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Abstract

During embryogenesis, the neural stem cells (NSC) of the developing cerebral cortex are located in the ventricular zone (VZ)
lining the cerebral ventricles. They exhibit apical and basal processes that contact the ventricular surface and the pial
basement membrane, respectively. This unique architecture is important for VZ physical integrity and fate determination of
NSC daughter cells. In addition, the shorter apical process is critical for interkinetic nuclear migration (INM), which enables
VZ cell mitoses at the ventricular surface. Despite their importance, the mechanisms required for NSC adhesion to the
ventricle are poorly understood. We have shown previously that one class of candidate adhesion molecules, laminins, are
present in the ventricular region and that their integrin receptors are expressed by NSC. However, prior studies only
demonstrate a role for their interaction in the attachment of the basal process to the overlying pial basement membrane.
Here we use antibody-blocking and genetic experiments to reveal an additional and novel requirement for laminin/integrin
interactions in apical process adhesion and NSC regulation. Transient abrogation of integrin binding and signalling using
blocking antibodies to specifically target the ventricular region in utero results in abnormal INM and alterations in the
orientation of NSC divisions. We found that these defects were also observed in laminin a2 deficient mice. More detailed
analyses using a multidisciplinary approach to analyse stem cell behaviour by expression of fluorescent transgenes and
multiphoton time-lapse imaging revealed that the transient embryonic disruption of laminin/integrin signalling at the VZ
surface resulted in apical process detachment from the ventricular surface, dystrophic radial glia fibers, and substantial
layering defects in the postnatal neocortex. Collectively, these data reveal novel roles for the laminin/integrin interaction in
anchoring embryonic NSCs to the ventricular surface and maintaining the physical integrity of the neocortical niche, with
even transient perturbations resulting in long-lasting cortical defects.
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Introduction

The cues responsible for maintaining the physical and molecular

architecture of the stem cell niche of the developing mammalian

brain are not well known. In the mammalian neocortex, the radial

glia neural stem cells (NSC) that generate neurons are bipolar and

have a radial morphology that spans the developing neocortical wall

[1,2]. These NSC have their soma located within the ventricular

zone (VZ) adjacent to the ventricle, and their apical and basal

processes make contact with the ventricular surface and the pial

basement membrane, respectively [3,4]. The basal (pial) process is

important for informing the fate of the NSC daughter cells and then

acting as a guidepost for their migration [5–7]. In contrast, the

apical process contains cilia that extend into the ventricle and are

PLoS Biology | www.plosbiology.org 1 August 2009 | Volume 7 | Issue 8 | e1000176



thought to be important for morphogen signalling within the VZ

microenvironment or niche [8,9]. In addition, the apical process is

necessary for the interkinetic nuclear migration (INM), which takes

place during VZ cell proliferation [4,10], and its transection results

in translocation of the NSC soma away from the ventricular surface

[7]. The apical processes of adjacent radial glia cells are attached to

one another via cadherin-based adherens junctions that are Numb

and Numbl-dependant [11,12]. Recent studies have also highlight-

ed the importance of Cdc42 [13], aE-catenin [14], b-catenin

[15,16], and the adenomatous polyposis coli protein (APC) [17] in

the maintenance of this morphology. Deletion of Cdc42 as well as

Numb/Numbl in NSCs disrupts apical adherens junctions resulting

in defects in cell proliferation and disorganized cortical lamination

[12,13]. Likewise, aE-catenin and b-catenin, components of

adherens junctions, regulate NSC cell cycle progression and thereby

cerebral cortical size [14–16,18]. Recently, APC has been shown to

regulate the development and maintenance of the radial glial

scaffold during corticogenesis [17]. However the specific adhesive

molecules required for anchorage of these interconnected apical

processes within the ventricular niche and their impact on

neocortical development have not yet been determined.

The integrin a6b1 heterodimer is expressed at high levels in the

apical regions of NSC [19]. Laminins, which serve as ligands for

integrins in the extracellular matrix (ECM), are also present in the

VZ niche [19], suggesting a possible role of laminins and integrins

in providing these adhesive signals for NSC within the VZ.

However, previous studies examining conditional deletion of b1

integrin in NSC [20] or a62/2 mice [21] did not report

abnormalities of NSC behaviour in the VZ. We reasoned that

this might reflect compensation for the long-term loss of one

integrin by other heterodimer combinations, as has been described

for b subunit integrin mutants in Drosophila midgut development

[22]. To test the potential role of laminin/integrin binding in VZ

maintenance and proliferation, we circumvented this possible

compensation by transiently disrupting b1 integrin/laminin

binding specifically in the VZ using blocking antibodies injected

into the ventricle of the embryonic mouse brain. We also

developed a novel ex vivo multiphoton time lapse imaging method

that enables the effect of targeting of the blocking antibody to the

cortical niche to be seen in real time. Furthermore, we analyzed

VZ cell morphology and proliferation in laminin a2 deficient

embryos. Together, our data demonstrate a novel role for

laminin/integrin binding in the regulation of NSC proliferation

and adhesion within the embryonic VZ, as well as its requirement

to maintain the architecture of the neocortical niche.

Results

Specific Inactivation of b1 Integrin Function at the
Ventricular Surface

While b1 integrin (accession number Swiss Prot P09055, http://

www.ebi.ac.uk/swissprot) has previously been shown to be present in

the VZ of the developing cortex [19,20,23], we confirmed the

expression levels in the neocortical wall on the embryonic days at

which we performed the perturbation studies. At E13.5, there is a

high level of b1 integrin in the VZ, as shown by double labelling with

a mitotic marker of M-phase, phospho histone 3 (PH3, Figure 1A and

1B). The high level of b1 integrin continues into the cortical

subventricular zone (SVZ) as marked by the second layer of PH3+
cells, and b1 integrin is also highly expressed at the pial surface and in

blood vessels (Figure 1A and 1B). Importantly, there are particularly

high levels of b1 integrin on the apical surface of the VZ and on radial

glia apical fibers (as assessed by double labelling with RC2, Figure 1E–

1J). Analysis of the subcellular localization of b1 integrin within the

ventricular processes reveals that this receptor is mainly located

immediately basal to the adherens junctions (Figure S1). At E16, as

large numbers of neurons begin to differentiate in the cortex, the level

of b1 integrin remains high in the VZ/SVZ but decreases in the

neuronal layers (Figure 1C and 1D).

Because b1 integrin is also expressed at the pial surface, where it is

involved in the organization of the cortical marginal zone [20], one

major challenge was to preferentially inactivate b1 signalling only at

the apical surface to determine the particular contribution of b1

integrin in the cellular dynamics that take place in the VZ during

formation of the neocortical wall. To accomplish this, we delivered a

blocking antibody (Ha2/5) [24] into the cerebral ventricle in utero

to specifically block b1 integrin function in cells bordering the

ventricle. To determine the efficacy of this approach, we first

assessed the in vivo dynamics of the antibody by injecting

fluorescently conjugated Ha2/5 into the ventricles of E14 mice in

utero. We observed widespread localization of the antibody within

the VZ and SVZ after 6 h (Figure S2B) and 24 h (unpublished

data). The antibody penetration was confined to apical regions and

did not reach the pial surface. To confirm in vivo that the antibody

inhibited integrin signalling, we evaluated phospho-Akt 1 (p-Akt 1)

levels in the cortex 30 min after injection. p-Akt-1 is known to be

highly expressed in NSC and is a well-recognized downstream

signalling molecule in the integrin pathway [25,26]. Brain lysates

were prepared from E12 and E15 embryos injected either with the

Ha2/5 or with an isotype control (ITC) antibody. Western blotting

revealed a reduced level of p-Akt 1 expression 30 min after injection

(Figure S2C). By 2 h after antibody injection, the differences in p-

Akt 1 levels were absent (unpublished data) demonstrating that the

perturbation of b1 integrin signalling is transient.

