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During embryonic development, signalling molecules known as morphogens act in a concentration-dependent manner
to provide positional information to responding tissues. In the early zebrafish embryo, graded signalling by members
of the nodal family induces the formation of mesoderm and endoderm, thereby patterning the embryo into three germ
layers. Nodal signalling has also been implicated in the establishment of the dorso-ventral axis of the embryo.
Although one can infer the existence of nodal gradients by comparing gene expression patterns in wild-type embryos
and embryos in which nodal signalling is diminished or augmented, real understanding can only come from directly
observing the gradients. One approach is to determine local ligand concentrations in the embryo, but this is technically
challenging, and the presence of inhibitors might cause the effective concentration of a ligand to differ from its actual
concentration. We have therefore taken two approaches to visualise a direct response to nodal signalling. In the first,
we have used transgenic embryos to study the nuclear accumulation of a Smad2-Venus fusion protein, and in the
second we have used bimolecular fluorescence complementation to visualise the formation of a complex between
Smad2 and Smad4. This has allowed us to visualise, in living embryos, the formation of a graded distribution of nodal
signalling activity. We have quantified the formation of the gradient in time and space, and our results not only
confirm that nodal signalling patterns the embryo into three germ layers, but also shed light on its role in patterning
the dorso-ventral axis and highlight unexpected complexities of mesodermal patterning.
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Introduction

During embryonic development, secreted molecules known
as morphogens generate a concentration gradient of posi-
tional information that instructs developing tissues to adopt
particular cell fates [1]. One example of this phenomenon is
the patterning of the early zebrafish embryo by the nodal/
TGF-b signalling pathway [2]. Thus, the zebrafish nodal
ligands squint (sqt) and cyclops (cyc) are expressed in the
most marginal cells of the developing zebrafish embryo and
homozygous mutations in both sqt and cyc result in embryos
that lack all endoderm and mesoderm, apart from a few
somites in the tail [3]. Similar phenotypes are achieved
through the loss of nodal signalling by mutation of both
maternal and zygotic one-eyed-pinhead (MZoep) or by misex-
pression of the nodal antagonist lefty [4,5].

Misexpression of sqt and cyc in the zebrafish animal pole
indicate that cyc acts only over short distances, whereas sqt
functions as a morphogen and exerts its effects over long
distances to induce target gene expression [2]. High levels of
nodal signalling activate goosecoid (gsc) expression, whereas
lower levels activate no-tail (ntl). Thus, gsc is expressed in cells
near a source of sqt, and ntl is expressed in cells further away.

The correct regulation of ntl is essential for patterning of
the zebrafish embryo, because homozygous mutations in ntl
disrupt mesoderm and notochord formation [6]. The same
tissues are disrupted in Xenopus embryos lacking Brachyury
(Xbra) [7], and ectopic expression of Xbra in isolated animal
regions converts ectodermal cells into a mesodermal fate [8].
Consistent with the requirement of nodal signalling for
mesoderm formation, ntl expression fails to initiate in
embryos with diminished nodal signalling [3–5].

Together, these experiments suggest that nodal family
members form a gradient that induces target gene expression
and specifies mesoderm and endoderm. Activation of the
nodal signalling pathway within a cell results in the
phosphorylation of Smad2, which then interacts with Smad4
[9]. The resulting Smad2/4 complex translocates to the
nucleus where it activates the transcription of target genes.
To visualise the formation of a nodal gradient, we have first
made use of transgenic embryos expressing a Smad2-Venus
fusion protein under the control of a ubiquitous promoter:
nodal signalling causes such constructs to enter the cell
nucleus [10]. In addition, however, we have exploited the
greater signal-to-noise ratio afforded by the technique of
bimolecular fluorescence complementation (BiFC) [11]. In
this approach, the N- and C-terminal halves of a fluorescent
protein are brought into proximity by interactions between
the two unrelated proteins to which they are fused. They can
then assemble into a functional fluorescent protein that can
be detected by conventional microscopy. This approach has
previously been used to visualise, in a quantitative manner,
interactions between Smad2 and Smad4 in the Xenopus
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embryo [12]. Yolk autofluorescence in Xenopus prevented a
proper study of endogenous signalling events [12], but in this
Research Article, we show that the technique is effective in
the zebrafish embryo.

