 (0.05 MB PDF)

Table $2 Functional annotation clustering of putative
BMALL1 targets using DAVID tools. These annotations link
the sites to the closest gene irrespective of the distance. In total,
1,551 out of 2,049 sites have a functional annotation. For details
regarding the positions and binding strength of these sites, see Text
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S2. For the small clusters, we list the gene symbols in the most
significant subcategory.
Found at: doi:10.1371/journal.pbio.1000595.s010 (0.12 MB PDF)

Table S3 Putative BMAL1 targets with transcription
factor activity (DAVID, GO:003700). Additional columns
mnclude the rank of BMALL binding strength, the p-value for cyclic
mRNA expression (data as in Figure 6; significant values, p<<0.05, are
in bold), and phase of mRNA expression. For the nuclear receptors,
we also indicate results for mRINA expression patterns by real-time
PCR in mouse liver [27]. According to those analyses, all 18 bound
receptors are expressed and 9/18 show circadian accumulation.

Found at: doi:10.1371/journal.pbio.1000595.s011 (0.12 MB PDF)

Table S4 Enriched KEGG pathways identified with
DAVID (p<0.05). The BMALI putative targets in the three
most significant pathways are shown in Figure S5.

Found at: doi:10.1371/journal.pbio.1000595.s012 (0.23 MB PDF)

Table S5 PSWM for the E1-E2 motif. E1 goes from position
1 to 13, position 14 corresponds to the spacer, and E2 goes from
position 15 to 27.

Found at: doi:10.1371/journal.pbio.1000595.5013
PDF)

Table S6 TaqMan probes for ChIP-PCR measure-
ments.

Found at: doi:10.1371/journal.pbio.1000595.s014 (0.04 MB PDF)

(0.05 MB

Table S7 TaqMan probes for mRNA measurements.
Found at: doi:10.1371/journal.pbio.1000595.5015 (0.05 MB PDF)

Table S8 Annealing primers for EMSA.
Found at: doi:10.1371/journal.pbio.1000595.s016 (0.04 MB PDF)

Table S9 Annealing primers for transactivation assays.

Found at: doi:10.1371/journal.pbio.1000595.5017 (0.05 MB
PDF)

Text S1 Supplementary methods.

Found at: doi:10.1371/journal.pbio.1000595.5018 (0.09 MB

PDF)

Text 82 List of all BMALI sites with annotations and
binding strength at each time point.

Found at: doi:10.1371/journal.pbio.1000595.5019 (0.20 MB
TXT)

Text 83 List of BMALI sites near RCGs.

Found at: doi:10.1371/journal.pbio.1000595.020 (0.01 MB
TXT)
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