b1 Integrin Signalling Disruption at the Ventricular
Surface Leads to Abnormalities of NSC Proliferation

We took advantage of the movements of the NSC soma, which

take place during cell cycle progression, to determine whether b1

integrin signalling affects the positioning of the NSC. Mitosis in the

VZ normally occurs on the ventricular surface, after which the

NSC soma transitions to the abventricular side of the VZ before

entering S-phase (which can be identified by the incorporation of

Author Summary

The developing cerebral cortex contains bipolar neural stem
cells that span the cortical layers between the inner
ventricular surface and the outer pial surface of the
embryonic brain. The nuclei of these cells remain near the
ventricular cavity, a microenvironment or niche thought to
provide vital signals. It is not known how this inner end of the
bipolar stem cell is held in place, or what would happen if its
attachment to the inner surface were lost. Genetic manip-
ulation can be used to disrupt candidate molecules involved
in this adhesion, but this will affect all adhesion points and
complicate the results. We have therefore developed an
approach to target the stem cell attachments specifically at
the ventricular surface by placing blocking antibodies directly
into the ventricles of mouse embryos and then expressing
fluorescent markers in the stem cells to see the effects of
losing this attachment in living tissue. We examined laminins
and integrins, whose expression and properties make them
excellent candidates. Blocking integrin signalling by antibody
application caused the inner end of the stem cells to rapidly
detach and then undergo aberrant cell division. We also
showed that a transient block of integrins (for ,2 hours)
resulted in permanent malformations of the cortical layers
and disrupted neuronal migration.

Integrins Anchor Neocortical Stem Cells
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5-bromo-2-deoxyuridine [BrdU] into the newly synthesized DNA).

This cell cycle-dependent nuclear movement is known as INM

[27]. Injection of 10 ng of the b1 integrin blocking antibody into

the lateral ventricles of E12.5 and E15.5 embryos disrupted this

pattern 18 h after injection, with mitotic PH3+ cells now scattered

throughout the VZ (Figure 2A and 2B). Injection of a higher

concentration of Ha2/5 (100 ng) produced identical results

(unpublished data). Quantitative analysis (Figure 2C and 2D)

revealed a significant increase in the number of PH3+ cells away

from the ventricular surface (nonventricular surface or nVS) in

both E12.5- (Figure 2C; p,0.01, unpaired two-tailed t-test) and

E15.5-injected brains (Figure 2D; p,0.001, unpaired two-tailed t-

test) without any changes seen in the number of PH3+ cells at the

ventricular surface. Due to INM, a short 1 h pulse of BrdU

normally labels cells clustered in S-phase at the abventricular

boundary of the VZ (Figure 2E). Indeed, a maximum labelling

index (calculated by the percentage of BrdU+ cells) was observed

60–70 mm away from the ventricular surface in the embryos

injected with ITC antibodies (Figure 2G). In contrast, perturbation

of b1 integrin signalling shifted the maximum labelling index 80–

110 mm away from the ventricular surface (Figure 2F and 2G;

p,0.05, two-way ANOVA), and also resulted in an overall

increase in the number of BrdU+ cells. Thus in addition to the

PH3+ mitotic cell ectopias, supernumerary S-phase cells were

found in abnormal positions following b1 integrin blockade. To

investigate somal translocation towards the VZ surface (i.e., M-

phase reentry), E15.5-injected embryos were pulsed with BrdU 6 h

prior to sacrifice, allowing the majority of proliferative cells to

transit through S-phase and be on the ventricular surface either in

or approaching mitosis at the time of analysis. In the embryos

injected with the ITC antibody, this nuclear movement was indeed

observed with the highest labelling index occurring in bin 1

nearest the ventricle (Figure 2H). While bin 1 also contained the

highest labelling index in Ha2/5-injected brains, there was a

significant increase in the labelling index of abventricular bins

(bins 7–20) compared to controls. Thus, although continued

ventricular divisions were apparent following blockade of b1

signalling, the abventricular dividing progenitor population was

significantly increased.

To determine whether changes in the SVZ may be related to

the mode of division in the VZ, we analyzed the distribution of

cleavage plane angles. It has previously been shown that the

mitotic spindle undergoes significant rotation during metaphase

[28–30], leading to changes in the cleavage orientation of mitotic

figures, which may be an indication of cell fate [29–33]. In

addition, b1 integrin signalling has previously been shown to affect

mitotic spindle formation in Chinese Hamster Ovary (CHO) cells

in vitro [34]. We therefore assessed the orientation of cell divisions

in the VZ 18 h after antibody injection and found that the b1

integrin blocking antibody caused a significant change in the

pattern of cell divisions (Figure 3). In the developing telenceph-

alon, the majority of mitoses occur vertically with cleavage angles

greater than 60 degrees relative to the ventricular surface [30,31],

although a small percentage (15%–20%) can be seen with lower

degrees of cell division (i.e., horizontal divisions). Indeed, this is

what was observed with the ITC-injected embryos 18 h after

antibody injection on E12.5, E13.5, E14.5, and E15.5 at rostral,

medial, and caudal levels of the telencephalon (Figure 3A, 3C–3E).

However, there was a reduction in the amount of (horizontal) cell

divisions with cleavage angles below 60 degrees in the b1 integrin

antibody injected embryos in the medial and caudal regions of the

dorsal telencephalon (Figure 3C–3E). Using a statistical model to

Figure 1. b1 integrin is expressed by radial glia and proliferating cells at the ventricular surface during neurogenesis. (A–J)
Fluorescent micrographs of E13 coronal (A, B, E–J) or E16 sagittal (C, D) sections immunostained as indicated. Both at the rostral (A–C, E–J) and medial
(D) levels, b1 integrin is expressed in PH3+ proliferating cells (A, high magnification B) and radial glia RC2+ cells (E–J) at the apical surface but not in
Tuj1+ neurons (C, D). All scale bars represent 100 mm.
doi:10.1371/journal.pbio.1000176.g001

Integrins Anchor Neocortical Stem Cells
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Figure 2. Cell proliferation is disrupted in the embryonic telencephalon after intraventricular injection of a b1 integrin blocking
antibody. (A, B) Fluorescence micrographs of PH3 expression (green, dapi-counterstained nuclei in blue) after antibody injection at E12.5. Note the
increase in PH3+ cells away from the ventricular surface in the b1 integrin blocking antibody-injected embryos (B), white arrows, compared to
injected controls (A). (C, D) Quantification of PH3+ cells at the ventricular surface (VS) and nonventricular surface (nVS) after antibody injection at
E12.5 (**, p,0.01 as assessed by a paired two-tailed t-test, C) and E15.5 (***, p,0.001, unpaired two-tailed t-test, D). (E, F) Fluorescence micrographs
of BrdU expression (green, dapi-counterstained nuclei in blue) after antibody injection at E12.5, pulsed 1 h prior to sacrifice. Note the increase in the
amount of BrdU+ cells in the telencephalon. (G, H) BrdU labelling index in E12.5- (G) and E15.5- (H) injected embryos pulsed with BrdU 1 h (G) or 6 h
(H) prior to sacrifice. Note the increase in labelling index at 80–110 mm in the b1 integrin blocking antibody embryos, **, p,0.01 for bin 10 and 11,
and *, p,0.05 for bin 12 calculated using Boneferroni post hoc tests. All scale bars represent 50 mm.
doi:10.1371/journal.pbio.1000176.g002
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analyze the distribution of the VZ cleavage angles throughout

neurogenesis (from E13 to E16), we found that the proportion of

horizontally dividing VZ cells (0–30 degrees) is significantly lower

at the medial and caudal levels of the forebrain after disruption of

b1 signalling (Figure S3A). Interestingly, the effect of blockade of

b1 integrin signalling was not seen in neural precursors located

rostrally (Figures 3C, 3E, and S3). Together, these data indicate

that the ventricular divisions that remain following b1 integrin

blockade exhibit altered cleavage parameters coincident with the

increased number of abventricularly proliferating cells.