Our data allow us to follow in space and time the formation
of a gradient of nodal signalling activity within the develop-
ing zebrafish embryo. The results illustrate the dynamics of
gradient formation, and in contrast to previous studies [13],
clearly demonstrate a role for nodal signalling in dorso-
ventral patterning, explaining why target genes such as gsc are
only expressed in dorsal marginal cells. Our data also
highlight the complexities of ntl regulation and of the
formation of the border between dorsal mesendoderm and
the neural plate.

Results

Smad2/4 BiFC and Smad2-Venus Act as Sensors of Nodal
Signalling Levels

In a preliminary attempt to investigate nodal signalling
levels during zebrafish development, we generated transgenic
embryos that express a Smad2-Venus fusion protein under the
control of a ubiquitous promoter. During zebrafish develop-
ment, marginal cells are thought to receive the highest levels
of endogenous nodal signalling while cells at the animal pole
experience low levels, if any [14]. As predicted, nuclei of
animal pole cells of transgenic embryos were only weakly
fluorescent (Figure 1A), but expression of a constitutively
active version of the TGF-b receptor Taram-A-D (Taram-D*)
[15], caused strong nuclear fluorescence (Figure 1B). We note
that in unstimulated cells, Smad2-Venus appeared to be
concentrated at the centrosomes, and fluorescence accumu-
lates in the nucleus shortly before nuclear envelope break-
down, only to disperse about a minute later, and then weakly
associate with the mitotic apparatus (Video S1).

In an effort to improve the signal-to-noise ratio in such
experiments, we turned to BiFC. When zebrafish embryos
were injected with the N- and C- terminal halves of a
modified form [12] of the fluorescent protein Venus [16], no

fluorescence was observed, demonstrating that these frag-
ments are suitable for BiFC experiments in this species
(Figure 1C, C’). We therefore created fusions of the N- and C-
terminal halves of Venus with the N termini of zebrafish
Smad2 and Smad4, respectively, to create VNSmad2 and
VCSmad4. When these constructs were expressed in the
zebrafish embryo, ntl expression was unaffected in 90% of
cases (n¼ 124), and in the remaining embryos, expression was
normal in the marginal zone with weak ectopic expression in
animal pole cells (unpublished data). These experiments
demonstrate that our Smad BiFC constructs are suitable
reagents for the analysis of endogenous nodal signalling.
Consistent with the experiments described above, we

observed no nuclear BiFC fluorescence in animal pole cells
of embryos injected with VNSmad2 and VCSmad4 (Figure
1D). As in the Xenopus embryo [12], however, and in contrast
to the behaviour of Smad2-Venus, intense fluorescence
appeared to be associated with chromosomes during cell
division (Figure 1D, arrows, and Video S2). This is discussed
below. When embryos received injections of both Smad BiFC
constructs and the constitutively active version of Taram-A-D

Figure 1. Activation of TGF-b Signalling Results in Nuclear Accumulation

of Smad2/4 BiFC and Smad2-Venus

(A and B) Animal pole cells of 6-hpf transgenic zebrafish embryos that
ubiquitously express a Smad2-Venus fusion protein. Nuclei have low
levels of Smad2-Venus fluorescence (A), but misexpression of the
constitutively active TGF-b receptor Taram-D* results in strong nuclear
Smad2-Venus fluorescence (B).
(C and C9) Embryos at 6 hpf, previously injected with RNA encoding the
VN and VC halves of Venus, pictured under transmitted (C) and UV (C9)
light. Arrowheads highlight the nonfluorescent cells on top of the yolk
(arrow).
(D) Like Smad2-Venus transgenic embryos, the animal pole cells of
embryos injected with RNA encoding VNSmad2 (VNS2) and VCSmad4
(VCS4) constructs are devoid of nuclear fluorescence. The arrow
highlights intense nuclear fluorescence during cell division.
(E) Misexpression of Taram-D* results in strong nuclear Smad2/4 BiFC.
(F) Injection of RNA encoding a modified VNSmad2 construct that lacks
the TGF-b SXS phosphorylation motif (VNS2DSXS) together with RNA
encoding VCS4 and Taram-D* does not result in nuclear BiFC.
doi:10.1371/journal.pbio.1000101.g001
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Author Summary

One of the earliest events in vertebrate embryonic development is
the patterning of the embryo into three germ layers: the ectoderm,
mesoderm, and endoderm. Morphogens are signalling molecules
that act in a concentration-dependent manner to induce the
formation of different cell types. Members of the nodal family are
thought to form a morphogen gradient in the developing zebrafish
embryo and to be essential for pattern formation. Mesoderm and
endoderm are believed to develop due to high levels of nodal
signalling, while cells experiencing the lowest concentrations of
nodal signalling become ectoderm. Although this idea is widely
accepted, the formation of a nodal morphogen gradient has never
been observed directly, and we have therefore used two different
approaches to visualise the intensity of nodal signalling within
individual cells. Our approaches have allowed us to visualise a
gradient of nodal signalling activity in the developing zebrafish
embryo. Quantification of the levels of nodal signalling experienced
by individual cells confirms that nodal signalling patterns the
animal-vegetal axis of the zebrafish embryo and, in contrast to
previous studies, also suggests that it plays a role in patterning the
dorso-ventral axis of the zebrafish embryo.



[15], strong nuclear fluorescence was observed in animal pole
cells (Figure 1E). Similar results were observed when embryos
were co-injected with RNA encoding our Smad2/4 BiFC
constructs and the TGF-b ligand sqt (unpublished data).
Activation of the TGF-b signalling pathway results in the
phosphorylation of receptor-regulated Smads in their C-
terminal SXS motifs [9]. Deletion of the SXS phosphorylation
site in the VNSmad2 construct (VNS2DSXS) abolished TGF-b
induced nuclear fluorescence (compare Figures 1E and 1F).

Together, these experiments demonstrate that our Smad2-
Venus transgenic embryos and Smad BiFC constructs report
the activation of the TGF-b signal transduction pathway in
the zebrafish embryo.

Visualisation of Endogenous Nodal Signalling
We first investigated endogenous nodal signalling in

zebrafish embryos at 5–6 hours post fertilisation (hpf), when
they express ntl and experience endogenous nodal signalling
[17]. Observation of Smad2-Venus transgenic embryos at 6
hpf revealed a gradient of nuclear fluorescence that was high
at the margin and decreased towards the animal pole (Figure
2A), indicating that there is a gradient of nodal signalling in
the developing embryo. This impression was confirmed by use
of Smad2/4 BiFC, where high levels of nuclear fluorescence
were observed in marginal cells, with intensity gradually
decreasing as distance from the margin increased (Figure 2B).
This pattern of nuclear fluorescence was not observed in
embryos injected with BiFC constructs lacking the TGF-b
phosphorylation site (VNS2DSXS/VCS4) (Figure 2C), in
embryos expressing the nodal antagonist lefty [4] (96%; n ¼
25) (Figure 2D), or in MZoep embryos (100%; n ¼ 15,
unpublished data).

Quantification of the Nodal Gradient
Smad2-Venus transgenic embryos do not exhibit detectable

nuclear fluorescence in the yolk syncytial layer (YSL) of the
embryo (Figure 2A), and nor do we observe Smad2/4 BiFC
fluorescence in YSL nuclei of embryos co-labelled with a
fluorescent histone marker (Figure 2E). These observations
have allowed us to use Volocity software (Improvision) to
quantify nuclear Smad2-Venus and Smad2/4 BiFC fluores-
cence intensity from the margin to the animal pole at
different stages, defining the average intensity and average
position of the YSL nuclei as zero (Figure 3A and 3B). We
found that the most marginal nuclei, nearest the YSL, had the
greatest Smad2-Venus fluorescence (Figure 3A) and the
greatest Smad2/4 BiFC (Figure 3B). The nuclear fluorescence
decreased in cells closer to the animal pole, some 200 lm
away. Interestingly, nuclei positioned close to each other
frequently had very different levels of nuclear Smad2-Venus
and Smad2/4 BiFC fluorescence (Figure 3A and 3B; see also
Figure 2A and 2B). One possibility is that these differences
reflect local variation in effective nodal concentrations.
Alternatively, there may be cell cycle–dependent variations
in signal level associated with the intense fluorescence during
cell division (Figure 1D, arrow, and Video S1).