Inactivation of b1 Integrin at the Ventricular Surface Does
Not Lead to Premature Differentiation

Our BrdU and cell division studies clearly demonstrate that

disruption of b1 integrin signalling leads to the presence of ectopic

mitotic cells. We considered the possibility that these positioning

defects lead to precocious differentiation. First, we determined the

effects of b1 integrin blockade on the number of intermediate

progenitor cells (IPC), which express the transcription factor T-

brain 2 (Tbr2) [35]. IPC are neuronal progenitors that are

generated from the NSC in the VZ, and which undergo further

rounds of division just outside of the VZ in the SVZ [2,35]. We

found no difference in the number of Tbr2+ cells between ITC

and Ha2/5-injected brains at E13 (Figure S4A–S4D). In addition,

no premature neuronal (b3 tubulin, Figure S4E and S4F) or glial

(NG2, unpublished data) differentiation was detected in the

neocortical wall. Thus, b1 integrin blockade did not lead to

abnormalities in cell differentiation within 18 h, and notably,

although the number of proliferating cells in abventricular

positions was increased, we found no increase in the number of

Tbr2+ IPCs.

Blockade of b1 Integrin Signalling at the Ventricular
Surface Results in VZ Cell Detachment

To determine whether the cell positioning defects following b1

integrin blockade are due to disruption of NSC morphology, we

simultaneously performed electroporation of an RFP-expressing

plasmid (CAG-RFP) with the Ha2/5 antibody injection to

fluorescently label a population of VZ cells at the time of b1

integrin inhibition (Figure 4). We used electroporation parameters

previously shown to transfect only VZ cells [36] and determined

whether cells had detached from the ventricle surface within 18 h

of co-electroporation/injection (Figure 4A and 4B). To do this,

sections were stained with phalloidin to label the actin ring at the

border of the NSC apical membranes so that the apical processes

attached at the ventricular surface could be unambiguously

identified (Figure 4C–4F; further 3-D examples can be seen in

Figure S5 and Video S1). Volumetric reconstructed slices were

created by image analysis and both the numbers of cell soma and

apical processes were counted to generate a soma:process (S:P)

ratio (Figure 4C–4H), and the percentage of apical processes still

attached at the ventricular surface was also determined (Figure 4I

and 4J). There was a significant difference between the two groups

(*, p,0.05, unpaired two-tailed t-test), with ITC-injected embryos

having a lower S:P ratio and a higher percentage of apical

processes in contact with the ventricular surface compared to the

Figure 3. Intraventricular injection of b1 integrin blocking antibody prevents VZ horizontal mitotic cleavages throughout
neurogenesis. (A, B) Micrographs of cells stained with propidium iodide in E14 telencephalon 18 h post ITC (A) or b1 integrin blocking antibody (B)
injection. (C–E) Distribution of mitotic rostral (C), medial (D), and caudal (E) progenitors according to their angle of cleavage in ITC (black symbols) or
b1 integrin blocking antibody (white symbols)-injected forebrains. Boxed regions highlight the paucity of horizontal cleavages (lower than 60
degrees) in Ha2/5-injected embryos. Scale bar represents 15 mm.
doi:10.1371/journal.pbio.1000176.g003

Integrins Anchor Neocortical Stem Cells
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Figure 4. Inhibition of b1 integrin signalling results in NSC detachment. (A–F) Confocal fluorescence micrographs showing the VZ/SVZ of
embryos injected at E15.5 with either an ITC (C, D) or b1 integrin blocking antibody (A, B, E, F) and simultaneously electroporated with CAG-RFP (red)
and stained for phalloidin (green) 18 h later. (A) Note the bipolar morphology of the cell marked with an arrowhead and the dystrophic basal
processes of detached cells (white arrows in A and B). (D, F) White and yellow dots represent soma and apical processes, respectively. (G, H)
Quantification of the ratio of soma to apical processes in the co-injected/electroporated mouse brains at E13.5 (G) or E15.5 (H) and analyzed 18 h
later. (I, J) Quantification of the percentage of apical processes still attached at the ventricular surface in the injected/electroporated brains at E13.5 (I)
or E15.5 (J) and analyzed 18 h later. *, p,0.05; unpaired two-tailed t-test. All scale bars represent 50 mm.
doi:10.1371/journal.pbio.1000176.g004

Integrins Anchor Neocortical Stem Cells
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brains injected with the b1 integrin blocking antibody at both

E13.5 (Figure 4G and 4I) and E15.5 (Figure 4H and 4J). This 3-D

analysis therefore identified a morphometric change in neocortical

VZ cells following Ha2/5 injection, with b1 integrin blockade

resulting in detachment of apical processes from the ventricular

surface as shown in Figure 4A. Furthermore, we also identified

many dystrophic ascending basal processes emanating from the

VZ cells (Figure 4A and 4B) indicating that apical detachment has

widespread morphological effects on VZ cells and may therefore

adversely affect neuronal migration.

To visualize the impact of b1 integrin signalling blockade on VZ

cell morphology in real time, we performed time lapse imaging of

neocortical VZ cell dynamics in living slices following electropo-

ration with farnesylated enhanced green fluorescent protein

(eGFP-F) (Figure 5). To specifically block b1 integrin at the apical

surface without disrupting its function at the pial surface, we

applied a drop of growth factor-reduced matrigel containing the

antibody (b1 integrin blocking or ITC control) inside the lateral

ventricle of the living slices prepared from E14.5 embryos

electroporated 24 h earlier (Figure 5A). Analysis of the diffusion

Figure 5. Time lapse analysis of NSC morphology and detachment after b1 integrin signalling blockade at the VZ surface. (A)
Experimental paradigm of the multiphoton time lapse experiments. Organotypic brain slices were prepared 24 h after in utero electroporation with
eGFP-F DNA into a wild-type E14.5 embryo. A drop of growth factor–reduced matrigel containing either ITC control or b1 blocking antibody was
placed into the lateral ventricle. Automated multipoint scanning using a multiphoton laser (850 nm) was used to simultaneously monitor the
behavior of two electroporated slices containing the drop of matrigel with either b1 blocking or the ITC control antibody. (B, C) Time lapse images of
10h recording of VZ neuroepithelial integrity in the presence of ITC control (B) or b1 blocking (C) antibody. (B) Slices in the presence of ITC antibody
retain bipolar eGFP-F+ cells with straight processes (green arrows) and end-feet attached to the ventricular surface (green arrowheads) throughout
the 10 h of recording. (C) In presence of b1 blocking antibody, the radial morphology of the eGFP-F cells is progressively disrupted; both basal and
apical processes appear convoluted (red arrows) and the end-feet are detached from the ventricular surface (red arrowheads). Scale bar represents
25 mm.
doi:10.1371/journal.pbio.1000176.g005

Integrins Anchor Neocortical Stem Cells
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of b1 integrin blocking antibody-FITC from the drop of matrigel

into the neocortical wall via pixel intensity profiles revealed that b1

integrin blocking antibody is mainly present in the 1/5 of the

neocortical wall next to the ventricle in living slices; this

corresponds to the VZ/SVZ compartment and indicates that, as

with the in utero experiments, the blocking antibody does not

reach the pial surface (Figure S6). This enabled us to monitor the

effect of localized antibody blockade on eGFP-F+ cell morphology

in the slices. After 10 h of contact with the antibody, we noted the

progressive bending of both basal and apical processes (red arrows,

Figure 5C and Video S3) as well as the detachment of apical end-

feet from the ventricular surface (red arrowheads, Figure 5C and

Video S3). In contrast, in the control experiment, NSC apical and

basal processes are unaffected (Figure 5B and Video S2).