We went on to investigate the spatial and temporal
patterns of Nodal signalling by allowing embryos to continue
development after imaging and then noting the positions of
the imaged cells relative to the shield. This analysis exploited
the superior signal-to-noise ratio of the Smad2/4 BiFC
technique (see Figures 1 and 2). In preliminary experiments,

analysis of lateral nuclei revealed that cells have higher levels
of Smad2/4 signalling at 6 hpf compared to 5 hpf (Figure 3C;
blue points are 5 hpf and red are 6 hpf). To improve our
understanding of the spatio-temporal aspects of these signal-
ling events, we calculated the average nuclear Smad2/4 BiFC
intensity in 25-lm intervals from the margin towards the
animal pole in several different embryos (Figure 3D–3H). We
defined regions as dorsal, lateral, or ventral if the imaged cells
were positioned within the dorsal quarter, lateral two
quarters, or ventral quarter of the embryo, respectively. This
analysis was performed for dorsal, lateral, and ventral cells at
5 and 6 hpf. As observed in individual embryos (Figure 3C),
equivalently positioned cells have greater nuclear BiFC
intensities at 6 hpf compared with 5 hpf, consistent with
the idea that these cells experience increasing levels of nodal
signalling during this period (Figure 3D–3F). When dorsal,
lateral, and ventral cells were compared, we observed that
lateral and ventral cells experience near identical levels of
nodal signalling but dorsal cells experience higher levels
(Figure 3G and 3H).

Figure 2. Visualisation of Endogenous Nodal Signalling

Images of a Smad2-Venus transgenic embryo (A) and embryos injected
with Smad2/4 BiFC constructs (B–E) are shown. Embryos are positioned
such that marginal cells are at the bottom of each image, with animal
pole cells towards the top (see diagram lower right). Smad2-Venus
transgenic embryos (A) and embryos injected with the Smad2/4 BiFC
constructs (B) display strong nuclear fluorescence in cells at the margin,
while cells positioned nearer to the animal pole do not.
(C) Nuclear fluorescence was not observed in the marginal cells of
embryos injected with RNA encoding BiFC constructs that lack the TGF-b
phosphorylation site (VNS2DSXS/VCS4).
(D) Nuclear fluorescence in marginal cells was also abolished when
embryos were co-injected with RNA encoding Smad2/4 BiFC constructs
and the nodal antagonist Lefty (Antivin).
(E) An embryo injected with RNA encoding Smad2/4 BiFC constructs
(green) and a histone marker (red). Arrows show that nuclei in the YSL
are devoid of Smad2/4 BiFC, while the most marginal nuclei show strong
Smad2/4 BiFC and therefore appear yellow.
doi:10.1371/journal.pbio.1000101.g002
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Activation of Nodal Target Gene Expression
To place our observations in the context of normal

development, we studied the expression profile of the nodal
target gene ntl (Figure 4A–4C). ntl is first activated on the

dorsal side of the embryo at 4 hpf (Figure 4A). Expression
then spreads laterally, and by 5 hpf transcripts are detectable
3–5 cells deep throughout the margin (Figure 4B). By 6 hpf
the ntl expression domain has doubled, and is now approx-

Figure 3. Quantification of Endogenous Nodal Signalling

Plots of the nuclear Smad2-Venus fluorescence intensity in transgenic embryos (A, x-axis), or the ratio of nuclear Smad2/4 BiFC to histone CFP (B–H, x-
axis), against distance from the margin (near zero) towards the animal pole (.200 lm) of the embryo (lm, y-axis). All graphs are plotted with the
average distance and intensity of nuclei in the YSL as zero. (A) Nuclear Smad2-Venus fluorescence intensity in a 6 hpf transgenic embryo.
(B) Nuclear Smad2/4 BiFC in a wild type 5 hpf embryo.
(C) Comparison of Smad2/4 BiFC in lateral cells of the same embryo at 5 hpf (blue) and 6 hpf (red).
(D–H) A comparison of the average BiFC intensity of all nuclei within 25-lm intervals of multiple embryos. (D–F) A temporal analysis of the average
nuclear BiFC intensity in ventral cells (D), lateral cells (E), and dorsal cells (F) at 5 hpf (blue in all three) and 6 hpf. (G and H) A spatial analysis of nuclear
BiFC at 5 hpf (G) and 6 hpf (H). As in (D–F), purple¼ ventral cells, red¼ lateral cells, and black¼ dorsal cells. The number of embryos used to calculate
the average intensity for 5 hpf was: 7 ventral, 10 lateral, and 7 dorsal; numbers of embryos used for 6 hpf was: 5 ventral, 6 lateral, and 6 dorsal.
doi:10.1371/journal.pbio.1000101.g003
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imately 12–14 cells deep (Figure 4C). The expansion of the ntl
domain observed over this period reflects the increasing
levels of nuclear BiFC fluorescence and of Smad2/4 signalling
(Figure 4D compare blue and black trend lines).