Collectively, these data demonstrate that b1 integrin signalling

disruption at the ventricular surface results in a progressive

destabilization of the VZ architecture due to the simultaneous loss

of both NSC bipolar morphology and apical end-feet at the

ventricular surface.

The Neocortex of the Laminin a2 Deficient Mouse
Exhibits Three Phenotypes Similar to Those Seen
Following b1 Integrin Blockade

The laminin a2 chain (accession number Swiss Prot Q60675)

mediates cell adhesion through b1 integrins [37] and is expressed

at the embryonic ventricular surface [19]. Thus, laminin a2 chain-

b1 integrin interactions may be involved in the NSC adhesion at

the ventricular surface during corticogenesis. To test this

possibility, we analyzed cell proliferation and mitotic cleavage

parameters in the VZ of laminin a2 deficient mice (Lna22/2

mice) [38]. As with b1 integrin blockade, more proliferating cells

were present outside the VZ/SVZ after a 1 h BrdU pulse in

Lna22/2 embryos (Figure 6A–6C). Furthermore, the angle of VZ

cell division was also altered in Lna22/2 embryos with the

proportion of horizontal divisions (0–30 degrees) significantly

lower in the medial region of the telencephalon (Figures 6D and

S3B). Using the same experimental paradigms as in the b1 integrin

blockade experiments, we performed in utero electroporation of

the CAG-RFP plasmid in E15.5 Lna22/2 mutant embryos

(Figure 6F) and control wild-type littermates (Figure 6E). We then

quantified the numbers of cell soma and apical processes and

determined both the S:P ratio (Figure 6G) and the percentage of

apical processes (Figure 6H) still in contact with the ventricular

surface. There was a significant difference between the two groups

(*, p,0.05, unpaired two-tailed t-test) with a higher S:P ratio in the

Lna22/2 mutants compared to the controls, consistent with an

apical detachment of electroporated NSC. These results show that

disruptions of either b1 integrin or of a ligand expressed in the VZ

lead to identical alterations in cell position, NSC proliferation,

orientation of cell division, and apical process detachment. These

results with the Lna22/2 mice therefore identify laminin a2 as a

key ligand for the integrins expressed in the VZ and thus provide a

genetic corroboration of our antibody perturbation studies.

Transient Embryonic Disruption of b1 Integrin Signalling
Perturbs Postnatal Cortical Cell Layering

To investigate the long term consequences of b1 integrin

blockade and detachment of VZ cells on neocortical morphogenesis

and layer formation, we utilized the co-electroporation/antibody

injection strategy to mark cells at E15.5 and then allowed cortical

development to proceed until postnatal day (P) 4. We reasoned that

VZ cell detachment may lead to disruption of cortical layering since

the detached NSCs with dystrophic radial fibers that we observed in

the short-term experiments would not generate the proper amount

of committed neurons and would alter the migration route to the

cortical plate. Indeed, we found a reduction in the width of cortical

layers I-V (Figure 7A–7C), as well as in the radial distribution of RFP+

cells in the somato-sensory cortex following b1 integrin antibody

injection (Figure 7D–7F). Interestingly, in keeping with the rostro-

caudal differences in b1 integrin blockade described in Figure 3 spatial

discrepancies were also found in the postnatal cortex of animals

injected with b1 integrin blocking antibody at E15.5; cortical layer

thickness was reduced in somato-sensory but not in the primary motor

cortex, although these results did not reach statistical significance.

These results therefore provide evidence that proper maintenance of

apical process attachment during embryogenesis is critical not only for

INM and NSC proliferation, but also for neuronal migration and

cortical cell layer formation, as a result of which transient disruption of

b1 integrin signalling can have long lasting effects.

Discussion

Integrins and Laminins Provide Adhesive Signals That
Retain NSC within the Neocortical Niche and Maintain Its
Integrity

Using a multidisciplinary approach that includes cellular/

molecular analysis and multiphoton time lapse imaging, we have

revealed a hitherto unsuspected role for b1 integrin during

neocortical development. Previously, b1 integrin has been

suggested to be important for neocortical formation through its

regulation of the radial glial contacts on the pial basement

membrane [20,39]. In our study, we combined in utero

electroporation and injection of a specific blocking antibody to

specifically inactivate the b1 integrin receptor by preventing

binding to its ligand (laminin) at the ventricular surface. Compared

to transgenesis or siRNA knock down, which cause widespread

effects throughout both cell and tissue, this novel approach

resulted in a focused and transient disruption at the subcellular

level that resulted in detachment of the apical processes of many

NSC from the ventricular surface and led to increased numbers of

ectopic proliferating cells as well as perturbations to INM.

Confirming that integrins act at least in part through interactions

with laminins in the neocortical VZ, we found similar abnormal-

ities in the laminin a2-deficient mouse. Together, our data clearly

demonstrate for the first time in vivo, to our knowledge, that

integrin/laminin interactions at the apical VZ surface play a

critical role in the adhesion that maintains the stem cells within

their niche and preserves the architecture of the VZ.

The adhesion of stem cells to their niche is critical for the

molecular programmes that promote maintenance. For example,

altered expression of adhesion-related genes is known to cause

depletion of haematopoietic and epidermal stem cell niches [40,41].

A recent report has also shown that niche-supporting gonad cells in

Drosophila also require integrin signalling to ensure niche integrity

[42]. Although the VZ lacks a basal lamina, which is well recognized

as a principal site of cell/extracellular matrix interactions, we have

shown previously that both laminins (a2, a4, and a2 chains) and

integrins are expressed at the apical surface of the neocortical wall in

the embryonic mouse VZ [19]. Our present observations suggest

that integrin/laminin interactions are necessary to enable the

retention of apical processes seen for at least 5 h after mitosis, and

which may be critical for key cell-cell interactions that instruct

behaviour [6]. So, while no perturbation of cell differentiation

following b1 integrin blockade has been detected in our study,

premature loss of these interactions resulting from apical process

detachment has profound consequences on other aspects of NSC

behaviour, including dysregulated proliferation of the NSC and

altered allocation to the developing cortical plate. Interestingly a
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Figure 6. VZ cell mitotic parameters and apical process attachment are altered in Lna22/2 deficient brains. (A, B) Micrographs of dapi
(blue) and BrdU (green) in E16 telencephalon of wild-type (A) and Lna22/2 (B) littermates after a 1 h BrdU pulse, scale bar, 100 mm. (C) Quantification
of BrdU+ cells in the intermediate zone, outside the VZ/SVZ as marked by white dashed line in micrographs. Statistical analysis using an unpaired
two-tailed t-test revealed a statistically significant difference ***, p,0.001. (D) Distribution of mitotic rostral and medial progenitors according to their
cleavage angle. Boxed regions highlight the paucity of horizontal cleavages (lower than 60 degrees) in Lna22/2 embryos. n = 3 wild-type and four
Lna22/2 embryos from one litter, 6SEM. (E, F) Confocal fluorescence micrographs showing VZ/SVZ of Lna22/2 mutant (F) or wild-type littermates (E)
embryos electroporated at E15.5 with CAG-RFP (red) and stained for phalloidin (green) 18 h later. (G) Quantification of the ratio of soma to apical
processes (n = 2 wild-type and 2 Lna22/2 embryos from one litter, 6SEM). (H) Quantification of the percentage of apical processes still attached at
the ventricular surface (n = 2 wild-type and 2 Lna22/2 embryos from one litter, 6SEM). *, p,0.05; unpaired two-tailed t-test. Scale bars represents
100 mm (A) and 50 mm (E, F).
doi:10.1371/journal.pbio.1000176.g006
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recent investigation of the role of a6b1 integrin in the adhesion of

adult SVZ progenitor cells to endothelial cells using the same in vivo

blocking antibody paradigm demonstrated two similar phenotypes

to those we observed in the embryo—separation of SVZ progenitor

cells from their normal location (adjacent to blood vessels) and

enhanced proliferation [43]. Integrin/laminin interactions may

therefore play similar roles in the regulation of neural stem and

progenitor behaviour in embryonic and adult central nervous

system. Whether blood vessels in the embryonic NSC niche provide

some of these laminins as they do in the adult remains unknown, but

recent studies do suggest a critical role of the developing cortical

vasculature in regulating cortical neurogenesis [44,45] and laminin

a2 is expressed in blood vessels in the embryonic VZ [19]. Further

work to test the hypothesis that laminin/integrin interactions in the

vicinity of blood vessels contribute to the embryonic niche as they do

in the adult is therefore required.

The Laminin/Integrin Interaction Is Also Necessary for
Proper INM and the Orientation of NSC Division

The two other phenotypes we observed after disruption of integrin

signalling in the VZ, the loss of the subset of VZ cells that divide with

horizontal cleavage planes and abnormal cortical layer formation

may not simply be explained by an effect solely on VZ adhesion.

Under normal circumstances, horizontal cleavages are the minority,

and daughter cell fate cannot be predicted solely by the cell division

orientation of its parent cell [31,46,47], because cells undergoing

Figure 7. Inhibition of b1 integrin signalling at E15.5 alters cortical cell layering at P4. Fluorescence micrographs of the P4 telencephalon
stained with Topro-3 after injection of the ITC (A) or b1 (B) integrin blocking antibody at E15. (C) Quantification of cortical layer thickness shows a
significant reduction in the thickness of layers I–V after injection of the b1 integrin blocking antibody (layer I: ITC = 71 mm68, b1 block = 43 mm62, *,
p,0.02; layers II, III, IV: ITC = 214 mm615, b1 block = 142 mm613, *, p,0.004; layer V: ITC = 160 mm610, b1 block = 127 mm612, *, p,0.04; layer VI:
ITC = 190 mm619, b1 block = 142 mm621, p,0.1). Fluorescence micrographs of the P4 telencephalon illustrating CAG-RFP+ cells after injection of the
ITC (D) or b1 (E) integrin blocking antibody at E15.5. (F) Quantification of the thickness of CAG-RFP+ cell layers in primary motor (PM) and somato-
sensory (SS) cortices shows a reduction at the level of the somato-sensory cortex after injection of the b1 integrin blocking antibody (PM:
ITC = 104 mm618, b1 block = 95 mm616, p,0.7; SS: ITC = 143 mm635, b1 block = 93 mm614, p,0.3). n = 2 ITC and 3 b1 integrin blocking antibody-
injected embryonic brains, 6SEM. Statistical analysis was done using an unpaired two-tailed t-test, *, p,0.05. All scale bars represent 50 mm.
doi:10.1371/journal.pbio.1000176.g007
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vertical cleavage during mitosis can give rise to either identical (via

symmetric division) or different (via asymmetric division) daughter

cells [48]. However, several recent studies have suggested an

important link between the precise regulation of mitotic spindle

orientation and the fate of neocortical neural progenitors. In

particular, disruptions of centrosomal proteins such as Aspm [33],

Nde1 [49], doublecortin-like kinase [50], and Cep120 [51], all of

which play crucial roles in mitotic spindle function, affect the neural

progenitor pool size and lead both to alterations in INM [51] and

reductions in cerebral cortical size [49]. Although the link between

mitotic spindle orientation and daughter cell fate is still debated,

several recent studies demonstrate the close relationship between VZ

cell cleavage angle and the location of the resulting daughter cells (i.e.,

ventricular surface versus abventricular location) [46,48; present

study]. While the detailed molecular mechanisms by which the

integrin/laminin interaction influences the NSC cleavage orientation

are still not known, compelling data linking integrin signalling to

spindle assembly have already been reported for Chinese Hamster

Ovary cytokinesis in vitro [34]. Thus our present results extend the

importance of this role by demonstrating that b1 integrin signalling is

required for the regulation of NSC mitotic spindle dynamics for the

cells that normally undergo oblique cleavages during neocortical

neurogenesis in vivo (Figure 8). Furthermore, our data suggest

regional differences in that medial and caudal telencephalic

progenitors are most sensitive to b1 integrin signalling. In keeping

with this, it is interesting to note that human congenital muscular

dystrophy caused by deficiency of the laminin a2 chain has been

associated with significant abnormalities of cortical development in

the occipital but not frontal regions of the telencephalon [52].

Inhibiting the Laminin/Integrin Interaction Leads to
Impaired Corticogenesis

The thinning of the cortical layers that we observed in the

postnatal mouse brain following transient blockade of integrin

signalling in the embryo might reflect the alterations in the plane of

cell division and subsequent effects on neurogenesis, but a key

observation argues against this. We found that the NSC

proliferation and morphological defects occurring after b1 integrin

blockade had long-term consequences on the migration of both the

newly formed neurons as well as those previously generated before

the antibody injection. For example, the deep cortical layers (IV and

V), which contain neurons born before the perturbation on E15.5,

were also thinner than in controls. This deep layer defect is not likely

to be caused solely by a disruption in neurogenesis at midgestation,

since the earlier born neurons would be expected to establish proper

laminar positions. Rather, it points to a phenotype resulting from

the dystrophic radial glia processes we observed in the antibody-

injected tissue, with cells born several days prior to the injection and

still en route to the cortical plate affected by the morphological

changes to the radial glia in the VZ. The most parsimonious

explanation is that the loss of apical adhesion leads to NSC

detachment and shortening and dystrophy of the basal process, and

this in turn perturbs the migration of the cells on these processes.

Supporting this proposed mechanism, several reports have

demonstrated that mechanical forces play an important role in

shaping the developing brain [7,53,54]. The present data suggest

that anchorage of the apical endfeet provides the physical tension

required for maintenance of position and morphology of radial glia

cells during corticogenesis. Thus, our data using short-term blocking

approaches reveal functions not shown by knock-out experiments

and clearly define the novel contribution of integrins to neocortical

development by elucidating a number of key roles in the regulation

of NSC behaviour in the mammalian VZ.