Our BiFC results show that the highest levels of Smad
signalling occur at the dorsal side of the zebrafish embryo
near the margin, where gsc is expressed (Figures 3G, 3H, and
4D, compare red and black trend lines). Consistent with this
observation, work in zebrafish and Xenopus indicates that
activation of gsc requires higher levels of nodal or activin-like
signalling than are required to induce Brachyury [2,18]. These
results suggest, in contrast to previous proposals [13], that a
gradient of nodal signalling specifies the dorso-ventral axis of
the zebrafish embryo. To explore this point in more detail, we
expressed increasing amounts of sqt in the embryo. Our
results showed that as levels of sqt increased, the domain of
gsc expression expanded both animally and ventrally, as
exogenously introduced sqt supplemented levels of the
endogenous protein (Figure 5B-5D and 5F).

In an effort to correlate, in a quantitative manner, sqt
signalling with Smad2/4 BiFC and gsc expression, we injected
embryos at the one-cell stage with increasing amounts of sqt
mRNA. At 6 hpf, we then measured Smad2/4 nuclear BiFC in
the animal pole cells of some of the embryos and processed
the remaining embryos for gsc expression. Injection of 1–4 pg
of sqt mRNA resulted in an expansion of the gsc expression

domain, but few embryos expressed gsc at the animal pole
(Figure 5G, boxed area). Injection of 5 pg of sqt mRNA
resulted in a significant increase in the percentage of
embryos that expressed gsc in animal pole cells (Figure 5H),
suggesting that the threshold for activation of gsc lies between
4 and 5 pg of sqt mRNA. Quantification of nuclear Smad2/4
BiFC fluorescence in the animal pole cells of injected
embryos demonstrated that as the levels of sqt increased, so
did fluorescence intensity (Figure 5I). Based on these data,
our results indicate that the threshold for the activation of gsc
expression is represented by a nuclear Smad2/4 BiFC
intensity between 0.60 and 0.65 (Figure 5I). The only cells to
experience endogenous levels of Smad2/4 BiFC that exceed
this threshold are dorsal marginal cells (Figure 3H).
Our results are consistent with the idea that nodal

signalling patterns the dorso-ventral axis of the zebrafish
embryo as well as the animal-vegetal axis. But is nodal
signalling the prime mover for dorso-ventral patterning in
the zebrafish, or do sqt and cyc act downstream of BMP family
members? Embryos lacking BMP signalling become dorsalised
and fail to form ventral tissues [19], so it is possible that the
dorso-ventral axis is first established by the ventral activation
of the BMP signal transduction pathway, and it is this that
directs the spatial distribution of nodal signalling and the
dorsal activation of genes such as gsc. In this model, all dorso-
ventral patterning would depend on BMP signalling, so to

Figure 4. Spatial and Temporal Induction of Nodal Target Genes

(A–C) Analysis of ntl expression. (A) Animal pole view of a 4 hpf embryo. (B and C) Views of the margin at 5 hpf (B) and 6 hpf (C) with arrowheads
highlighting ntl expressing cells.
(D) Graphical representation of Smad2/4 BiFC quantifications in Fig’s 3E-F. Black: 6 hpf dorsal cells; blue: 5 hpf dorsal cells; red: 6 hpf lateral cells.
doi:10.1371/journal.pbio.1000101.g004
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address the idea we injected embryos at the one-cell stage
with a dominant negative BMP receptor (dnBMPr) and then
studied the expression of gsc. Injected embryos became
elongated (Figure 6A and 6B; 190/203 elongated at 4-somite
stage) and appeared strongly dorsalised [20]; by 24 hpf almost
all had died, with the survivors displaying slightly weaker
dorsalised phenotypes (9 ¼ c4, 9 ¼ c3, and 7 ¼ c2). gsc
expression was unaffected in embryos injected with RNA
encoding dnBMPr (Figure 6C–6F), indicating that the

establishment of dorso-ventral patterning and the spatial
distribution of nodal signalling is independent of BMP
signalling.

Discussion

Our understanding of the role of morphogen gradients
during development is based largely on experiments that
monitor gene expression after an increase or decrease in the

Figure 5. Levels of Nodal Signalling Specify Dorso-Ventral Pattern

(A–F) In situ hybridisation showing expression of gsc in 6 hpf wild-type (WT) embryos (A and E), and embryos injected with increasing concentrations of
sqt (B–D, F, and G). (A–D, and G) Animal pole views, with dorsal towards the right of the image, show that increasing concentrations of sqt lead to a
ventral expansion of gsc.
(E and F) Images of the dorsal side of (A) and (B) show that gsc expression expands towards the animal pole in embryos injected with sqt.
(G–I) Correlation of the percentage of embryos that express ectopic gsc with levels of Smad2/4 nuclear BiFC. (G) No ectopic gsc expression is visible in
the animal pole (boxed region) of an embryo injected with 2.5 pg of sqt mRNA. (H) Graph showing the percentage of embryos that express gsc in
animal pole cells in response to increasing levels of sqt mRNA. Note that significant expression of gsc occurs between 4 pg and 5 pg of injected mRNA.
(I) The average intensities of Smad2/4 nuclear BiFC in animal pole cells of embryos injected with the indicated amounts of sqt mRNA, using the same
groups of embryos used to quantify gsc expression in (H). Smad2/4 BiFC intensities were normalised by subtracting from the data the average intensity
of nuclei in the YSL, derived from Figure 3.
Numbers of embryos used for the quantifications of gsc expression (H) were: 5 pg¼ 103; 4 pg¼ 58; 3 pg¼ 58; 2 pg¼ 112; 1 pg¼ 36. Numbers used for
the quantification of Smad2/4 BiFC intensity (I) were: 5 pg ¼ 20; 4 pg ¼ 8; 3 pg ¼ 14; 2 pg ¼ 16; 1 pg ¼ 6.
doi:10.1371/journal.pbio.1000101.g005
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concentration of a putative morphogen. This approach has
the benefit of simplicity, but it is difficult to infer from the
results obtained the shape of a morphogen gradient or the
dynamics of its formation, because different genes respond
differently to different morphogen concentrations, and
because there may be interactions between gene products
that refine their expression domains [21]. As an alternative, it
is possible to observe the behaviour of tagged morphogens,
including members of the TGF-b family [22–24], but these
may not reflect accurately the behaviour of the endogenous
inducers, and it is also possible that effective gradients of
inducers are created by inverse gradients of an inhibitor
[25,26]. We addressed these problems by using BiFC [11], a
technique that permits quantitative assessment of levels of
nodal signalling [12]. Our results demonstrate that the early
zebrafish embryo experiences a gradient of nodal signalling
levels, with cells at the margin experiencing the highest levels
of nodal signalling and cells positioned away from the margin
and towards the animal pole experiencing lower levels.

Highest levels of signalling are experienced by cells at the
dorsal margin of the embryo, where gsc is expressed.

Nodal Signalling and Dorso-Ventral Patterning
Our results are consistent with the idea that nodal

signalling patterns the animal-vegetal axis of the zebrafish
embryo, with changes in the distribution and intensity of
Smad signalling being reflected in changes in the spatial
expression pattern of the nodal target gene ntl (Figure 4). In
addition, we observe that over expression of sqt causes the
expression domain of gsc to extend towards the animal pole
(Figure 5E and 5F).
However, in contrast to previous conclusions based on cell

lineage and gene expression experiments [13], our data also
suggest that nodal signalling plays a role in patterning the
dorso-ventral axis of the zebrafish. In particular, we note that
there are higher levels of Smad2/4 BiFC fluorescence in dorsal
regions than in lateral and ventral regions (Figures 3G, 3H,
and 4D) and that gsc, whose expression requires higher levels
of nodal signalling than does ntl [2], is expressed in these
regions of elevated fluorescence. Consistent with this model,
our correlation of Smad2/4 BiFC intensity with ectopic gsc
expression (Figure 5H and 5I) demonstrates that the only cells
to go above the gsc threshold are dorsal marginal cells. In
addition, we note that over half of the cells of the prospective
endoderm, a tissue whose formation also requires high levels
of nodal signalling, are located dorsally [27].
If high levels of nodal signalling are indeed required for