Materials and Methods

Animals
Control ICR mice were produced in the Children’s National

Medical Center (CNMC) animal facility. ICR (CNMC), C57/BL6

(National Institute on Aging, NIA), and laminin a2 deficient mice

(Oregon Health and Science University, OHSU and also SUNY

Stony Brook, NY) were housed under standard conditions with

access to water and food ad libitum on a normal 12 h light/dark

Figure 8. Model depicting the role of b1 integrin in the VZ. Schematic (left) showing the normal VZ with NSC attached at the ventricular
surface undergoing mitosis in a variety of orientations. After b1 integrin blocking antibody injection (right), NSC detach from the ventricular surface
and horizontal cell divisions are no longer present at the ventricular surface.
doi:10.1371/journal.pbio.1000176.g008
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cycle. Genotyping for the laminin a2 deficient mice was performed

as previously described [38].

Tissue Sectioning
6- or 20-mm thick coronal sections from frozen Tissue-Tek

embedded embryonic brains were harvested from three different

levels along the rostro-caudal axis depending on the experiment.

Most of the studies focused on the medial region of the forebrain,

corresponding to E13/E14 plate 4 (for E13 to E14 embryos) or

E15/E16 plate 5 (for E15 to E16 embryos) in the atlas by

Jacobowitz and Abbott (1998). The analysis of the cleavage plane

angle was also performed on the rostral (E13/E14 plate 3; E15/

E16 plate 3) and caudal (E13/E14 plate 5; E15/E16 plate 8)

regions of the embryonic forebrain [55].

Intraventricular Injection/Electroporation
Intraventricular injections were done with approval from the

NIA and CNMC Institutional Animal Care and Use Committees

using methods described previously [36]. Briefly, timed-pregnant

mice (from E12 to E15) were anesthetized with ketamine/xylazine

and a midline laparotomy was performed exposing uterine horns.

The lateral ventricle in the brain of each embryo was visualized

with transillumination and the injections were performed with a

glass capillary pipette (75–125 mm outer diameter with bevelled

tip) driven either by a Sutter micromanipulator (Sutter Instrument

Company) equipped with 20-ml Hamilton gas-tight syringe or a

nitrogen-fed Microinjector (Harvard Apparatus). For integrin

blocking studies, approximately 1 ml of either b1 integrin blocking

antibody (10 ng or 100 ng; Ha2/5, with or without FITC

conjugation, BD Pharmigen) or an ITC antibody (anti-hamster,

BD Pharmigen) solution (combined 3:1 with sterile fast green dye

to enable monitoring of the injection into the cerebral ventricles,

Sigma) was injected alone or mixed with DNA. Two different

plasmid vectors were used: a plasmid encoding red fluorescent

protein under the control of the chicken b actin promoter (CAG-

RFP) and a plasmid expressing eGFP-F (Clontech). For the in

utero electroporation procedure, the anode of a Tweezertrodes

(Genetronics) was placed above the dorsal telencephalon and four

40-V pulses of 50 ms duration were conducted across the uterine

sac. Following intrauterine surgery, the incision site was closed

with sutures (4-0, Ethicon,) and the mouse was allowed to recover

in a clean cage. Mice were humanely killed 8–24 h after the

injection unless indicated otherwise and embryonic brains were

harvested.

Slice Culture and Multiphoton Time Lapse Imaging
Organotypic slices were prepared 24 h after in utero electro-

poration performed on E14.5 brains with an eGFP-F plasmid as

described previously [30,56]. Briefly, 300-mm-thick slices contain-

ing EGFP-F+ cells were collected in ice-cold Complete Hank’s

Balanced Salt Solution using a vibrating microtome (Leica

VT1000S) and transferred into serum-free medium (SFM;

neurobasal medium supplemented with B27, N2 and glutamax;

Invitrogen). After 1 h of recovery, the slices were placed in a 35-

mm glass bottom culture dishes. ITC control or b1 integrin

blocking antibodies were diluted (1:100) in growth factor-reduced

matrigel (BD Biosciences) and a drop (0.5 ml) of this solution

carefully introduced in the ventricular space of the embryonic

brain slices. A slice holder immobilized the slices and 3 ml of SFM

were added. The 35-mm glass bottom culture dishes containing

the slices with matrigel were positioned in a heated micro-

incubation chamber (DH-40i; Warner Instruments). Preheated

SFM was pumped over the slices for the length of the imaging

experiment (usually 10 h), the slice temperature was maintained at

37uC and the imaging preparation was maintained in 5% CO2/

95% air for the entire period. All multiphoton imaging was

performed on a Zeiss LSM 510 Meta NLO system equipped with

an Axiovert 200M microscope (Zeiss) direct coupled to a Mira

900F laser pumped by an 8-W Verdi laser (Coherent Laser

Group). EGFP was excited at 850 nm and time-series experiments

were conducted under oil-immersion with 256 objective. Time-

series images consisted of 40-mm-thick z-stacks and were collected

at multiple locations at 2 min intervals to repetitively record both

b1 integrin blockade and control slices. The experiments were

analyzed with LSM 510 software. For the presentation of videos,

each z-stack was projected onto one optical slice per time period

and the resulting frames were assembled and compressed using

Volocity software (Improvision).

For analysis of the diffusion of the blocking antibody in the

experiments using matrigel to deliver antibodies within organo-

typic slices, these slices were prepared as above. After 10 h of

incubation with the ITC control or FITC-labelled b1 integrin

blocking antibodies in a drop of growth factor-reduced matrigel

placed in the ventricular cavity, slices were fixed in 4% PFA and

nuclei stained with dapi. 20-mm-thick z-stacks were collected and

were analyzed with LSM 510 software. Each neocortical length

was divided in five bins, each representing 20% of the total cortical

thickness. The pixel intensity calculated by the LSM software was

summed for each bin and then averaged and plotted in a graph

(Figure S6).

Image Analysis
20-mm-thick coronal sections were imaged using a Zeiss LSM

510 NLO system direct coupled to an inverted Axiovert 200M

microscope (Zeiss). 256 (DIC, 0.8 na; Zeiss) image stacks (1-mm

intervals) containing the region/cells of interest were collected with

conventional detectors and then analyzed post hoc. For the

orientation of cell division, studies were conducted with a 406oil-

immersion lens (DIC, Plan Neofluar, 1.3 na; Zeiss). Each frame of

the series, consisting of a z-stack of images, was reconstructed in 3-

D using Zeiss LSM software and was then rotated around the y-

axis to bring the edge of the mitotic figures at the VZ surface into

view so that the mitotic spindle plane was parallel to the computer

screen. The angle of the mitotic spindle was then measured by

projecting a line through the spindle to a reference line parallel

with the ventricular surface. This procedure was repeated for each

mitotic figure in each frame from the beginning of metaphase (a

discrete organized metaphase plate) until the beginning of

chromatid separation in anaphase. The spindle angles were then

documented manually and graphed using SigmaPlot software.

The 3-D reconstruction of CAG-RFP cell attachment to the

ventricular surface labelled with phalloidin was performed using

Volocity software (Improvision).