dorsal fates and lower levels for lateral and ventral tissues,
then increased nodal signalling should produce a ventral shift
in dorsal fates and loss or attenuation of nodal signalling
should result in a dorsal shift of ventral fates. Consistent with
this model, increased nodal signalling expands the expression
domain of gsc in a ventral direction (Figure 5A–5D) and loss
of nodal signalling results in a dorsal shift of the ventral
marker gata2 [5]. Similarly, fate mapping experiments
demonstrated that cells fated to become pronephros and
midbrain, which in wild-type embryos are located in ventral
and lateral positions respectively, shift towards the dorsal side
of sqt-/-;cycþ/- embryos [13]. However, some ventral markers,
such as spt and vox, are not expanded dorsally in embryos with
reduced nodal signalling [13]. It is likely that these genes are
regulated by BMP family members [5]; if BMP signalling is
attenuated, ventral tissues fail to form and embryos become
dorsalised [19]. Significantly, we found that the expression of
a dominant negative BMP receptor had no effect on the
expression of gsc (Figure 6C–6F). This suggests that the
elevated levels of nodal signalling at the dorsal side of the
embryo occur independently of BMP signalling. Previous
work has demonstrated that Wnt/b-catenin signalling is also
required for the specification of dorsal cell fates and that
ectopic activation of b-catenin induces the expression of gsc
[13,28]. However, sqt is not expressed in embryos with
disrupted b-catenin signalling, and b-catenin cannot induce
gsc expression in sqt mutant embryos [13,28]. Together with
our correlation of nodal signalling and gsc expression, these
results indicate that the effects of b-catenin are mediated by
nodal signalling.
In combination with the results described above, our data

therefore indicate that patterning of the zebrafish dorso-
ventral axis involves high levels of BMP signalling in ventral
tissues and high levels of nodal signalling in dorsal regions,

Figure 6. Dorso-Ventral Patterning Is Dependant on Nodal and BMP

Signalling

(A, C–D) Wild-type embryos.
(B, E, and F) Embryos injected with 800 pg of RNA encoding a dominant
negative BMP receptor.
(A and B) Four-somite stage embryos.
(C–F) gsc in situ hybridisation on 6-hpf embryos. (C and E) Animal pole
views. (D and F) Dorsal views.
doi:10.1371/journal.pbio.1000101.g006
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effectively setting up a double gradient. It is also possible, as
in the Xenopus embryo [29], that BMP ventralises the embryo
only after the onset of gastrulation.

Spatial and Temporal Induction of ntl Expression
As discussed above, the dynamic expression pattern of ntl

(Figure 4B and 4C) reflects the spatial changes in nodal
signalling that occur in the margin of the zebrafish embryo
between 5 and 6 hpf (Figure 4D). Expression of both cyc and
sqt declines between 5 and 6 hpf [13], so it is likely that the
increased level of signalling experienced by cells positioned
away from the margin at 6 hpf derives from nodal ligand that
has traversed cell tiers 1–6 during this period.

At 6 hpf, Smad signalling extends farther towards the
animal pole in dorsal regions of the embryo than in lateral
and ventral regions (Figure 3H), yet ntl is expressed in
approximately the same number of cell tiers throughout the
margin, and does not spread into prospective neural tissue at
the dorsal side [30]. This suggests that ntl expression is
repressed in the prospective neural plate, perhaps, as in
Xenopus, in a Sip-1–dependent manner [31,32]. It is possible
that the Smad signalling that occurs in the neural plate
provides positional information to this tissue; injection of
increasing concentrations of lefty results in the gradual loss
of hindbrain structures, whereas prospective forebrain tissues
are converted into hindbrain structures following expression
of cyc [4].

Why Is Nodal Signalling Higher in Dorsal Positions?
At 5 hpf, the expression of sqt and cyc is uniform

throughout the margin of the zebrafish embryo [13], so what
might cause the activation of Smad signalling to be higher in
dorsal regions? Evidence suggests that the duration of
signalling as well as the concentration of the morphogen
may determine cell fate [17,33,34], and it may be significant
that expression of sqt both commences on the dorsal side of
the embryo and persists for longer in this region [13]. The
elevated level of Smad2/4 BiFC in dorsal regions may
therefore reflect both signal intensity and signal duration in
the developing embryo.