Western Blot Analysis
For integrin signalling validation, half the litter was injected

with the blocking antibody and the other half with the control

antibody for 30 min. Telencephali were isolated by rapid

dissection 30 min after injection and then flash frozen. Total

brain lysates were prepared by resuspending the tissue in cell lysis

buffer. Tissue protein was extracted using T-PER tissue protein

extraction buffer with protease inhibitor cocktail (Sigma) and

protein concentration was determined by the BCA protein assay

kit (Pierce). 50 mg of protein was separated by SDS-PAGE (8%–

12%) and transferred to nitrocellulose membranes. The mem-

branes were blocked in 5% nonfat milk for 1 h at room

temperature, followed by an overnight incubation at 4uC with

antibodies raised against p-Akt1 (BD Pharmigen), total Akt (T-
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AKT, BD Pharmigen), or b-actin (Sigma). Membranes were then

washed and incubated with secondary antibodies for 1 h at room

temperature. Protein bands were visualized using a chemilumi-

nescence detection kit (Amersham Biosciences).

Immunohistochemistry and Staining
Embryonic brains were fixed in 4% paraformaldehyde (PFA) in PBS

overnight at 4uC before being transferred to sequential 20% and 30%

solutions of sucrose (w/v) and left at 4uC overnight or until the brains

equilibrated. The brains were then embedded in TissueTek (Sakura)

prior to cryostat sectioning (Leica CM3050S). For immunofluores-

cence, sections were blocked for a minimum of 30 min in PBS

containing 0.1% Triton X-100 and 10% normal goat serum (Sigma).

Sections were incubated overnight with primary antibodies at 4uC.

After incubation with the appropriate secondary antibodies and

counter-staining with 49,6-diamidino-2-phenylindole dihydrochloride

(Dapi, Sigma) to visualize the DNA, images were acquired using an

Olympus IX50 fluorescence microscope. Images were processed using

MagnaFire and Photoshop 6.0 (Adobe) and adjusted such that the

entire signal was in the dynamic range. The following antibodies were

used for immunofluorescence: anti-b1 integrin (used 1:100 in blocking

buffer), anti-Tbr2 (used 1:200 in blocking buffer following a 5 min boil

in 10 mM sodium citrate, Millipore), anti-RC2 (used 1:5 in blocking

buffer, Developmental Studies Hybridoma Bank), anti-phospho

histone H3 (used 1:500 in blocking buffer, Millipore), anti-BrdU (used

1:5 in BrdU blocking buffer, Accurate Chemicals), anti-b3 tubulin

(used 1:500 in blocking buffer, Sigma). For BrdU staining, the blocking

buffer consisted of DMEM (Sigma) supplemented with 1% tween-20

(Sigma) and 7 mg of DNAse (Sigma) per 1 ml of blocking solution.

The angle of the cleavage plane was determined in cells in anaphase

identified by propidium iodide staining performed on 20-mm-thick

sections from three different levels (rostral, medial, and caudal) of the

forebrain from E13 to E16 embryos. F-actin filaments were visualized

at the ventricular surface using Alexa Fluor 488 phalloidin (165 nM

final concentration, Molecular Probes) by incubation for 1 h after a

prior 5 min incubation in 0.1% Triton X-100 in PBS and 30 min in

10% normal goat serum in PBS for blocking. Nuclear counterstaining

was performed by 10 min incubation at room temperature in

TOPRO-3 iodide (1:100, Molecular Probes).

For the subcellular localization analysis of b1 integrin, first a

postfixation with methanol at 220uC for 10 min was performed

on the cryosections before a blocking step in a solution containing

bovine serum albumin 3% and Tween 0.05% for 1 h at room

temperature (RT). Then, anti-b1-integrin antibody (clone MB1.2

from Chemicon Int., 1/100 dilution) and Alexa Fluor 546 coupled

phalloidin (Molecular Probes, 1/200 dilution) were incubated

overnight in the blocking buffer at RT. Alexa Fluor 488-

conjugated donkey anti-rat antibody (Molecular probes, 1/250

dilution) was incubated for 1 h at RT along with Hoechst for

nuclei staining. Images were captured with a Zeiss confocal using

an oil immersion 636 objective with a zoom of 2. The profile

function of the Zeiss acquisition software was used to determine

the fluorescence intensity of each marker at a defined xy position.

Quantitative Analysis
For PH3 analysis performed 18 h following antibody (ITC or b1

blocking) injection at E12.5, positive cells were calculated from the

average of three sections from five separate embryos from two

litters. For E15.5 injected embryos, positive cells were calculated

from the average of three sections from 11 (ITC) or 17 (b1 integrin

blocking antibody) separate embryos from nine litters. For BrdU

analysis, labelling index was calculated on the basis of three sections

from three embryos from 1 litter for both E12.5 and E15.5 injected

embryos. For Tbr2 expression analysis, a 200 mm6100 mm

(width6height) region adjacent to the ventricular surface was

analyzed and an average was calculated on the basis of three

sections from three embryos from one litter. All statistical analysis

was performed using GraphPad Prism version 4.00 for Windows,

GraphPad Software (www.graphpad.com). The specific statistical

test is indicated in both the text and figure legends.

Apical process quantification was performed on 150-mm

vibrating microtome-cut coronal sections of co-antibody inject-

ed/CAG-RFP electroporated E13.5 and E15.5 brains stained with

phalloidin to label the ventricle surface. 80-mm z-stacks were

collected in 2-mm steps with a 1,02461,024 pixel frame size and

each z-stack was analyzed with LSM examiner (Zeiss) and

Volocity software (Improvision) to determine the number of

RFP+ cell bodies within 200 mm from the ventricle surface and to

determine the number of apical processes attached to the ventricle

(colocalized with the phalloidin staining). Both of these counts

were calculated from the average of three embryos for each

condition. The ratio soma/apical processes (S:P) representing the

total number of cell bodies divided by the number of apical

processes was determined and the results were analyzed by

unpaired two-tailed t-test.

The postnatal phenotype of embryos co-injected/electroporated

at E15.5 was assessed at P4 by determining the thickness of the

individual cortical layers (I, II/III/IV, V, VI as shown in

Figure 7A) and by the radial distribution (i.e., layer specification)

of RFP+ cells in multiple areas at both the primary motor and

somato-sensory cortical levels. The data from two ITC and three

b1 integrin blocking antibody injected animals were analysed by

unpaired two-tailed t-test.

Statistical Modelling
In preparation of performing statistical analysis we checked

assumptions of normality and homogeneity of variance, and found

that the data for the orientation of cell division were not normally

distributed and could not be transformed to achieve acceptable

levels of normality to permit linear regression analysis. Thus, an

ordinal logistic regression model was developed to estimate the

tendency toward having greater angles of cleavage in one group

(b1 integrin blocking antibody injected brains or Lna22/2 brains)

compared to another (controls: ITC injected brains or wild type

littermates from Lna22/2 embryos). To perform these analyses,

angles of cleavage were stratified as, ,30 degrees, 30 to ,60

degrees, and 60–90 degrees. The model, which included covariates

to account for brain region and study group, enabled the study to

estimate and compare differences in the frequency of angle of

cleavage strata in one study group compared to another. The

model adjusted variance estimates to account for the correlation

between repeated measurements on the same embryo.

Supporting Information

Figure S1 b1 integrin is localized basally to adherens
junctions. (A) Colabelling of b1 integrin and actin in E14

neocortical VZ reveals the basal localization of b1 integrin staining

relative to actin-based adherens junctions. The white arrow points

to the apical process (identified by the accumulation of actin

staining at the tip) along which the fluorescence intensity profile

presented in the graph below (B) was determined for each marker.