Subcellular Localisation of Smad2 and Complexes of
Smad2 and Smad4

Our observations of transgenic embryos expressing Smad2-
Venus indicate that Smad2 is associated with the centrosome,
and comparison with results obtained with Smad1 [35]
suggest that this might represent Smad2 that is destined for
degradation. This is under investigation. We also noted that
Smad2-Venus entered the nucleus shortly before nuclear
envelope breakdown, and in this respect, its behaviour
resembled that of cyclin B1, which translocates to the nucleus
after phosphorylation by Polo-like kinase 1 [36–38]. We do
not yet know if the translocation of Smad2-Venus is regulated
by phosphorylation, but if it were, this newly phosphorylated
Smad2 might then be able to associate with Smad4 and form a
complex on the chromosomes. We do not understand the
significance of such an association, although one possibility is
that it ensures an equal distribution of Smads between
daughter cells, as is thought to occur for Sara-containing
endosomes in the developing fly wing [39].

Materials and Methods

Generation of transgenic embryos. The Smad2-Venus fusion was
generated by PCR amplification of Venus and cloning into a pCS2-
Smad2 plasmid, thus generating a fusion of Venus to the N terminus
of Smad2. The Smad2-Venus fusion was then subcloned into a
miniTol vector containing the Xenopus EF1a, mcFos promoter.
Transgenic embryos were generated by injecting embryos at the
one-cell stage with 15 pg of Smad2-Venus miniTol plasmid and with
12.5 pg of transposase RNA. Injected embryos were raised to
adulthood and then outcrossed to generate stable transgenic lines.

Constructs and manipulation of embryos. All constructs were
injected in volumes of 2 nl into the yolk of zebrafish embryos at the
one-cell stage, and embryos were then incubated at 28 8C. Where
stated, embryos were injected with 100 pg of histone CFP [12], 50 pg
of VNSmad2, 50 pg of VCSmad4, 300 pg of Lefty (Antivin) [4], 1 pg of
Taram-A-D, 2.5–10 pg of sqt [2], or 800 pg of truncated dominant
negative BMP receptor [40]. Zebrafish Smad2 and Smad4 open
reading frames were amplified by PCR, cloned into the BiFC
constructs [12], and sequenced. The VNS2DSXS construct was created
by introducing a stop codon into the VNS2 plasmid using PCR based
mutagenesis with the primers 59-TTAGGACATACTTTAGCAGCG-
TACGGAGGGGGAGCCCATC- 39 and 59-GATGGGCTCCCCCTCCG-
TACGCTGCTAAAGTATGTCCTAA-39. All RNA was synthesised
using SP6 mMessage mMachine according to the manufacturer’s
instructions (Ambion). Whole mount in situ hybridisation was
performed essentially as described [41], using probes specific for ntl
[30] and gsc [42].

Imaging and quantification. For imaging, embryos were de-
chorionated and embedded in 0.3% agarose. Images were obtained
with Perkin Elmer spinning disc and Olympus FV1000 inverted
confocal microscopes using 403 lenses. All quantifications were
performed by sequential imaging of CFP and Venus fluorescence
using the Olympus FV1000 microscope. Ten 1-lm Z sections of the
cells nearest the lens (based on focal plane) were imaged. Following
imaging embryos were incubated at 28 8C until 6–7 hpf. The agarose
dish was then placed in hot water to melt the agarose, the embryos
were removed from the agarose using forceps, and the positions of
the imaged cells in relation to the shield was noted. Individual Z
sections were used for the quantification of animal pole cells.
Fluorescence intensity was quantified using Volocity software
(Improvision). Individual nuclei were identified using a protocol to
mark objects with intensities between 10 and 100% in the CFP
(histone) channel. Quantifications were analysed using Microsoft
Excel. For each image, the nuclei of the YSL were identified and the
average distance and intensity of these nuclei was subtracted from all
nuclei in that image. Video S1 was made using the Perkin Elmer
spinning disc microscope.

Supporting Information

Video S1. A Movie of a Smad2-Venus Transgenic Embryo Showing
Fluorescence during Mitosis

Found at doi:10.1371/journal.pbio.1000101.sv001 (23.19 MB AVI).

Video S2. A Movie of an Embryo Injected with the Smad2/4
Constructs Highlighting the Intense Fluorescence That Occurs
during Mitosis

Found at doi:10.1371/journal.pbio.1000101.sv002 (40.67 MB AVI).
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