To facilitate the comparison of b1 integrin positioning relative to

actin, dotted lines were drawn at the peak of staining intensity for

each marker and the actin position taken as the position of

reference. (B) The graph shows that b1 integrin is located more

basally than actin-based adherens junctions.
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Found at: doi:10.1371/journal.pbio.1000176.s001 (8.92 MB TIF)

Figure S2 In utero intraventricular injection of b1
integrin blocking antibody results in specific targeting
of the ventricular surface and decreased b1 integrin
signalling in the VZ. (A, B) Fluorescence micrographs of the

E14 telencephalon following an intraventricular injection of a b1

integrin FITC-conjugated blocking antibody (green) show that the

antibody does not penetrate as far as the pial surface (white dashed

line) but is present in the VZ (B) (negative control [PBS], A), (dapi-

counterstained nuclei in blue). (C) Western blot analysis showing

levels of phospho (p) and total (T) Akt 1 and actin in E12.5 and

E15.5 embryos 30 min after injection with an ITC or b1 integrin

blocking antibody.

Found at: doi:10.1371/journal.pbio.1000176.s002 (8.58 MB TIF)

Figure S3 Both b1 blocking antibody-injected and
laminin a2-deficient forebrains exhibit a lower propor-
tion of horizontal mitotic cleavages in the VZ throughout
neurogenesis. (A) Graph illustrating the results of the ordinal

regression analysis of the frequency of cleavage plane angle strata

in the b1 integrin blocking antibody injected forebrain versus ITC

by region (see Materials and Methods). Note the proportion of

horizontally dividing VZ cells (0–30 degrees) is lower at the medial

and caudal levels of b1 integrin blocking antibody injected

forebrain compared to controls. (B) Graph illustrating results of the

ordinal regression analysis of the frequency of cleavage plane angle

strata in Lna22/2 forebrain versus wild type by region. Note the

proportion of horizontally dividing VZ cells is lower at the medial

level of Lna22/2 forebrain compared to wild-type littermates, as

with the embryos injected with b1 integrin blocking antibody.

n = 3 wild-type and 4 Lna22/2 embryos from one litter, 6SEM

(standard error of the mean).

Found at: doi:10.1371/journal.pbio.1000176.s003 (8.04 MB TIF)

Figure S4 Cell differentiation is not affected after
disruption of b1 integrin signalling at the ventricular
surface. (A, B) Fluorescence micrographs of Tbr2 expression

(green) after ITC (control, A) or b1 integrin blocking (B) antibody

injection at E12.5. (C, D) Quantification of Tbr2+ cells in a dorsal

(C) and ventral (D) 200 mm6100 mm (width6height) area of the

VZ shows that the number of intermediate progenitors is not

modified by the blockade of b1 integrin in the VZ. (E, F)

Fluorescence micrographs of b3 tubulin expression (red, dapi-

counterstained nuclei in blue) after antibody injection at E12.5.

Note the lack of b3 tubulin expression within 100 mm of the

ventricular surface; scale bar represents 50 mm.

Found at: doi:10.1371/journal.pbio.1000176.s004 (7.92 MB TIF)

Figure S5 Intraventricular co-electroporation/injection
of b1 integrin blocking antibody reveals detached cells.
(A) Schematic representation of the delamination analysis

including orthogonal sections to view the cortex from apical to

basal surface followed by volumetric reconstruction and counting

of the number of apical processes and cell bodies. (B) 3-D

reconstruction pictures of CAG-RFP electroporated cells (in red)

at the VZ surface (labelled with phalloidin in green) of E15.5 b1

integrin blocking antibody-injected brain. (C) Confocal fluores-

cence micrographs of E16 telencephalon stained with PH3 (C2,

green) following b1 integrin blocking antibody and electroporation

with CAG-RFP (C1, red) at E15.5. Note the co-expression of

CAG-RFP and PH3 in a cell (yellow, C3, C4) away from the

ventricular surface. Scale bar represents 50 mm.

Found at: doi:10.1371/journal.pbio.1000176.s005 (10.08 MB

TIF)

Figure S6 Analysis of the mobility/diffusion of the b1
integrin blocking antibody in growth factor-reduced
matrigel during time lapse imaging experiments. (A, B)

Fluorescent micrographs of 300-mm-thick neocortical E14.5 slices

stained with dapi (blue) and containing a drop of ITC-(A) or

FITC- conjugated b1 integrin blocking antibody (B) growth factor-

reduced matrigel (GFRM) within their ventricular space. (C ,D)

Intensity profile graphs illustrating the distribution of pixel

intensity on both blue (dapi) and green (FITC antibody) channels

from the VZ surface (bin 0) towards the pial surface (bin 5) with

both ITC- (C) and b1 integrin blocking antibody FITC-

conjugated (D) GFRM. Each bin represents 20% of the

neocortical wall. Note that a green peak (green arrow) is only

detected in the first bin of the b1 integrin blocking antibody FITC-

conjugated GFRM (D), whereas a blue peak (blue arrows)

corresponding to dapi at the apical surface of the neocortical

slices is detected in both conditions. (E) Graph illustrating the

average of green channel pixel intensity summed for each bin

along the neocortical wall in b1 integrin blocking antibody FITC-

conjugated GFRM (red line) compared to controls (blue line). Note

that the pixel intensity in the first bin (corresponding at the apical

surface) is significantly higher with the b1 integrin blocking

antibody than in the control confirming that the antibody can

diffuse into at least in the first 20% of the thickness of the

neocortical wall. Conversely, the levels of antibody are not

different from the control (noise/background) in bin 5 (that

corresponds to the pial surface) indicating that the b1 integrin

blocking antibody does not reach the pial surface. n = 6 cortices for

ITC; n = 10 for b1 blocking antibody, 6SEM, *, p,0.05; unpaired

two-tailed t-test. Scale bar represent 50 mm.

Found at: doi:10.1371/journal.pbio.1000176.s006 (8.14 MB TIF)

Video S1 Interactive Quick Time VR video of CAG-RFP
electroporated cells (in red) at the E16 VZ surface
labelled with phalloidin (in green) following simulta-
neous b1 integrin blocking antibody injection and CAG-
RFP electroporation at E15.5.

Found at: doi:10.1371/journal.pbio.1000176.s007 (4.50 MB

MPG)

Video S2 Time lapse imaging of organotypic brain slice
prepared 24 h after in utero electroporation with eGFP-
F DNA into a wild-type E14.5 embryo and incubated in
the presence of a drop of ITC antibody-containing
growth factor–reduced matrigel in the lateral ventricu-
lar space. Automated multipoint scanning using a multiphoton

laser (850 nm) was used to monitor the behavior of the eGFP-F+
cells in presence of ITC control antibody. During the 10 h

recording the bipolar eGFP-F+ cells maintain straight processes

and end-feet attached to the ventricular surface. Scale bar

represents 25 mm.

Found at: doi:10.1371/journal.pbio.1000176.s008 (1.50 MB

MPG)

Video S3 Time lapse imaging of organotypic brain slice
prepared 24 h after in utero electroporation with eGFP-
F DNA into a wild-type E14.5 embryo and incubated in
the presence of a drop of b1 integrin blocking antibody-
containing growth factor–reduced matrigel in the lateral
ventricle. Automated multipoint scanning using a multiphoton

laser (850 nm) was used to monitor the behavior of the eGFP-F+
cells. In presence of b1 blocking antibody, the neuroepithelial

organization of the VZ appears to be progressively disrupted

because of an alteration of the radial morphology of the NSC cells

whose both basal and apical processes appear bowed and exhibit
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detachment of their ventricular end feet. Scale bar represents

25 mm.

Found at: doi:10.1371/journal.pbio.1000176.s009 (1.04 MB

MPG)
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